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In this work, we study the adhesion of multi-component vesicle membrane to both flat and curved
substrates, based on the conventional Helfrich bending energy for multi-component vesicles and
adhesion potentials of different forms. A phase field formulation is used to describe the different
components of the vesicle. For the axisymmetric case, a number of representative equilibrium vesicle
shapes are computed and some energy diagrams are presented which reveal the dependence of the
calculated shapes and solution branches on various parameters including both bending moduli and
spontaneous curvatures as well as the adhesion potential constants. Our computation also confirms
a recent experimental observation that the adhesion effect may promote phase separation in two-
component vesicle membranes.

I. INTRODUCTION

Adhesion is a fundamental step for many biological
processes such as exocytosis, endocytosis. Cell adhesion
also plays important roles in drug designs and drug deliv-
eries as well as many biosensor applications [1, 2]. There
have been many experimental and theoretical studies fo-
cusing on this subject [3–7]. While many of the past
studies on the vesicle-substrate adhesion have focused on
the case of a flat substrate [8–14], there have also been
some works that address the complexity of curved sub-
strate. For instance, theoretical and experimental stud-
ies on the binding of a vesicle membrane to micro or
nano-particles, or colloids have been conducted in [15–
19], where the characteristic spherical substrates have
radii much smaller than that of the vesicles. In [3], the
adhesion of a three dimensional vesicle to curved sub-
strates has been studied where the curvature of the sub-
strates are comparable to the curvature of the vesicles. A
phase diagram for bound-unbound transitions has been
presented. In this work, we study the adhesion of multi-
component vesicle membranes to both flat and curved
substrates. This is motivated by experimental studies
of the modeled subjects. For instance in a recent experi-
ment conducted by Gordon et al. [4], it was observed that
a mixed-lipid membrane can go through a local phase
separation above critical demixing temperature due to
its close proximity to a biological or non-biological sur-
face. That is, adhesion can promote the phase separation
for the mixed-lipid cell or vesicle membranes.
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In this work, we develop a phase field model to study
the adhesion of multi-component vesicle membranes with
a substrate through a specified adhesion potential. Fol-
lowing our recent approach described in [20], we take the
adhesion potential to be a function of distance between
the membrane and the substrate. The strength of ad-
hesion potential is considered to be distinct for different
components. By minimizing the total energy of the sys-
tem that includes bending energy, interfacial line tension
and the adhesion energy, the equilibrium vesicle shapes
can be computed for a variety of parameter values. As the
initial attempt, we consider the case that both the vesicle
membrane and the substrate are axisymmetric to sim-
plify the computation. We present, in particular, a num-
ber of typical equilibrium two-component axisymmetric
vesicle profiles undergoing adhesion. The consistency be-
tween the phase field description and its sharp interface
limit is also briefly discussed. Moreover, a numerical ex-
periment is conducted to support the conclusion of [4]
that the adhesion may promote phase separation for a
multi-component membrane.

II. MULTI-COMPONENT VESICLE

MEMBRANE WITH ADHESION

Equilibrium shapes of a multi-component vesicle are
often described by minimizing an energy that includes
elastic bending energy of the membrane and the line ten-
sion energy at the interface between the components [21].
For the elastic bending energy of vesicle membrane, a
common form adopted in the literature is that introduced
by Helfrich [22]:

Eb =

∫

Γ

(
λ(H − a)2 + bK

)
dx , (1)
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where Γ is the membrane surface, H and K are the mean
and Gaussian curvatures of Γ with λ and b being the
mean curvature bending modulus and the Gaussian cur-
vature bending modulus respectively and a is the sponta-
neous curvature. For simplicity, we consider the effect of
mean curvature bending modulus and spontaneous cur-
vature only. Thus b is set to be zero and Eq. 1 becomes

Eb =

∫

Γ

λ(H − a)2dx .

