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Abstract. The Minkowski function is a crucial tool used in the study
of balanced domains and, more generally, quasi-balanced domains in sev-
eral complex variables. If a quasi-balanced domain is bounded and pseu-
doconvex then it is well-known that its Minkowski function is plurisub-
harmonic. In this short note, we prove that under the additional as-
sumption of smoothness of the boundary, the Minkowski function of a
quasi-balanced domain is in fact smooth away from the origin. This
allows us to construct a smooth plurisubharmonic defining function for
such domains. Our result is new even in the case of balanced domains.

1. Introduction

The study of holomorphic mappings between balanced and quasi-balanced
domains pose an interesting challenge. As the automorphism group contains
the circle, such domains possess symmetry that often confers strong rigidity
on holomorphic mappings between these domains. Indeed, a classical result
of Cartan exploits the circle action to show that any automorphism of a
bounded balanced domain fixing the origin must be linear. One of the key
tools that facilitate the study of balanced and quasi-balanced domains is the
Minkowski function. Several generalizations of Cartan’s theorem are now
known ([Bel82, BP00, Kos14, YZ17]), and many of them use the Minkowski
function as a central tool in the proofs. The demand of the presence of a
circle action is also not too severe and there are several interesting classes
of domains that are quasi-balanced. For instance, the symmetrized polydisk
and related domains are quasi-balanced domains that have been extensively
studied using the Minkowski function (see [Nik06, Kos11]).

Let p1, p2, . . . , pn be relatively prime positive integers. We say that a
domain D ⊂ C

n is (p1, p2, . . . , pn)-balanced (quasi-balanced) if

λ • z ∈ D ∀λ ∈ D ∀z ∈ D,

where D is the closed unit disk in C and for z = (z1, z2, . . . , zn) ∈ D, we
define λ • z := (λp1z1, λ

p2z2, . . . , λ
pnzn). If p1 = p2 = · · · = pn = 1 above,

then we say D is a balanced domain (also known as a complete circular
domain in the literature).
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Given a (p1, p2, . . . , pn)-balanced domainD ⊂ C
n, we define the Minkowski

function hD : Cn → C

hD(z) := inf{t > 0 :
1

t
• z ∈ D}.

Clearly D = {z ∈ C
n : hD(z) < 1} and hD(λ • z) = |λ|hD(z). It also turns

out that hD is plurisubharmonic if D is additionally psuedoconvex. This
fact has been a crucial ingredient in several results on balanced domains;
see [Ham00, JP13], for instance.

One natural question that seems to be unanswered (to the best of the
authors’ knowledge) in the literature is the following:

Is the Minkowski function of a smoothly bounded psuedoconvex
quasi-balanced domain a smooth function near the boundary?

In fact, we found a remark in [GK03, p. 190], with a reference to Hamada’s
paper [Ham00], stating that the answer to the above question is no if the
domain has only a C1-boundary. That the Minkowski function of a bal-
anced and bounded pseudoconvex domain with C1-smooth plurisubharmonic
defining function is C1-smooth on C

n \ {0} has already been established in
[Ham00, Proposition 1]. Using the recent work [NZZ17], we are able to prove
smoothness of the Minkowski function on C

n\{0} for any smoothly bounded
quasi-balanced domains. The main result of this paper is the following

Theorem 1. Let D ⊂ C
n be a smoothly bounded quasi-balanced pseudocon-

vex domain. Then the Minkowski function hD is C∞-smooth on C
n \ {0}.

Furthermore, the function r(z) := hD(z)− 1 is a plurisubharmonic defining
function for D.

Remark 2. By a smoothly bounded domain, we shall mean a bounded do-
main whose boundary is C∞-smooth.

Remark 3. The analogue of the above result for convex domains is well-
known. The reader is referred to [KP99, Section 6.3] for details

2. Supporting results

Before we give the proof of Theorem 1, we first give a brief overview of
the necessary tools.

We shall now consider the setting in [NZZ17, p. 518, p. 523]. Let D ⊂
C
n be a smoothly bounded domain and let G ⊂ Aut(D) ∩ C∞(D) be a

compact Lie subgroup of Aut(D) in the compact open topology. Consider a
continuous representation ρ : G→ GL(Cn) of G and the set

O(Cn)G := {f ∈ O(Cn) : f ◦ ρ(g) = f for all g ∈ G}

called the set of G-invariant entire functions.
A domain D is said to be G-invariant if ρ(g) ·D = D for all g ∈ G. We

will say that G acts transversely on D if for each z0 ∈ ∂D the image of the
tangent map dΨz0 : TeG → Tz0∂D associated to the map Ψz0 : G → ∂D
given by g 7→ g(z0), is not contained in TC

z0
∂D, the complex tangent space

to ∂D at z0. We have the following
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Result 4 (Theorem 2.7 in [NZZ17]). Let G be a compact Lie group, which
acts linearly on C

n with O(Cn)G = C. If D is a G-invariant smoothly
bounded pseudoconvex domain in C

n that contains the origin, then G acts
transversely on D.

