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Abstract

The mitotic spindle is an important intermediate structure in eukaryotic cell division, in which

each of a pair of duplicated chromosomes is attached through microtubules to centrosomal bodies

located close to the two poles of the dividing cell. Several mechanisms are at work towards the

formation of the spindle, one of which is the ‘capture’ of chromosome pairs, held together by

kinetochores, by randomly searching microtubules. Although the entire cell cycle can be up to

24 hours long, the mitotic phase typically takes only less than an hour. How does the cell keep

the duration of mitosis within this limit? Previous theoretical studies have suggested that the

chromosome search and capture is optimized by tuning the microtubule dynamic parameters to

minimize the search time. In this paper, we examine this conjecture. We compute the mean search

time for a single target by microtubules from a single nucleating site, using a systematic and rigorous

theoretical approach, for arbitrary kinetic parameters. The result is extended to multiple targets

and nucleating sites by physical arguments. Estimates of mitotic time scales are then obtained

for different cells using experimental data. In yeast and mammalian cells, the observed changes

in microtubule kinetics between interphase and mitosis are beneficial in reducing the search time.

In Xenopus extracts, by contrast, the opposite effect is observed, in agreement with the current

understanding that large cells use additional mechanisms to regulate the duration of the mitotic

phase.
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I. INTRODUCTION

Microtubules are one class of polymeric filaments in the eukaryotic cell, whose sub-unit is a

hetero-dimer of alpha- and beta-tubulin. Microtubules therefore possess structural polarity,

and the ends are differentiated as plus and minus ends. A hall-mark of microtubules is

their unique mechanism of assembly and dis-assembly: a polymerizing microtubule can

abruptly start shrinking by losing sub-units and vice-versa, a process referred to as dynamic

instability(reviewed in [1]). The stochastic switching process between growth and shrinkage

is referred to as catastrophe and the reverse process is called rescue. Between a rescue and

a catastrophe, a microtubule grows in length by polymerizing and between a catastrophe

and rescue, it shrinks. In vivo, a third state called pause is also observed where the length

remains static. Microtubules usually nucleate from organizing centers called centrosomes,

but may also be found free in the cytoplasm.

Microtubules play a central role in eukaryotic cell division. An important milestone in

the cell division cycle is the formation of the metaphase spindle, where all the duplicated

chromosome pairs, held together by kinetochores are aligned along the cell ‘equator (the

“metaphase plate”) in such a way that each chromosome of a pair is facing one of the poles

of the cell, and attached to one or more microtubules emanating from a centrosome located

near that pole. The spindle starts forming when microtubules nucleating from each cen-

trosome randomly searches the surrounding space for chromosomes by alternately growing

and shrinking (the random search-and-capture model, and are stabilized upon contact with

a kinetochore[2, 3]. Investigations over the last decade or so have revealed that the chro-

mosomes do not always remain passive in this process; rather, the kinetochores nucleate

and stabilize microtubules in their vicinity, a process facilitated by RanGTP, which then

connect to the astral microtubules emanating from the chromosomes, assisted by motor pro-

teins such as dynein (see [4] for a recent review). In the present paper, we, however, restrict

ourselves to the situation where chromosomes are passive, and microtubules perform the

search-and-capture.

We now briefly review the previous papers that addressed this problem. A theoretical

and numerical study of the random search-and-capture model was done first by Holy and
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Leibler[5]. In this paper, the conditions for optimization of search process was investigated

for a spherical cell of radius R = 50µm, with a single stationary target at various distances

d < R from the centre. The number of searching polymers was fixed at 250, and was assumed

to remain constant with time (effectively infinite nucleation rate). At the cell boundary, the

filaments would stop growing and wait until a catastrophe occurs. By a combination of

intuitive arguments and explicit simulations, it was postulated that (i) the global minimum

of the search time occurs when rescue is absent and (ii) the optimized mean time of search

increases with d, and is less than 10 minutes for d < 10µm, but much higher for larger d.

In a more recent paper, Wollman et al[6] carried out a more detailed study of the problem,

and also investigated the time to capture multiple chromosomes. An optimal catastrophe

frequency was first estimated by minimizing a weighted average time of search for multiple

chromosomes at variable separations from the nucleating centre. Numerical simulations of

the problem, using this optimal frequency showed that the search typically took hours to

complete when the number of targets was large (eg. 46 in humans). However, when a

biochemically induced bias in search (a microtubule stabilizing RanGTP gradient around

chromosomes) was introduced, the search was completed over physiologically reasonable

times.

In the earlier studies, it has generally been assumed, on the basis of probabilistic argu-

ments, that the rescue frequency should be optimally zero. However, small, but non-zero

rescue frequency is typically observed in mitotic cells, and the existing theoretical results

cannot be used to analyze this case. Also, the earlier studies have generally ignored the finite

cell size which limits long searches, and is likely to be crucial at least in small cells. The

number of searching microtubules was generally assumed constant, while this is a fluctuating

quantity, controlled by the nucleation rate at the centrosomes.

The primary motivation behind the present paper is to present a rigorous theoretical

method for calculating the search time for arbitrary rescue frequency, nucleation rate and

cell size/radius. The formalism presented here is based on a set of Greens functions and

first passage densities for microtubule dynamics, related through a set of convolution equa-

tions. As such, this approach permits us to derive an implicit expression for the probability

distribution of the search time for a single chromosome/target. Existing theoretical results

follow from our more general expressions in the appropriate limits.We believe that this for-

malism will be useful in obtaining a great deal of insight into microtubule dynamics in in
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vivo situations, and may well find applications in other related problems.

In the following sections, we discuss the problem and the model, develop the formalism

to address the problem, and analyze our results, first in theoretically interesting limits. The

results are then discussed in the context of available experimental observations. We then

conclude with a summary of our findings and mention a few directions in which this study

may be extended. Two appendices supplement the mathematical part of the paper.

II. MATHEMATICAL FORMALISM

A. Model details

It is convenient to imagine that during pro-metaphase, prior to division, the shape of

the cell is close to an ellipsoid. Microtubules nucleate from two centrosomes, which, for

simplicity, may be assumed to be located at the two focal points of the ellipsoid, and the

duplicated chromosomes, held together through kinetochores (henceforth called simply ‘tar-

gets’) are assumed to be scattered around the equatorial plane. In the rest of this paper, we

only consider capture of the target by microtubules emanating from one of the centrosomes,

which is a precursor event to the later ‘bi-oriented’ configuration, where microtubules from

both centrosomes will bind to a target and engage in ‘tug-of-war’ which ultimately separates

the individual chromosomes in the pair.