In this paper, we focus on two-component vesicle mem-
branes which have the liquid-ordered and the liquid-
disordered phases, and the two phases have distinct bend-
ing moduli and distinct spontaneous curvatures [23–25].
Let Γ1 and Γ2 be the parts of the surface representing the
two different phases with λ1, λ2 being their correspond-
ing bending moduli and a1, a2 being their corresponding
spontaneous curvatures, respectively. The total elastic
bending energy for the two-component vesicle is

Eb =

∫

Γ1

λ1(H − a1)
2 dx+

∫

Γ2

λ2(H − a2)
2 dx . (2)

The line tension energy, which is essentially an interfacial
energy between the two phases is given as

El =

∫

Γ1∩Γ2

σ dl , (3)

where σ is the constant line tension at the interface. Eqs
(2) and (3) together define the total energy,

E = Eb + El , (4)

with a minimum of E describing the shape of an equilib-
rium two-component closed membrane.
Note that the vesicles or membranes discussed so far

are free and not bounded to other objects. To incorporate
the adhesive interaction with a substrate, an additional
energetic contribution due to adhesion should be added
to Eq. (4):

Etotal =

∫

Γ1

λ1(H−a1)
2 dx+

∫

Γ2

λ2(H − a2)
2 dx

+

∫

Γ1∩Γ2

σ dl −
∫

Γ

W (x) dx , (5)

where

W (x) =

{
w1 · P (x), x ∈ Γ1

w2 · P (x), x ∈ Γ2
(6)

is the adhesion potential which varies with respect to the
position x on Γ = Γ1 ∪ Γ2. In the above, w1 and w2 are
the corresponding strengths of the adhesion potential ex-
perienced by the liquid-ordered and the liquid-disordered
phases. A representative form of W is that of a Gaussian
form given by,

W (x) =

{
w1 exp(−d(x)2/ǫ2), x ∈ Γ1

w2 exp(−d(x)2/ǫ2), x ∈ Γ2

(7)

where d(x) is the distance from x to a flat/curved sub-
strate, and ǫ is a small number. Notice that when ǫ
approaches zero, the adhesion potential converges to a
sharp contact potential, a scenario that has been investi-
gated in earlier studies [3, 6]. While we use the Gaussian
potential (7) in most of this paper, to offer a comparison,
we also consider the Leonard-Jones type potential,

W (x) =





−w1 · 4
[(

β

d(x)

)α

−
(

β

d(x)

)α/2]
, x ∈ Γ1

−w2 · 4
[(

β

d(x)

)α

−
(

β

d(x)

)α/2]
, x ∈ Γ2

(8)
which induces a narrow repulsive region between vesicles
and the substrate. The constant β and the exponent α
determine the thickness of the repulsive region and the
rate of change of the adhesion potential, respectively.

A. Phase field formulation

To be able to effectively describe the different phases
of the two-component vesicle, we use a phase field for-
mulation which has become very popular in recent years
in the modeling and simulations of vesicle deformations
[20, 26–31]. A phase field function can be used to describe
the vesicle with the phase field bending energy as formu-
lated in [26, 27]. Adhesion energy can be incorporated
into the phase field formulation as shown in [20]. For
multi-component vesicles, order parameters can be used
to describe both the vesicle and its two components [32].
On the other hand, for a vesicle with a fixed topology,
one can also use a direct (explicit) surface representa-
tion for the vesicle along with an order parameter (phase
field function) to describe the two different phases of the
membrane[30, 33]. For the axisymmetric case considered
here, it is particularly effective to adopt a sharp interface
representation of the vesicle surface given by the revolu-
tion of a simple one-dimensional curve with an arc-length
parametrization and a phase field representation of the
different phases on the vesicle which is also a function of
the arc-length.
Specifically, let Γ be the vesicle surface, a phase field

function η = η(x) is introduced over Γ which may be
used to represent either a material composition profile
or a fictitious density of the lipids on the surface of the
membrane and distinguishes between the liquid-ordered
and liquid-disordered phases. As an illustration, we focus
on the latter case so that in the liquid-ordered phase, η is
specified to be +1 and is colored as blue in figure 1; in the
liquid-disordered phase, η is assigned to be −1 and col-
ored as red. In the interface between the liquid-ordered
and liquid-disordered phases, η rapidly, but continuously,
changes from +1 to -1. Note that the phase field regular-
izes the sharp interface between the two different phases
into a diffused one, and thus provides a more general de-
piction of the two-component vesicle in both the mixed
and de-mixed states. The total energy (5) of the model
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in terms of the phase function η is given by

E(η) =

∫

Γ

(c0 + c1η)
[
H − a(c0 + c3η)

]2
dx

+σ

∫

Γ

[
ξ

2

∣∣∇Γη
∣∣2 +Φ(η)