Consider the representation of the compact lie group S
1 given by

ρ(λ)(z) = λ • z where λ ∈ S
1.

Proposition 5. Under the above action, O(Cn)S
1

= C.

Proof. Consider f ∈ O(Cn) such that f(λ • z) = f(z) for every λ ∈ S
1

and for all z ∈ D. Fix z ∈ C
n and define a function gz : C → C given

by gz(λ) = f(λ • z). Then g is a holomorphic function that is constant
on S

1 and hence gz ≡ g(0). Since our choice of z was arbitrary, we have

f(z) = f(0). The constant functions clearly belong to O(Cn)S
1

. �

That D is S
1-invariant is a direct consequence of the fact that D is

(p1, p2, . . . , pn)-balanced. Thus in our case, we can conclude the following

Corollary 6. Under the hypotheses on D as in Theorem 1, for each ξ =
(ξ1, . . . , ξn) ∈ ∂D, the vector

(ip1ξ1, . . . , ipnξn) 6∈ TC

ξ ∂D.

Proof. With Ψξ : S1 → ∂D given by Ψξ(λ) = λ • ξ, the evaluation of the
derivative map dΨξ(1) = (ip1ξ1, . . . , ipnξn) ∈ Tξ∂D. By Result 4, dΨξ(1) /∈

TC

ξ ∂D as otherwise dΨξ(TeS
1) ⊂ TC

ξ ∂D. �

We will use the following version of Hopf’s lemma in the proof of Theo-
rem 1.

Lemma 7 (Lemma 3, p. 177, [KG89]). Let D ⊂ C
n be a smoothly bounded

domain and let r be a negative plurisubharmonic function defined on D.
Then there exists a constant c > 0 such that |r(z)| > c · dist(z, ∂D).

3. Proof of Theorem 1

Let ψ be a defining function for D. Consider the map g ∈ C∞(Cn×R \ {0})
given by

g(z, t) := ψ

(

1

t
• z

)

Observe that g(z, hD(z)) = 0. Let us fix a point z0 ∈ C
n \ {0}. We shall

show that ∂g
∂t
|(z0,hD(z0)) 6= 0.

Let us denote the coordinates of z0 by (z1, . . . , zn). Then the point ξ =
(ξ1, . . . , ξn) defined to be 1

hD(z0)
• z0 belongs to ∂D. A direct calculation

gives us that

∂g

∂t
|(z0,hD(z0)) =

−1

hD(z0)

(

∂ψ
∂z1

, . . . , ∂ψ
∂zn

)

|ξ ·







p1ξ1
...

pnξn






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If ∂g
∂t
|(z0,hD(z0)) = 0, then (p1ξ1, . . . , pnξn) ∈ Tξ∂D. Consider the curve

γ(θ) = eiθ • ξ

in ∂D. Then the corresponding tangent vector (ip1ξ1, . . . , ipnξn) ∈ Tξ∂D

and hence is in the complex tangent space TC

ξ ∂D which is a contradiction
to Corollary 6. Now by the implicit function theorem, hD is C∞-smooth on
C
n \ {0}.

We shall now prove that r is a defining function. We are left with ob-
serving that dr 6= 0 on ∂D. It is easy to see that the normal derivative at
every point on the boundary ∂D is bounded below by the constant c by an
application of Hopf’s lemma (Lemma 7). Hence dr 6= 0 on ∂D. �

Our result implies that the main results in [Ham00, HK01] on balanced
domains with C1-smooth plurisubharmonic defining function also hold for
smoothly bounded balanced pseudoconvex domains.

References

[Bel82] Steven R. Bell, Proper holomorphic mappings between circular domains, Com-
ment. Math. Helv. 57 (1982), no. 4, 532–538.

[BP00] François Berteloot and Giorgio Patrizio, A Cartan theorem for proper holomorphic

mappings of complete circular domains, Adv. Math. 153 (2000), no. 2, 342–352.
[GK03] Ian Graham and Gabriela Kohr, Geometric function theory in one and higher

dimensions., New York, NY: Marcel Dekker, 2003.
[Ham00] Hidetaka Hamada, Starlike mappings on bounded balanced domains with C

1-

plurisubharmonic defining functions, Pacific J. Math. 194 (2000), no. 2, 359–371.
[HK01] Hidetaka Hamada and Gabriela Kohr, Some necessary and sufficient conditions

for convexity on bounded balanced pseudoconvex domains in C
n., Complex Vari-

ables, Theory Appl. 45 (2001), no. 2, 101–115.
[JP13] Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex anal-

ysis. 2nd extended ed., 2nd extended ed. ed., Berlin: Walter de Gruyter, 2013.
[KG89] G.M. Khenkin and R.V. Gamkrelidze (eds.), Several complex variables III. Geo-

metric function theory. , Berlin etc.: Springer Verlag, 1989.
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