It is generally estimated that there are hundreds of nucleating sites in a centrosome.

From a vacant site, a microtubules nucleate at rate ν in a random direction and grows by

polymerization as long as it is in the growth phase, while the same microtubule shrinks in

length by depolymerization in the shrinking phase. Catastrophe and rescue frequencies are

denoted by νc and νr respectively, and are assumed to be the same everywhere inside the

cell, as are the growth and shrinkage velocities, denoted vg and vs. In this paper, as in

the earlier papers which addressed this problem, we will treat all these different dynamical

quantities are independent parameters (see the discussion in the last section, however). In

the process, the microtubule scans the surrounding space for chromosomes, and is stabilized

when the growing end encounters a kinetochore.

A microtubule from a certain nucleation site on the centrosome can nucleate in many

possible directions; however, given the finite size of the centrosome, the orientation is likely
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to be constrained by the geometry of the centrosome. In an extreme case, one may imagine

that a microtubule will always grow only along the local normal to the surface, but this

case is pathological when the target is fixed in space, since no microtubule might ever grow

in the right direction to find it. It is therefore, more realistic to imagine that microtubules

from each nucleation site in the centrosome will grow within a certain solid angle ∆Ω, which

defines a search cone for the corresponding nucleation site. In this case, if the fixed target

falls inside the cone, and has a cross-sectional area a, it subtends a solid angle a/d2 at a

point on the centrosome, and therefore a microtubule originating at that particular site has

a probability p = ad−2∆Ω−1 for nucleating in the right direction, within the search cone of

the site.

For a given search process, ∆Ω is determined by several factors, the most important

being (a) orientational constraints on nucleation at a given site in the centrosome and (b)

steric hindrance between microtubules in the cytoplasm. In general, one may see that

when ∆Ω is large, p is small, and consequently, the search by microtubules from any single

nucleating site becomes inefficient. However, in this case, the search cones of different

microtubules overlap (each being large) and more nucleating sites/microtubules will be able

to participate in the search.On the other hand, if ∆Ω is small, only a few microtubules will

be effectively searching, however the search by each is now more efficient; the two effects

therefore compensate each other. For concreteness, we choose ∆Ω = π/2 in this paper, i.e.,

a microtubule from any nucleating site will be able to search a quarter of the space around

it (This choice is somewhat arbitrary and not directly derived from any experimental data;

for comparison, Wollman et. al[6] used ∆Ω = 2π). An illustration of the model is shown in

Fig.1. We take the cross-sectional area of a target to be a = 0.25µm2 throughout this paper

(corresponding to a radius of ∼ 0.28µm), therefore, with the previous estimate of ∆Ω, we

find p ≃ 0.31/d2, where d is measured in µm.For d = 2µm and larger, therefore p≪ 1.

A search by microtubules emanating from any particular site is terminated in three

possible ways: if the nucleation occurs in the right direction, (i) the growing tip encounters

the target and ends the search, or (ii) the microtubule depolymerizes completely before it

encounters the target, and finally (iii) if the nucleation happens in the wrong direction, the

microtubule will ultimately depolymerize and disappear after a futile search, with or without

encountering the cell boundary. For mathematical simplicity, we assume that within a search

cone, the boundary is at the same distance R from the centre, although this is strictly true
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only when ∆Ω is sufficiently small. The cut-off distance R therefore serves as an estimate

of the size of the cell. In the last case, we assume that once the microtubule hits the cell

boundary, it undergoes catastrophe at a rate ν ′c, which is generally higher than the value in

the interior [7–9]. In particular, it was reported in [7] that the catastrophe frequency near

the boundary is 16-fold higher than that in the interior, for certain cells. In cases (ii) and

(iii), a new microtubule will nucleate again from the center in a randomly chosen direction,

at rate ν.

Search cones of many nucleating sites will overlap, and therefore a target will be searched

simultaneously by many microtubules which will reduce the mean search time. It was

shown in Wollman et. al[6] that the mean time to capture N targets by M microtubules

(M nucleating sites in our case) is given by

TM,N ≃ T1,1
σN
M

(1)

where σN =
∑N

k=1 k
−1 ∼ logN when N ≫ 1.The above expression holds, provided

the probability distribution of the search for a single target by a single microtubule is a

pure exponential (which is true only for zero rescue frequency, as in [6], but not true in

general). Further, Eq.1 is true only if all the targets are at the same distance from the

centrosome/microtubule nucleating centre, which is not true in a realistic situation. When

the targets are at variable separations, an estimate of the mean search time can be still

obtained in the form of the following inequality:

TM,N < Tmax
1,1

σN
M

(2)

where Tmax
1,1 is the search time for the farthest target, which is an upper limit on T1,1. In

this paper, we compute T1,1 rigorously, with some simplifying assumptions, but for arbitrary

kinetic parameters. We then use Eq.2 to make estimates for multiple targets and parallel

search, for the sake of comparison with experiments.

B. Capture time distribution

For the rest of this paper, we replace T1,1 simply by T . Let us denote by C(T ) the

probability density of the capture time T for a single stationary target at a certain distance

from the centrosome. The mean capture time follows:
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〈T 〉 =

∫∞

0
dTC(T )T

∫∞

0
dTC(T )

, (3)

where,
∫∞

0
dTC(T ) is the probability that the search will be eventually successful, which

we will, later, show to be unity.

Since the basic process under consideration here is the capture of a certain target by one

(or a set) of dynamically unstable filaments, it is natural to base our theory on consideration

of first passage probability densities[10, 11]. For this purpose, it is convenient to define a

set of three conditional first passage probability densities (CFPD), which will serve as the

basic quantities in terms of which the probability distribution C(T ) can be expressed. These

CFPDs are defined below, with the corresponding condition for each given in italics.

1. K1(T ) ≡ pΦ(d, T ), where Φ(d, T ) is the CFPD for a freshly nucleated microtubule to

reach a distance d for the first time after a time interval T , without ever shrinking back

to the origin in between.

2. K2(T ) ≡ (1− p)QR(T ), where QX(T ) is the CFPD for shrinking to the origin after a

life-time T , without ever reaching a length X in between.

3. K3(T ) ≡ (1 − p)Ψ(T ), where Ψ(T ) is the CFPD for return to the origin after a time

interval T , after encounter with the boundary (and consequent catastrophe) at least

once (and possibly several times) in between.