]
dx

−
∫

Γ

w(c0 + c2η)P (d(x)) dx , (9)

where the first and third terms are phase field formulas
for elastic bending energy and adhesion energy, respec-
tively. The term c0 + c1η is a phase field representation
of λ1 and λ2. When x is away from the interfacial region,
c0+c1 = λ1 and c0−c1 = λ2. The liquid-ordered phase is
stiffer than the liquid-disordered phase, hence we always
assume c1 > 0. The term a(c0+ c3η) is considered as the
phase field analog of spontaneous curvature, and

a(c0 + c3) = a1, a(c0 − c3) = a2

if x is away from the interfacial region. Similarly,
w(c0 + c2η)P (d(x)) is viewed as an approximation of the
adhesion potential W (x), with

w(c0 + c2) = w1, w(c0 − c2) = w2

when x is far away from the interfacial region. The sec-
ond term is a phase field approximation for the line ten-
sion energy where a double well potential function

Φ(η) =
1

4ξ
(η2 − 1)2 (10)

is incorporated. ∇Γη is the surface gradient of η which is
the projection of ∇η onto the tangent plane of Γ. Notice
that to make ∇Γη well defined, the function η should be
defined away from the membrane such that dη/dn = 0
where n is the normal vector of Γ. The enclosed vol-
ume and total area of the membrane are assumed to be
invariant. Meanwhile, the total amount of lipids is con-
served. Thus three constraints are imposed during the
minimization of the total energy (9):

∫

Γ

dx = A,

∫

Γ

dV = Vol,

∫

Γ

η(x) dx = C. (11)

The constraint
∫
Γ
η(x) dx = C denotes the difference in

the surface areas of the two phases in the sharp interface
limit.

B. Axisymmetric Setting

In the present work, we focus on the axisymmetric
membrane adhered on a flat/curved substrate. In this
setting, the membrane surface is determined by evolving
a 2-d curve. A vesicle with a flat substrate is schemati-
cally shown in figure 1. The axisymmetric vesicle surface
is generated by evolving a curve parameterized by the

substrates

s = 0

s = s0

s = ŝ
s = ŝ

s = s0

s = 0

rr

s s

φ
φ

z z

FIG. 1. Schematic diagrams of axisymmetric two-component
adhered vesicle membranes. Blue and red colors indicate the
liquid-ordered and the liquid-disordered phases, respectively.
s = s0 specifies the phase boundary. Away from the interface,
the blue phase has mean curvature bending modulus c0 + c1
and adhesion potential w(c0+c2)P (d(x)), while the red phase
has mean curvature bending modulus c0 − c1 and adhesion
potential w(c0 − c2)P (d(x)).

arc-length s, and the total length of the generating curve
is denoted by ŝ. The flat substrate is located at z = 0
with the two different phases being distinguished by the
red and blue colors. The transition point from red to
blue is located at s = s0. The figures on the left and right
show different configurations with the blue phase and the
red phase being adjacent to the substrate, respectively.
For easy reference, we denote the left as red-blue vesicle
membrane, and the right as blue-red vesicle membrane.
The tangent angle φ is measured from the radial direc-
tion and r is the distance of a point on the membrane
from the axis of symmetry.
The mean curvature of the vesicle can be explicitly

expressed by r and φ as

H =
1

2

(
φ′ +

sinφ

r

)
,

where prime represents the derivative with respect to arc-
length s. The line tension energy term in (9) becomes

2πσ

∫ ŝ

0

ξ

2
η′2 +

1

4ξ
(η2 − 1)2 ds.

We nondimensionalize all the parameters and choose
c0 to be 1. Then the phase field model (9) is reduced to

E(η) = 2π

∫ ŝ

0

(1 + c1η)
[
H − a(1 + c3η)

]2
r ds

+2πσ

∫ ŝ

0

[
ξ

2
η′2 +

1

4ξ
(η2 − 1)2

]
r ds

− 2π

∫ ŝ

0

w(1 + c2η)P (d(x)) r ds . (12)

Additionally, the constraints (11) in the axisymmetric
case lead to

(cosT )′ = −r, (13)
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with T being the arc-length parameter of the reference
unit sphere,

π

∫ ŝ

0

r2z′ds = Vol, (14)

and

∫ ŝ

0

η(s)rds = C . (15)

The pointwise constraint (13), which is in fact equivalent
to the one in (11), is referred as the lateral incompress-
ibility condition for the membrane [34].
The shape of the membrane is determined by minimiz-

ing the total energy (12), subject to constraints (13), (14)
and (15). It satisfies the Euler-Lagrange equations given
by:

[
H̃ ′′ +

r′H̃ ′

r
+ 2H̃(H2 −K) + 2aH̃H(1 + c3η)

]
− 2(µH + p+ τηH)

+ σξη′2φ′ − 2σH
[ξ
2
η′2 +Φ(η)

]
− w(1 + c2η)

(
dP

d(d(x))

δ(d(x))

δn
− 2HP

)
= 0 (16)

c1
[
H − a(1 + c3η)

]2 − 2ac3H̃ + σ
[
− ξ

(
η′′ +

r′η′

r

)
+

dΦ

dη

]
+ τ − c2wP = 0 , (17)

where H̃ = (1 + c1η)
[
H − a(1 + c3η)

]
and µ, p and τ are

the three Lagrange multipliers for the three constraints,
respectively. The other equations from geometry are [25,
35]:

φ′ = 2H − sinφ

r
, r′ = cosφ, z′ = sinφ. (18)

Boundary conditions are imposed as follows:

H ′(0) = H ′(ŝ) = 0; r(0) = r(ŝ) = 0;

φ(0) = 0, φ(ŝ) = π; η′(0) = η′(ŝ) = 0. (19)

III. NUMERICAL EXPERIMENTS

We numerically solve Eqs (16) through (18) subject to
boundary condition (19) using the MATLAB ODE solver
BVP4C. We tested the convergence of the computed re-
sults in our numerical simulation.

A. Adhesion with Gaussian potential

We first present the numerical results of a few adhered
vesicles using the Gaussian adhesion potential.
In Figure 2, several numerical solutions for Eqs. (16)

through (19) are shown. The curves are the cross-sections
of the vesicle shapes with the blue-colored region repre-
senting the liquid-ordered phase and the red-colored re-
gion representing the liquid-disordered phase. The cor-
responding parameter values used in the experiments
are taken as area=4π, volume=3.5, C = −0.3, σ = 2,
c1 = 0.4, c3 = 0, a = 0, ξ = 0.01, and ǫ = 0.15. Note

z

(A)

r

z

(B)

FIG. 2. Membrane shapes for different w. Area=4π, vol-
ume=3.5, area difference C = −0.3, σ = 2, c1 = 0.4, c3 = 0,
a = 0, ξ = 0.01, ǫ = 0.15; (A) c2 = −0.05, w = 1.0, 1.5, 2.0,
from left to right; (B) c2 = 0.2, w = 2.0, 3.0, 5.0, from left to
right.

that c1 = 0.4 implies that the ratio λ1/λ2 = λblue/λred of
the mean curvature bending moduli between the blue and
red phases is 1.4/0.6. Moreover, a = 0 and c3 = 0 imply
that both phases have zero spontaneous curvature. Blue-
red adhered vesicles on flat substrate are shown in figure
2-A where c2 = −0.05, that is, w1/w2 = wblue/wred in
(7) is equal to 0.95/1.05. Except the adhesion-associated
parameter w, all the parameters are kept fixed as speci-
fied. Some adhered shapes of red-blue vesicles are shown
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r

z

FIG. 3. Convergence of adhered membranes as ǫ → 0.
ǫ = 0.15, 0.10, 0.05, 0.01, from left to right. Area=4π, vol-
ume=3.5, area difference C = −0.3, σ = 2, c1 = 0.4,
c2 = −0.05, c3 = 0, a = 0, ξ = 0.01, w = 2.

in figure 2-B for various w and c2 = 0.6. Notice that
there is a slight protrusion of vesicles into the flat sub-
strate. This is due to the lack of repulsive effect in the
Gaussian form of the adhesion potential.
Convergence of the adhered vesicle shapes as ǫ ap-

proaches zero is presented in figure 3. Theoretically, by
the standard asymptotic analysis, η tends to converge to
tanh

(
s−s0√

2ξ

)
when ξ approaches zero, where s0 indicates

the location of the interface which depends on the area
difference C (see appendix A). Numerically, for relatively
larger ǫ, the shapes of two-component vesicle membranes
protrude into the flat substrate more significantly. As
ǫ gets smaller, the protrusion becomes less visible and
finally vanishes in the limit of ǫ → 0, that is the case

0 0.1 0.2 0.3 0.4 0.5 0.6

20

20.5

21

21.5

22

22.5

c
2

E
n
e
rg

y transition point

FIG. 4. Energy comparison between blue-red vesicle and red-
blue one. w = 2, c1 = 0.3 are fixed. c2 varies from -0.05 to
0.6. The solid curve represents energy versus c2 for the red-
blue vesicle, while the dash curve is for the blue-red vesicle.
The shapes of the vesicles at the four end-points of the curves
are shown. Area=4π, volume=3.5, area difference C = −0.3,
σ = 2, c3 = 0, a = 0, ξ = 0.01, ǫ = 0.15.