A successful search event is, in general, preceded by n unsuccessful search events: let us

denote by Ωn(T ) the probability of n unsuccessful nucleation-search-disappearance events

within a time interval T , so that C(T ) may be written as

C(T ) =
∞
∑

n=0

∫ T

0

Ωn(T − T ′)pΦ(d, T ′)νdT ′ (4)

Our next task is to write an expression for Ωn(T ). Let us now assume that among the n

unsuccessful nucleation events, there are n1 events of type 1 (above), where the microtubule

nucleated in the right direction, but did not reach the chromosome, n2 events of type 2

(above), where it nucleated in a wrong direction, but shrank back to origin before encoun-

tering the boundary, and n3 = n− n1 − n2 events of type 3 (above), where the microtubule
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nucleated in a wrong direction, encountered the boundary, underwent catastrophe and then

shrank to the origin.

Specifying the total number of events in each class does not completely describe the

history of the process, as the temporal ordering of the events is still arbitrary. The n1 events

of type 1 can be distributed in a total of n in
(

n
n1

)

different ways, and the n2 events of type

2 can be distributed among the remaining n − n1 in
(

n−n1

n2

)

different ways. The remaining

n− n1 − n2 events naturally belong to type 3.

Ωn(T ) may now be expressed as a sum over histories (i.e., a path-integral) of all these

events, ordered temporally in all possible ways. This is done as follows: Starting at time

T = 0, let the first microtubule nucleation occur at time T ′
1, and let this microtubule live

for a time interval T1. Then there is a time gap of T ′
2 until the next nucleation, and the

microtubule nucleated then lasts for a time interval T2 and so on. The time gap T ′
1 occurs

with a probability exp(−νT ′
1) and the nucleation at the end of it occurs with probability

νdT ′
1. The probability that a microtubule will last for a time interval T1 before shrinking

back to the origin may be denoted K(T1)dT1, but K could be K1, K2 or K3 depending

on whether this event falls into type 1, 2 or 3. For Ωn(T ), there are a total of n such

nucleation-death events within a time interval T . The resulting mathematical expression

can be written as a convolution over all these time-intervals, and has the form

Ωn(T ) =
n

∑

n1=0

n−n1
∑

n2=0

∑

per

∫ T

0

νdT ′
1e

−νT ′

1

∫ T−T ′

1

0

dT1K(T1).....

∫ T−T ′

1
−..Tn−1

0

dTnK(Tn)e
−ν[T−

∑n
k=1

(Tk+T ′

k
)] (5)

where per stands for all the possible permutations of events, as far as their temporal

order of occurrence is concerned. The preceding equation has the form of a 2n-fold con-

volution, and it is therefore convenient to use Laplace transforms. We define Ω̃n(s) =
∫∞

0
dTe−sTΩn(T ) and similarly for other quantities. A generalized form of the standard

convolution theorem for Laplace transforms may be applied to Eq.5 (see, eg.,[12]), and the

result is

Ω̃n(s) =
1

(s+ ν)

(

ν

s+ ν

)n n
∑

n1=0

n−n1
∑

n2=0

(

n

n1

)(

n− n1

n2

)

K̃1(s)
n1K̃2(s)

n2K̃3(s)
n−n1−n2 (6)
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Note that, in the passage from Eq.5 to Eq.6, allowance has been made for the fact that

the random variable K takes the value K1 n1 times, K2 n2 times and K3 n− n1 − n2 times.

The previous equation is clearly a binomial series, and can be summed immediately. From

Eq.4, we find C̃(s) = νpΦ̃(d, s)
∑∞

n=0 Ω̃n(s). After substituting the binomial sum from Eq.6,

and replacing K1, K2, K3 by their original notations, we arrive at the following expression:

C̃(s) =
νpΦ̃(d, s)

[

s+ ν

(

1− pQ̃d(s)− (1− p)[Q̃R(s) + Ψ̃(s)]

)] (7)

As a special case, if MT nucleation occurs very fast and therefore not rate-limiting, we

may take the limit ν → ∞ in the above equation, whence the following limiting form is

reached:

lim
ν→∞

C̃(s) =
pΦ̃(d, s)

1−

[

pQ̃d(s) + (1− p)

(

Q̃R(s) + Ψ̃(s)

)] (8)

Eq.7 is the central result of this paper. Using this expression, the mean search time for

a single target, and its variance may be expressed as

〈T 〉 = −
∂sC̃(s)|s=0

C̃(0)
; 〈T 2〉 =

1

C̃(0)

∂2C̃(s)

∂s2
|s=0, (9)

where C̃(0) =
∫

dTC(T ). It is, however clear that Φ̃(d, 0) + Q̃(d, 0) = 1, since a micro-

tubule growing in the right direction will either have to hit the target, or shrink back

without touching the target. Similarly, for the wrong directions, we have the relation

Q̃(R, 0) + Ψ̃(0) = 1 for similar reasons. Substitution of these normalization relations into

Eq.7 shows that C̃(0) = 1 for all parameters, i.e., the search is always eventually successful.

The CFPDs introduced above are now calculated from the Green’s functions for MT

kinetics, derived explicitly in the next section.

C. Green’s functions

The stochastic state of a MT at a given point in time t is characterized by two variables,

its length l and its state of polymerization versus depolymerization, which we denote by

an index i,which takes one of the two values,1 or 0 respectively for growing and shrinking

states. In this case, therefore, we need to compute four Green’s functions, or propagators,
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Gij(x, t; x0, 0), for i, j = 0, 1; by definition, Gij(x, t; x0, 0)dx gives the probability that a

given MT will have length l between x and x+ dx, and will be in state i at time t, provided

that it had a length x0 and was at state j at an earlier time t = 0.

Calculating the above Green’s functions for a physically realistic situation would also

require specification of appropriate boundary conditions at the origin (nucleating site) and

this has been done earlier[13]. However, we deem this unnecessary for our purpose, since

we are only interested in using these Green’s functions to compute the CFPDs introduced

above. Therefore, for the rest of this paper, we will allow the ‘length’ x to be a continuously

varying variable between positive and negative values, with no boundary condition imposed

on the dynamics at x = 0. The boundary conditions are used in the definition of the CFPDs

later.

The Dogterom-Leibler[14] rate equations for MT kinetics takes the form

∂tG1j = −vg∂xG1j + νrG0j − νcG1j

∂tG0j = vs∂xG0j + νcG1j − νrG0j (10)

The equations may be solved together using combined Laplace-Fourier transforms, defined

as G̃ij(k, s; x0) =
∫∞

−∞
e−ikxdx

∫∞

0
dte−stGij(x, t; x0, 0). The solution is

G̃ij(k, s) =
e−ikx0[νr − δij(ikvs − s)]

vsvg[k2 − ikA(s) +B(s)]
(11)

where

A(s) = [vsνc − vgνr + s(vs − vg)]/vsvg

B(s) = [s(s+ νr + νc)]/vsvg. (12)

For connection with the CFPDs introduced earlier, it is convenient to define the Green’s

function in such a way as that they have dimensions of inverse time, and not inverse length.