0 0.05 0.1 0.15 0.2 0.25 0.3

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

c
1

c
2

 

 

w=3.00

w=2.00

w=1.61

FIG. 5. Transition curves for w=1.5, 2.0, 3.0. Above each
curve, red-blue membrane is more stable; the blue-red mem-
brane is more stable below the curves. The other parameter
values are: Area=4π, volume=3.5, area difference C = −0.3,
σ = 2, c3 = 0, a = 0, ξ = 0.01, ǫ = 0.15.

corresponding to the effective contact potential [3, 6, 20]

W (x) =

{
w d(x) = 0
0 otherwise.

(20)

Figure 4 shows the energy comparison between blue-
red vesicle membrane and red-blue one under the influ-
ence of adhesion. Here area=4π, volume=3.5, C = −0.3,
σ = 2, c1 = 0.3, c3 = 0, a = 0, ξ = 0.01, ǫ = 0.15,
w = 2.0 are fixed. The two shapes on the left correspond
to parameter c2 = −0.05 with wblue/wred = 0.95/1.05.
The blue-red vesicle, which is more deformed from the
free vesicle shape, has lower energy and is more stable
than the red-blue one in this case. On the other hand,
the two shapes on the right correspond to c2 = 0.6 lead-
ing to wblue/wred = 1.6/0.4. There, the red-blue vesicle
which is deformed more from the free shape has lower en-
ergy and is more stable than the blue-red one. In general,
for c2 < 0, wred is larger than wblue and blue-red mem-
brane is more deformed from a free shape. Whereas, for
c2 > 0, wblue is larger than wred and red-blue membrane
is more deformed from a free shape.
The energy comparison of the four shapes as discussed

above may lead us to believe that the vesicle whose com-
ponent adjacent to the substrate endures stronger adhe-
sion is more stable. However, this is not always the case.
As seen in figure 4, there is an anomalous region with
c2 between zero and 0.1217, and the blue phases suffer
stronger adhesion but the blue-red vesicle is more stable.
Outside this region, the shape with stronger adhesion on
the component adjacent to the substrate is more stable.
We observe that the existence of the region (0, 0.1217)
is due to the nonzero values of c1 and C which model, in
the two-component system, the effects due to the differ-
ences in the bending moduli and the surface areas of the
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1.26 1.4 1.61 1.8 2 2.2 2.4 2.6 2.8 3
0.06

0.08

0.1

0.12

0.14

0.16

0.18

w

c
2

 

 

c
1
=0.3

c
1
=0.0

FIG. 6. Dependence of c2 on w for phase transition when
c1 = 0.3 and 0.0, respectively. Area=4π, volume=3.5, area
difference C = −0.3, σ = 2, c3 = 0, a = 0, ξ = 0.01, ǫ = 0.15.

two phases. When both c1 and C approach zero which
is the limit where both components have the same bend-
ing moduli and equal surface areas, the multi-component
vesicle reduces into a single component vesicle. And the
anomalous region shrinks to the point c2 = 0, also the
transition point converges to c2 = 0,
In addition, the transition point in figure 4 strongly

depends on c1 and the adhesion potential w. The depen-
dence of the transition points on c1 is shown in figure 5.
For various w = 3.00, 2.00, 1.61, we plot the transition
curve c1 versus c2. The red-blue vesicle, corresponding
to the parameter pair (c1, c2) above each curve, is more
stable; while the blue-red vesicle is more stable if the
parameters c1, c2 are chosen from the region below the
transition curves.
Figure 5 shows that the transition always occurs for