This is done by defining

F1j = vgG1j ; F0j = vsG0j (13)

It will be convenient for later calculations to carry out the inversion k → x explicitly:
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F̃1j(x, s; x0) =
νr + sδ1j
vs[αs + βs]

[

e−αs(x−x0)Θ(x− x0) + eβs(x−x0)Θ(x0 − x)

]

+

δ1j
(αs + βs)

[

αse
−αs(x−x0)Θ(x− x0)− βse

βs(x−x0)Θ(x0 − x)

]

F̃0j(x, s; x0) =
νc + sδ0j
vg[αs + βs]

[

e−αs(x−x0)Θ(x− x0) + eβs(x−x0)Θ(x0 − x)

]

−

δ0j
(αs + βs)

[

αse
−αs(x−x0)Θ(x− x0)− βse

βs(x−x0)Θ(x0 − x)

]

(14)

where

αs =
A(s)

2
+
√

B(s) + A2(s)/4

βs = −
A(s)

2
+
√

B(s) + A2(s)/4 (15)

and Θ(x) is the usual step-function: Θ(x) = 1 for x ≥ 0 and 0 otherwise.

D. Calculation of Φ(d, T ) and QX(T )

The Green’s functions calculated in the last section may now be used to compute the

CFPDs which we used before. For this purpose, it is convenient to define first a set of

unconditional first passage densities (denoted FPD) as follows: let Cij(x, t; x0, 0) denote the

probability, per unit time, for a MT in state j and with length x0 at time t = 0, to reach a

length x for the first time at time t, and in state i.

For l > 0, C11(l, t; 0, 0) is given by the implicit equation

F11(l, t; 0, 0) = C11(l, t; 0, 0) +

lim
ǫ→0+

∫ t

0

dt′C11(l, t
′; 0, 0)F11(l − ǫ, t; l, t′) (16)

In the above equation (and the following equations), the ǫ-factors take into account the

following restriction on its dynamics: starting from a growing state at t = 0, with a length l,

it can return to the same length l at a later time, in a growing state, only from below (which

decides which of the Θ-functions appearing in Eq.14 is non-zero). Similar restrictions apply

to the equations below.
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Similarly, C01(0, T ; d, 0) and C10(d, T ; 0, 0) are given by the equations

F01(0, T ; d, 0) = C01(0, T ; d, 0) +

lim
ǫ→0+

∫ T

0

dT ′C01(0, T
′; d, 0)F00(ǫ, T ; 0, T

′) (17)

F10(d, T ; 0, 0) = C10(d, T ; 0, 0) +

lim
ǫ→0+

∫ T

0

dT ′C10(d, T
′; 0, 0)F11(d− ǫ, T ; d, T ′) (18)

Using these two FPDs, we are now in a position to write down the following relations

between the CFPDs introduced earlier:

C11(d, t; 0, 0) = Φ(d, t) +

∫ t

0

dt′Qd(0, t
′)C10(d, t; 0, t

′) (19)

C01(0, T ; 0, 0) = Qd(T ) +

∫ T

0

dT ′Φ(d, T ′)C01(0, T ; d, T
′) (20)

Eq.16-20 may now be solved using Laplace transforms. From Eq.16, we find that

C̃11(d, s; 0) = lim
ǫ→0+

F̃11(d, s; 0)

1 + F̃11(d− ǫ, s; d)
= e−αsd (21)

Similarly,

C̃10(d, s; 0) =
νre

−αsd

νr + s + αsvs
; C̃01(0, s; d) =

νce
−βsd

νc + s + βsvg
(22)

After solving Eq.19 and Eq.20 together, and using Eq.21,22, we find the explicit expres-

sions

Φ̃(d, s) =
D(s)e−αsd

νrνc[1− e−(αs+βs)d] +D(s)

Q̃d(s) =
νc

νc + s+ βvg

[

1− e−βsdΦ̃(d, s)
]

(23)

where

D(s) = (s+ αsvs)(s+ βsvg) + νr(s+ βsvg) + νc(s+ αsvs). (24)

12



E. Calculation of Ψ(T ): Catastrophes at the cell boundary

We assume that when a MT hits the cell boundary by growing, it undergoes catastrophe

there at a rate ν ′c. We now compute Ψ(T ), which is the CFPD of return to origin (i.e.,

complete depolymerization) of a MT after a lifetime T , and an encounter with the boundary

at least once.

Clearly, along the line of our previous arguments, Ψ(T ) may be given by the expression

Ψ(T ) =

∫ T

0

dT1Φ(R, T1)×

∫ T−T1

0

ν ′cdT2e
−ν′cT2χ(R, T − T1 − T2), (25)

where χ(R, T ) gives the FPD of complete depolymerization of a MT, starting at the

boundary, at length R in shrinking state, with possibly multiple visits back to the boundary

in between. This quantity may now be expressed implicitly through the equation

χ(R, T ) = Φ∗(R, T ) +

∫ T

0

dT1Q
∗
R(T1)×

∫ T−T1

0

ν ′cdT2e
−ν′cT2χ(R, T − T1 − T2) (26)

where Q∗
R(T ) is a ‘mirror’ image, or dynamic inverse of the quantity QR(T ) introduced

earlier, and represents the CPFD of a return to boundary over a time interval T , without

ever reaching the origin (i.e., shrinking to zero) in between. Similarly, Φ∗(R, T ) is the

‘inverse’ of Φ(R, T ), and gives the CFPD of complete depolymerization of a MT starting at

the boundary, without ever returning to the boundary in between.