c2 > 0. One may wonder if this is universally true for
any adhesion potential w. The answer is provided via
figure 6, the transition curve w v.s. c2 for fixed c1. In
figure 6, the dash curve corresponds to c1 = 0.3, and the
solid curve corresponds to c1 = 0. Then we obtain the
dependence of c2 on w when the transition occurs. For
c1 = 0.3, w varies from 1.61 to 3; while for c1 = 0.0, w
varies from 1.26 to 3. Above the transition curve, the red-
blue vesicle is the more stable one; while below the curve,
the blue-red vesicle is more stable. The bound blue-red
vesicle with given parameters will break away from the
adhered state around w = 1.60(1.25) when c1 = 0.3(0.0)
and change to an unbound (free) vesicle. We can thus
claim that c2 is always positive for any bound adhesion
potential w when c1 is fixed.
We also take the effects of the spontaneous curvature

and the substrate curvature into consideration [36, 37].
In figure 7 the flat substrate is now replaced by a concave-
up spherical substrate with radius R = 3. Here area=4π,
volume=2.7, area difference C = 0, σ = 1, c1 = 0, c2 = 0,

−2 0 2
0

1

2

3

4

(A1)

−2 0 2
0

1

2

3

4

(B1)

−2 0 2
0

1

2

3

E=8.0980

(A2)

−2 0 2
0

1

2

3

E=8.6450

(B2)

FIG. 7. Effect of spontaneous curvatures on the vesicle
shapes. Representative shapes of vesicle membranes are
shown. Area=4π, volume=2.7, area difference C = 0, σ = 1,
c1 = 0.0, c2 = 0 c3 = 0.5, a = 2/3, ξ = 0.01, ǫ = 0.05, w = 2.

c3 = 0.5, a = 2/3, ξ = 0.01 and ǫ = 0.05. We take w = 0
and w = 2 respectively to find both free vesicles and ad-
hered vesicles. Differing from the previous figures in this
subsection, the red and blue colors in this experiment
indicate the phases having different spontaneous curva-
tures. The blue phase has a bigger spontaneous curva-
ture a(1 + c3) = 1 while the red phase has a smaller one
a(1 − c3) = 1/3. A1 and B1 show the free vesicles with
specified parameters. Notice that the red phase, which
possesses a smaller spontaneous curvature, has shapes

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

c
3

c
2

FIG. 8. Dependence of c2 on c3 for phase transition. Rep-
resentative shapes of vesicle membranes are shown above or
below the transition curve. area=4π, volume=2.7, area dif-
ference C = 0, σ = 1, c1 = 0.0, a = 2/3, ξ = 0.01, ǫ = 0.15,
w = 2.
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less elongated than the blue phase. A2 and B2 are ad-
hered blue-red and red-blue vesicles. By comparing the
total energy of these two adhered vesicle, we find out that
the blue-red vesicle with the red phase at bottom, whose
spontaneous curvature matches with the curvature of the
curved substrate, is more stable than the red-blue vesicle.
We choose here a volume with value 2.7 which is

smaller than the previously chosen value of 3.5 because
larger osmotic pressure difference makes the effect of
spontaneous curvatures on the vesicle shapes more visi-
ble.
Similar to the discussion of stability transition in fig-

ure 5 and figure 6, when the spontaneous curvature effect
is taken into account, we can also find the dependence
of transition points on c1, c2, c3, w. Without repeatedly
showing many figures, we present here only the transition
curve c3 v.s. c2 in figure 8 with c1 = 0, w = 2 fixed. Other
parameters are set as area=4π, volume=2.7, area differ-
ence C = 0, σ = 1, a = 2/3, ξ = 0.01, ǫ = 0.15. Above
the transition curve, a representative red-blue vesicle is
shown which is more stable than the blue-red vesicle;
while below the transition curve, the blue-red vesicle is
more stable.

B. Adhesion with Leonard-Jones potential

When the Gaussian adhesion potential is used, as seen
in the above, slight protrusion of vesicles into the sub-
strate may occur. If this protrusion is of any practical
concern, one possible way to avoid the protrusion is to
replace the Gaussian adhesion potential by a Leonard-
Jones type potential. We demonstrate, by employing the
following potential,

P (d(x)) = −4

[(
β

d(x)

)α

−
(

β

d(x)

)α/2]
, (21)

that the shapes of adhered vesicles without any protru-
sion can be obtained using our phase field formulation.
The key difference between the Gaussian type potential
(7) and the Leonard-Jones type potential (21) is that
Gaussian potential is globally attractive, while there is
a narrow region with d(x) between zero and β where
the Leonard-Jones type potential is repulsive. Such a
repulsive region can prevent the vesicle membrane from
protruding into the substrate.
An axisymmetric simulation is shown in figure 9 where

we take α = 5. In figure 9(A), w = 2 is fixed, and the
parameter β is decreased from left to right. We can see
that the repulsive region between substrate and vesicle
membrane narrows down. The shape deformation under
the influence of adhesion is shown in figure 9(B) where
the repulsive region is fixed but w is increased from left
to right. The stability transition curves, similar to that
obtained previously for Gaussian potential, can also be
obtained for Leonard-Jones type potential. Given the
similarities in the findings, we do not repeat the discus-
sion here.

z

(A)

r

z

(B)

FIG. 9. Membrane shapes for Leonard-Jones type potential.
(A) w = 2, β = 0.05, 0.035, 0.025, from left to right; (B) β =
0.05, w = 1.2, 2.0, 2.8, from left to right. Other parameters:
Area=4π, volume=3.5, area difference C = −0.3, σ = 2, c1 =
0.3, c2 = −0.05, c3 = 0, a = 0, ξ = 0.01, α = 5

C. Promotion of phase separation

In this subsection, two numerical experiments are pre-
sented to support Gordon and coworkers’ experimental
observation that adhesion may promote the phase sepa-
ration [4]. The experiments involve the phase field sim-
ulations for relatively large diffuse interface parameter
ξ which is consistent to the experimental setting. The
Leonard-Jones type adhesion potential is employed in
this subsection.
In the first experiment, the function η(s) is viewed as

a chemical composition function, which can be consid-

−1 0 1

0

0.5

1

(B1)

0 1 2 3
−1

−0.5

0

0.5

1

T

(B2)

−1 0 1

0

0.5

1

z

(A1)

0 1 2 3
−1

−0.5

0

0.5

1

T

η

(A2)

FIG. 10. Adhesion induces phase separation. An almost ho-
mogeneous free vesicle is phase-separated by a Leonard-Jones
adhesion.
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ered as a compositional fluctuation around a homoge-
neous state with composition η0. The constraint (15) is
specified as

∫ ŝ

0

η(s)rds =

∫ ŝ

0

η0rds (22)

We now demonstrate that for an equilibrium free vesi-
cle with associated η(s) almost homogeneous, namely
η(s) ≈ η0, after adding the adhesion, it displays the phase
separation behavior with η(s) changing into a tanh-like
profile representing two distinct phases.
The numerical experiment is presented in figure 10.

In (A1-2), for area = 4π, volume = 3.5, η0 = −1/
√
3, ξ =

0.33, σ = 5/(1−0.8η0), c1 = 0.8/(1−0.8η0), c2 = 1.0/(1−
1.0η0), c3 = 0, a free vesicle is computed first. The chem-
ical composition function η and the associated vesicle
profile shown in (A1-2) correspond to the stable energy
minimum (in the absence of adhesion). The change in
composition is relatively small, representing a state of
mixed phases in much of the vesicle. By adding Leonard-
Jones adhesion with w = 5(1 − 1.0η0)/(1 − 0.8η0), β =
0.023, α = 5, an adhered vesicle with associated η corre-
sponding to the new energy minimizer is shown in (B1-
2). A phase separation occurs with a much more sig-
nificant phase difference max(η) − min(η) = 1.9703 in
(B2). In comparison, we have max(η)−min(η) = 0.2345
in (A2), which is only 11.90% of the phase difference
for adhered vesicle. We thus see that adhesion can sig-
nificantly promote phase separation. Furthermore, the
bending modulus of the phase-mixed vesicle λmixed is
roughly around 1/(1− 0.8η0), and the bending moduli of
the phase-separated vesicle are λblue = 2.2649/(1−0.8η0)
and λred = 0.6873/(1− 0.8η0). These parameter values
imply that λred ≈ λmixed and λblue/λred = 3.2954 which

−1 0 1
0

1

2

3

(A1): w=0

r

z

0 0.5 1
−1

−0.5

0

0.5

1

(A2)

T

η

−1 0 1
0

1

2

3

(B1): w=2

r

0 0.5 1
−1

−0.5

0

0.5

1

(B2)

T

−1 0 1
0

1

2

(C1): w=10

r

0 0.5 1
−1

−0.5

0

0.5

1

(C2)