Eq.25 and Eq.26 may now be solved together using Laplace transforms, and we find

Ψ̃(s) =
ν ′cΦ̃(R, s)Φ̃

∗(R, s)

s+ ν ′c

(

1− Q̃∗
R(s)

) (27)

The inverse quantities Φ̃∗(R, s) and Q̃∗
R(s) may be obtained from Φ̃(R, s) and QR(s)

respectively by the transformations vs ↔ vg and νr ↔ νc. From Eq.15, this has the effect

of replacing αs by βs and vice-versa, while D(s) defined in Eq.24 remains invariant under
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these transformations. Therefore, using Eq.23, we arrive at the following expressions for

these ‘inverse’ quantities:

Q̃∗
R(s) =

νr
νr + s+ αsvs

[

1− e−αsRΦ̃∗(R, s)

]

(28)

Φ̃∗(R, s) =
D(s)e−βsR

νrνc[1− e−(αs+βs)R] +D(s)
(29)

Eq.29 completes the list of quantities that we need to compute the mean search time. We

now start from Eq.9, and after a few elementary calculations and rearrangement of terms,

it turns out that the complete expression for the mean search time may be written out as

follows(see Appendix A for details):

〈T 〉 = Ns[ptd + (1− p)tR + tν ] = Td +
1− p

p
TR + Tν (30)

where Ns = [pΦ̃d(0)]
−1 gives the mean number of unsuccessful search events before each

successful one, and ptd + (1 − p)tR + tν gives the weighted mean lifetime per event. td =

−Φ̃′
d(0) − Q̃′(d, 0) gives the mean time of a search in the right direction, the first term

corresponding to the single successful search event and the second giving the mean of all

unsuccessful events. tR = −Q̃′
R(0)−ψ̃

′(0) is the mean lifetime of an unsuccessful search event

in the wrong direction, the first term corresponding to events not reaching the boundary

while the second corresponds to events which hit the boundary at least once. Note that

tR is the mean lifetime of microtubules. Finally, tν = ν−1 is the mean time between the

disappearance of one microtubule and nucleation of a new one at a site, and is the only term

that depends on the nucleation rate ν.

Various quantities such as the mean, standard deviation and higher moments (if neces-

sary) of the search time, as well as other quantities such as the mean lifetime of microtubules

may now be calculated using the set of equations presented in this section, and parameters

such as catastrophe and rescue frequencies as well as growth and shortening velocities taken

from experiments. We found it convenient to use Mathematica (Version 7, Wolfram Re-

search) to carry out the explicit computations. The results will be discussed in the following

section.

14



III. RESULTS

In this section, we will analyze some experimental observations using the results from our

model.Experimental measurements of the microtubule kinetic parameters show that distinct

changes occur as the cell progresses from interphase to mitosis[15], see Table I. Budding

Yeast cells show a reduction in both catastrophe and rescue frequencies, but the changes

are relatively small. In mammalian cells, which are typically larger, there is a marked fall

in rescue frequency between interphase and mitosis, and a two-fold increase in catastrophe

frequency. In Xenopus oocytes (frog egg cells, which are large and almost 1 mm in radius),

the effects are somewhat different: the rescue frequency, while small, is almost doubled, but

more remarkably, there is a sharp, seven-fold rise in the catastrophe frequency.

Given that mitosis occupies only a small fraction of the total time duration of a cell

cycle, we first seek to determine whether the changes in microtubule kinetics are beneficial

to reduce the mean time of search. For all cases discussed below, we choose ν ′c = 10νc to be

roughly consistent with experiments[7]. However, reducing or increasing ν ′c by an order of

magnitude does not significantly affect the results.

A. Yeast and mammalian cells show features that are consistent with the random

search and capture model, but Xenopus oocytes do not

Fig.2 shows a comparison for the mean time of search, between interphase and mitosis

values in yeast, for a range of target distance d. Since yeast undergoes closed mitosis, the

relevant boundary cut-off length scale is the nuclear radius, which we take to be R = 2µm.

The mitosis parameters clearly reduces the time scale relative to the interphase parameters,

though understandably, given the small cut-off radius of search, the effect is small. When

the centrosomal microtubule nucleation frequency is chosen to be ν = 0.1min−1 per site (see

next paragraph) 〈T 〉 in yeast is found to vary from 100-400 minutes, for d between 1µm and

2µm. Taking Tmax
1,1 ∼ 400 min, and using N = 32 in budding yeast, we see from Eq.2 that

the mean time to complete search is 24 min, with 50 searching microtubules.

We now turn to the case of mammalian cells. Experiments by Piehl et. al[16] measured

a nucleation rate of ∼ 80-100 min−1, per centrosome in kidney epithelial (LLCPK) cells.

The total number of nucleation sites is unknown, but from the measured surface area of
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centrosomes in metaphase (∼ 100 µm2), and the base area of a single microtubule (πr2 ≃

4× 10−4µm2, with 2r = 25nm), a total of almost 105 nucleation sites are possible, which is

clearly too large; as a conservative estimate, we may assume a total of 1000 nucleation sites.

Then, the nucleation rate per site may be roughly estimated as ν ≃ 0.1min−1.

Let us now perform our analysis on a mammalian cell of radius R = 20µm, and compare

the search time between interphase and mitosis. As seen in Fig.3, where the logarithm of the

time is shown against the distance d, the mitosis values significantly reduce the mean search

time, almost by 4 orders of magnitude! For d = 6µm, the time computed from mitosis values

is Tmax
1,1 ≃ 2000 minutes. If we conservatively assume that at least M = 100 kinetochore

microtubules will be actively searching for one target, and since N > 10 typically (46 in

humans), using Eq.2, we arrive at an estimate of 35-40 minutes for the total mean search

time, which is reasonable. However, this is only the average time, and may not represent a

typical value. We have observed that the standard deviation of T is typically of the same

order as 〈T 〉; therefore, in an individual experiment, the search could take twice as long.

In Xenopus extracts, the situation is very different (see Fig.4). In this case, surprisingly,

it is the interphase parameter values that give the lower mean search time, and mitosis

time is typically 1-2 orders of magnitude larger! Even the interphase mean search time is

quite large, ranging from 2000-10,000 minutes for d between 5 and 10 µm, and it would

need almost 1000 actively searching microtubules to bring the total search time down to

acceptable values. The anomalously large value of the catastrophe frequency in mitosis is

puzzling, since targets that are far are more effectively searched when νc is small. . How do

we understand this discrepancy? One reason, as is now becoming increasingly clear, could

be that the random search and capture mechanism is simply inefficient in such large cells.

Indeed, it is now well-established that large cells like oocytes require additional mechanisms

of search like actin contractile ring[17] and guided search through RanGTP gradient around

chromosomes[6, 18]. In the latter case, microtubules are preferentially stabilized close to

chromosomes hy a gradient of the protein Ran, and the increased catastrophe frequency

might simply serve to enhance the turnover rate, and hence the dynamicity of microtubules.
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B. Mathematical analysis show that νr = 0 is a minimum condition when R ≫ d

In this section, we take a closer look at the theoretical expression for the mean search

time derived earlier, and try to understand some general features, from the point of view of

optimization of the search process, i.e., minimization of the search time. Without any loss

of generality, we may put ν = ∞ here, as the only effect of a finite ν is to add a timescale

of ν−1 to the mean time (see Eq.30).

It is instructive to look at the mean search time separately for parameter regimes demar-

cated by the conditions A(0) > 0 and A(0) < 0. Physically, these conditions correspond to

a bounded growth regime for the filaments, with finite mean length and unbounded growth

regime with mean length linearly increasing with time[14]. After rather lengthy algebraic

calculations, an explicit expression for 〈T 〉 can be obtained, and the terms therein could be

classified into two: (i) those that remain finite, or diverge as R → ∞ and (ii) those that

involve only terms of the form e−R|A(0)| which disappear for large R. In the following, we

ignore terms that fall into (ii), since they are not crucial for our analysis here.

Bounded growth regime (BG); A(0) > 0:

In this case, Φ̃(d, 0) = D0e
−A(0)d/[D0+νrνc(1−e

−A(0)d)], so that the mean number of trials

Ns diverges exponentially with d. The breakup of the total time in the limit R|A(0)| → ∞,

is as below:

Td =
β ′ + v−1

g

A(0)
[eA(0)d − 1]− β ′d

TR ≃

(

1−
νrvg
νcvs

e−A(0)d

)

eA(0)dνcvs(vs + vg)

(vsvgA(0))2
(31)

where β ′ = (νr + νc)/vsvgA(0). In this regime, Td and TR diverge exponentially with

d, but only linearly with R, with the R-dependence entirely disappearing for R ≫ A(0)−1

(terms now shown in the equation). This is physically reasonable, since A(0)−1 is indeed the

mean length of the filaments in this regime. We also observe that TR diverges as A(0)−2 and

Td diverges as A(0)−1 as A(0) → 0. The intuitive explanation is that, at this ‘critical point’

in parameter space, the tip of a microtubule performs a pure one-dimensional random walk,

whose mean time of return to the origin is infinite, as is well-known.

The R|A(0)| ≫ 1 limit, with some further simplifications, is treated in more detail in

Appendix B. We will now give the corresponding results for the case A(0) < 0.
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Unbounded growth regime(UBG): A(0) < 0:

In this case, Φ̃(d, 0) = D0/(D0 + νrνc[1 − e−|A(0)|d], which is finite as d → ∞. This

is natural, because under conditions of unbounded growth, the microtubules are able to

reach out to larger distances with fewer attempts compared to the bounded growth regime.

Similar to the previous case, we may now calculate the breakup of the terms in the limit

R|A(0)| ≫ 1 and ν ′c → ∞. The results are given below:

Td =
|A(0)|

νrvg
F (d)−

νcvs
νrvg

β ′d+
νc(vs − vg)

v2gvs|A(0)|
2
[1− e−|A(0)|d]

TR ≃
νrvg
H(d)

{

vs
νr
|A(0)|F (R) + F ∗(R)−

νcvs
νrvg

β ′R +
νc(vs − vg)

v2gvs|A(0)|
2
+

vg + vs
vgvs|A(0)|

[

e|A(0)|R

(

1 +
νr

vs|A(0)|

)

− 1

]}

(32)

where

H(d) = νcvs − νrvge
−|A(0|d

F (R) = −
D′

D0

+
D′

D0 + νrνc
+ α′R

F ∗(R) = F (R) + (β ′ − α′)R

α′ =
νr + νc

vgvs|A(0)|
; β ′ =

v2sνc − v2gνr

(vsvg)2|A(0)|
(33)

In contrast to the previous case, TR diverges exponentially with R, while Td diverges

only linearly with d. As |A(0)| → 0, the mean time again diverges as |A(0)|−2 as before.

The exponential divergence with R arises solely from the boundary-interaction term Ψ̃′(0);

the return-to-origin term Q̃′(0) has a finite limit as R → ∞.This result is in quantitative

agreement with the corresponding results in [13] for the mean time of return to origin of a

microtubule in unbounded (as well as bounded) growth phase.

The analogy between the dynamics of the tip of a microtubule and a one-dimensional

biased random walk as developed in [13] is helpful in understanding these results. It has

been shown that the bias (drift) of this random walk is proportional to vgνr − vsνc, i.e.,

the bias is negative when (in our notation) A(0) > 0 (‘bounded growth phase’), positive

when A(0) < 0 (‘unbounded growth phase’) and the walk is unbiased (i.e., the tip moves

diffusively) when A(0) = 0. In the limit R → ∞, TR and Td diverge as A(0) → 0 simply

18



because the mean time of return to origin of a one-dimensional random walk is infinite,

whereas this time is finite for a biased random walk.

We may now make a few general observations from these results. For a single target,

as considered here, it is appropriate to assume that p ≪ 1, in which case, the TR term

dominates over Td in Eq.30. If R ≫ d, the exponential divergence of TR with R in the UBG

regime makes it less favourable compared to the bounded growth regime. For the latter

case, at least when R ≫ A(0)−1, it is proved in Appendix B that TR is a monotonically

increasing function of νr, i.e., it is minimized for νr = 0. Therefore, we conclude that if the

cell boundary is sufficiently far in comparison with d, for a single target, search is optimal if

the microtubules are in a bounded growth phase, at zero rescue frequency. This conclusion

is in agreement with the previous authors[5, 6].Interestingly, these conclusions hold even if

R is only about thrice as large as d, as shown in Fig.5, or even when d = R (Fig.6).

In a more realistic situation where a number of chromosomes are distributed randomly in

the cytoplasm at varying distances, p itself effectively becomes a dynamic variable, starting

at a large value and progressively decreasing with time as targets are captured one by one. In

this situation, it is likely that search is optimized at a small, but non-zero rescue frequency.

Preliminary results shown in Fig.6 suggest that when the target is far from the centrosome,

non-zero rescue does not increase the mean search time significantly, and in addition, could

produce a more robust minimum.

C. Non-zero rescue is likely to be a compromise between νr = 0 and ν → ∞

If the search time is minimized at zero rescue frequency, as shown by the previous argu-

ments, why is not the observed rescue frequency in mitosis even smaller? We believe that

this could possibly reflect a compromise between minimizing rescue and maximizing nucle-

ation. Both rescue frequency and nucleation rate depend directly on the concentration of

free tubulin in cytoplasm. Experimental observations by Walker et. al.[19] have shown that

rescue frequency is an almost linearly increasing function of free GTP-tubulin concentration,

and nucleation rate is an even more strongly increasing function of concentration. Therefore,

the observed rescue frequency in mitosis could probably be understood as the result of a

more general optimization exercise also involving nucleation and catastrophe frequencies, as

well as growth velocity, all of which depend on free GTP-tubulin concentration.
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D. Microtubule turnover time is much smaller in mitosis

In Fig.7A, we show the mean lifetime (defined in Eq.30) of microtubules searching in the

wrong directions, as a function of cell size R, in both interphase and mitosis. The lifetime

in mitosis is several orders of magnitude smaller than interphase, and varies little with cell

size (a direct consequence of being in the BG regime discussed earlier). However, mitotic

microtubules are also more dynamic: the standard deviation of the lifetime as a fraction of

the mean, is larger in mitosis compared to interphase (Fig.7B). Experimental observations

in mammalian cells have shown that microtubule turnover in mitosis is 18-fold higher than

in interphase[20].

IV. CONCLUSIONS

In this paper, we studied the capture of a target by dynamically unstable microtubules

using a novel and mathematically rigorous first passage time-based formalism. Compared to

earlier studies, the principal new features in our model are (a) estimation of the mean time

of capture at non-zero rescue frequency (b) introduction of the cell size as a parameter in

the theory and (c) explicit comparison with experimental observations in different mitotic

cells. Although the model was formulated for the purpose of understanding chromosome

capture in mitosis, the formalism itself is very general. In particular, the technique could

be directly applied to the study of cortical capture of microtubules(see, eg.[23]) and other

similar problems.

Several in vivo experiments have shown distinct and significant changes in microtubules

dynamics in different cells, as the cell proceeds from interphase to mitosis. We sought to

determine whether these changes are beneficial to the search and capture of chromosomes.

Our analysis shows that in yeast and mammalian cells, the mean search time for a single

target is reduced in mitosis compared to interphase. In Xenopus oocytes, by contrast, the

experimental observations could not be reconciled with the observed changes in microtubule

dynamics between interphase and mitosis, suggesting that the basic strategy of search may

be strongly modified by additional mechanisms.

Although this was not our main interest, we also tried to determine theoretically the

conditions for minimization of the mean search time. We showed rigorously that when the
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target is well inside the boundary, the time is minimized at zero rescue and an optimal

catastrophe frequency, in agreement with previous authors. However,when the target is

close to the boundary, although νr = 0 is still the absolute minimum, it was observed that

a small, but non-zero νr produced a more robust minimum (with respect to change in νc),

and therefore could be preferred by cells.

The present study was only concerned with a single target, while in all realistic situa-

tions, multiple chromosome pairs have to be captured. Unfortunately, to extend the present

analysis to multiple targets would require more detailed knowledge of C(T ), but given the

complexity of the mathematical form for C̃(s), this is not too easy(see, however, [6], where

this analysis was done for exponentially decaying C(T ) at νr = 0). We are presently working

on extracting information about C(T ) from our formalism, and extending our analysis for

multiple targets. In particular, it is not immediately clear whether the optimization criteria

for multiple targets will be the same as for a single target, especially when multiple targets

are at variable separations from the centrosome. Further, as discussed earlier, the various

dynamic parameters for microtubule dynamics are not generally independent (eg. nucleation

and rescue could be related, and detailed GTP cap theories suggest that growth velocity is

related to catastrophe frequency[24]). A more general optimization scheme has to take these

possibilities into account, and could produce a non-zero optimal rescue frequency. We leave

these ideas to a future study.

Other possible extensions of this study involve including (i) chromosome diffusion (ii)

side-capture of microtubules by chromosomes through intermediaries like kinesin-13 motor

proteins, followed by one-dimensional diffusive or directed motion to the tip[25] and (iii)

microtubule nucleation close to the chromosomes. The latter is a possible alternative to the

end-capture mechanism studied in this paper and it would be interesting to look at its effect

on the mitotic time-scales and its optimization.
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V. APPENDIX I

General expression for the mean search time:

After a series of calculations, the following general expression is reached for the mean

search time from Eq.7.

〈T 〉 = Td +
1− p

p
TR +

1

p
Tν (34)

with

Td = −[Φ̃(d, 0)]−1
[

Φ̃′(d, 0) + Q̃′(d, 0)
]

TR = −[Φ̃(d, 0)]−1
[

Q̃′(R, 0) + Ψ̃′(0)
]

Tν =
1

ν
[Φ̃(d, 0)]−1 (35)

where Φ̃′(d, 0) = ∂sΦ̃(d, s)|s=0, Q̃
′(d, 0) = ∂sQ̃(d, s)|s=0,Q̃

′(R, 0) = ∂sQ̃(R, s)|s=0 and

Ψ̃′(0) = ∂sΨ̃(s)|s=0. Here, Td, TR and Tν represent, respectively, the mean time spent in

searching in the right direction, wrong directions and between successive nucleations.We

note that the last term disappears in the (theoretical) ν → ∞ limit, where the nucleation

happens infinitely fast. Also, for small p, TR and Tν dominate over Td, since, in this limit,

it is the unsuccessful search events that take up most of the time spent on search.

The exact analytical forms for these functions are as given below:

Φ̃′(X, 0) = Φ̃(X, 0)

[

D′

D0
−
D′ + νrνc(α

′ + β ′)Xe−γ0X

D0 + νrνc(1− e−γ0X)
− α′X

]

Q̃′(X, 0) = −Q̃(X, 0)

[

1 + β ′vg
νc + β0vg

+ e−β0X
[Φ̃′(X, 0)− β ′XΦ̃(X, 0)]

[1− Φ̃(X, 0)e−β0X ]

]

Ψ̃′(0) = Ψ̃(0)

[

Φ̃′(R, 0)

Φ̃(R, 0)
+

Φ̃∗′(R, 0)

Φ̃∗(R, 0)
−

[1− ν ′cQ̃
∗′(R, 0)]

ν ′c[1− Q̃∗(R, 0)]

]

(36)

and

Φ̃∗′(R, 0) = Φ̃′(R, 0; vg → vs, νr → νc)

Q̃∗′(R, 0) = Q̃′(R, 0; vg → vs, νr → νc) (37)
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are the mirror-image quantities defined in text. The time-integrated probabilities

Φ̃(d, 0), Q̃(X, 0)(X = d, R) and Ψ̃(0) are given by

Φ̃(X, 0) =
D0e

−α0X

D0 + νrνc[1− e−γ0X ]

Q̃(X, 0) =
νc

νc + β0vg

[

1− Φ̃(X, 0)e−β0X
]

Ψ̃(0) =
Φ̃(R, 0)Φ̃∗(R, 0)

1− Q̃∗(R, 0)
. (38)

The cofficients appearing in the above expressions are defined as follows:

α0 ≡ α(0);α′ = ∂sα(s)|s=0

β0 ≡ β(0); β ′ = ∂sβ(s)|s=0

D0 ≡ D(0);D′ = ∂sD(s)|s=0 (39)

and θ = ∂sA(s)|s=0 = (vs − vg)/vsvg, θ
′ = ∂sB(s)|s=0 = (νr + νc)/vsvg.

VI. APPENDIX II

Some simple special cases in BG regime

If p≪ 1, TR and Tν dominate over Td, and, from Eq.30 and Eq.31 we have

〈T 〉 ≃
eA(0)d

p

(

1 +
νr(1− e−A(0)d)

vsA(0)

)[

vs + vg
vsvgA(0)

+
1

ν

]

(p≪ 1, R → ∞) (40)

It can be shown that this expression is a monotonically increasing function of νr, where

0 ≤ νr < (vg/vs)νc in the BG regime. In order to see this, let us define x = νcvs and

y = νrvg, and x − y > 0 in this regime. Then, in terms of x and y, the mean search time

may be expressed in the form

〈T 〉x,y =
[xeδ(x−y) − y]

(x− y)

[

a1
(x− y)

+ b1

]

≥
a1

(x− y)
+ b1 (41)
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where a1, b1 and δ are positive constants, and the inequality follows because eδ(x−y) ≥ 1.

The lower bound in the above equation continuously increases with y in the applicable

range [0:x]. We then conclude that 〈T 〉 itself is an increasing function of y, and hence νr.

Therefore, νr = 0 is a necessary condition for a minimum. In this case, Eq.40 reduces to

〈T 〉 =

[

1

ν
+

1

νc
(1 + vg/vs)

]

e
νcd

vg

p
−
d

vs
(p≪ 1, R→ ∞, νr = 0) (42)

which is minimized νc = νmin
c , where

νmin
c =

2vg

d

[

1 +
√

1 + 4vg
dν(1+vg/vs)

] (p≪ 1, R→ ∞, νr = 0) (43)

Finally, in the limit ν → ∞, νmin
c = vg/d, and the optimized search time is

〈T 〉min = Γd3 −
d

vs
; (p≪ 1, R→ ∞, νr = 0, ν → ∞) (44)

where Γ = e∆Ω/[a(v−1
g + v−1

s )] from Eq.1.

The expression in Eq.42 above may be approximately reproduced by physical arguments

as follows[5]. The probability that a microtubule will nucleate in the right direction, and

will not undergo catastrophe until it reaches the target is given by ps = pe−νcd/vg , and it

will take at least N ∼ p−1
s unsuccessful attempts before this is accomplished. Each of these

unsuccessful search events lasts a time τ ∼ ν−1
c , and therefore, the total search time is

Ts ∼ Nν−1
c =

eνcd/vg

pνc
. (45)

Note that Eq.42 reduces to Eq.45 in the limit p→ 0, ν → ∞ and vg ≪ vs.
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Budding Yeast (I) mammalian (II) Xenopus extracts(III)

νr (0.42)0.12 min−1 (10.5)2.7 min−1 (0.66)1.2 min−1

νc (0.48)0.24 min−1 ((1.56)3.48 min−1 (1.08)7.2 min−1

vg 1.7 µm min−1 12.8 µm min−1 12.3 µm min−1

vs 2.7 µm min−1 14.1 µm min−1 15.3 µm min−1

R 2µm 20µm 500µm

TABLE I. Experimental values of microtubule kinetics in the mitotic phase. The values in paran-

theses are interphase values, prior to the cell entering mitosis, for Yeast[21], mammalian[15] and

Xenopus extracts[22]. The cell radii given are only rough estimates. For theoretical and numerical

analysis, we used vg = 2.0 and vs = 3.0 µm min−1 for I, and vg = 12.0 and vs = 14.0 µm min−1

for II and III. The experimental data for different cell sizes are summarized in [15].

∆Ω

d

FIG. 1. A schematic illustration of the geometry of our model is shown here. Microtubules nucleate

from nucleating sites on the centrosome, and search for a stationary target at a distance d. ∆Ω is

the solid angle of the ‘search cone’ for a certain nucleating site depicted in the picture. The search

is curtailed by the cell boundary. The search cones of neighbouring nucleating sites may overlap

(not shown here), which accelerates the process by ‘parallel’ search.
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FIG. 2. The mean time of capture (in minutes) of a single chromosome in budding yeast, by

microtubules from a single nucleating site, for various target distance d is shown here. The thick

black like corresponds to interphase values of νr and νc. We assume the nuclear radius to be

R = 2µm. The other parameters are vd = 3µm min−1, vg = 2µm min−1, ν = 0.1min−1 and

ν ′c = 10νc.
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FIG. 3. Similar to the previous figure, but for mammalian cells. The cell radius is taken as

R = 20µm. The other parameters are vd = 14µm min−1, vg = 12µm min−1, ν = 0.1min−1 and

ν ′c = 10νc.
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FIG. 4. Similar to the previous figures, but for Xenopus oocyte cells. The cell radius is taken as

R = 500µm. The other parameters are vd = 15µm min−1, vg = 12µm min−1, ν = 0.1min−1 and

ν ′c = 10νc. Note that, unlike the previous figures, mitosis values appear to increase the search time

compared to interphase, which suggests that the random search and capture mechanism might be

inefficient in large cells.
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FIG. 5. A. Contour plot for the mean search time (expressed in hours) of a single chromosome at

d = 6µm, by a single nucleating site, in a mammalian cell with radius R = 20µ m. B. Cross-sections

of the same plot at three values of νr. The parameters are vd = 14µm min−1, vg = 12µm min−1,

ν = 0.1min−1 and ν ′c = 10νc.
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FIG. 6. The mean time of search for a target close to the boundary, at d = 20µm, in a cell of

radius R = 20µm for three different νr. The other parameters are chosen as vs = 12µm min−1,

vg = 10µm min−1, ν = 1min−1 and ν ′c = 10νc. Note that slightly larger values of νr produce a

more robust minimum as a function of νc, at the cost of a small increase in time.
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FIG. 7. A. The mean lifetime tR, defined as the mean lifetime of microtubules nucleating in direc-

tions away from the target (Eq.30), is plotted as a function of the cell radius R for interphase and

mitotic parameter values. The lifetime in interphase is larger by several orders of magnitude.The

parameter values are chosen as in Fig.4. B. The relative fluctuation in the lifetime, defined as the

ratio of standard deviation ∆R to the mean tR, as a function of R, for the same set of param-

eter values. Fluctuations in the mitotic phase are larger than in interphase, signaling increased

dynamicity of the microtubules.
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