T

FIG. 11. Promotion of phase separation. As w gets bigger, the
two phases of η near the interfacial region are separated more.
Area=4π, volume=3.5, area difference C = 1.7, ξ = 0.13,
σ = 1, c1 = 0.05, c2 = −1.00, c3 = 0, ζ = 1, β = 0.05, α = 5.

agree with the ratios of the bending stiffnesses of the or-
dered, the disordered and the mixed phases available in
the literature [4, 23, 24, 38].
The effect of adhesion on phase separation can be fur-

ther demonstrated in the next experiment. Here again,
we take the order parameter η(s) to be a labeling func-
tion for relative lipid density which stays within [−1, 1].
To model a wider diffuse interfacial layer corresponding
to a relatively large ξ and yet maintain the bound on η,
we replace the double well potential function (10) by the
following double obstacle potential function [39]:

(1+η) ln(1+η)+(1−η) ln(1−η)+γ(1−η2)−2 ln 2 . (23)

where γ = 1 + 2 ln 2 is a constant describing the height
of the potential barrier.
Figure 11 shows a numerical experiment while we

choose ξ = 0.13 so that for unbounded vesicles, there
would be a wide interfacial regions with less dramatic
phase separation effect. Then for various w = 0, 2, 10, we
compute the corresponding adhered vesicle shapes and
the corresponding lipid density functions η. We high-
light the densities near the interfacial region (the boxed
portion of the vesicle profile). With the plots using the
same scaling in the arc-length, one can see that with a
larger adhesion strength w, the interfacial layer gets nar-
rower and the separation between the red and blue phases
becomes sharper and more dramatic.

IV. CONCLUSION

In this work, we develop a phase field model for the
adhesion of the multi-component vesicle membrane to a
flat/curved substrate. Some representative vesicle shapes
are presented. The influence of c2, which measures the
contrast of the adhesion effect for the different phases,
on the stability of membrane shapes is discussed here.
It turns out that the multi-component vesicle, whose
lower part suffers stronger adhesion, is more stable in
most cases. We also consider the the phase transition
from blue-red vesicle to red-blue vesicle, and the influ-
ence of other parameters such as the relative contribu-
tion of the adhesion and the bending energy. The effect
of spontaneous curvature is also numerically observed by
examining the adhesion of the vesicles on a curved sub-
strate. We also present vesicle shapes corresponding to
the Leonard-Jones type adhesion potential to show that
the repulsive region can effectively prevent the protru-
sion of the vesicles into the substrates should this be of
practical concern. Finally, we numerically examine the
fact that adhesion can promote the phase separation for
multi-component vesicle membrane.
Although the numerical studies presented here are fo-

cusing on the axisymmetric configuration, the phase field
formulation is applicable to more general settings such
as in the study of the interaction between the multi-
component vesicle and a patterned substrate. It can also
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be used to extend the study of membrane-mediated parti-
cle interactions [18, 19] to multi-component vesicles. The
present phase field formulation of the multi-component
vesicle and substrate interaction can also be extended
in several directions. For instance, by incorporating the
Gaussian curvature contributions to the bending energy,
fusion of multi-component vesicles can be studied. By
adding an entropic contribution to the free energy, we
can also consider the weak adhesion regime where fluctu-
ation of the vesicle shape due to thermal excitation plays
an important role.

Appendix A: Asymptotic analysis for η

In section III, the convergent behavior of the adhered
vesicles as the interfacial width ǫ approaches zero is
briefly mentioned. It is claimed that the phase field
function η approaches tanh

(
s−s0√

2ξ

)
as the parameter ξ

approaches zero. A boundary layer calculation is carried
out to support such an observation[40].
The lipid density function η(s) is governed by the Eq

(17) and can be rewritten as

ξ
(
c1
[
H − a(1 + c3η)

]2 − 2ac3H̃ + τ − c2wP
)
r

+ σ
[
− ξ2(η′r)′ + (η2 − 1)ηr

]
= 0 (A1)

An asymptotic analysis in the sharp interface limit is
carried out as follows. For simplicity, we only consider
the O(1) terms for outer and inner layers here. The in-
ner layer and the outer layer are the regions around the
interface and away from the interface, respectively.
Within the outer layer, η does not change much with

respect to the arc-length and we expand η(s) as

η(s) ∼ η0(s) + ξη1(s) + . . . , (A2)

We substitute (A2) into (A1) and obtain an equation for
η0 at the lowest order:

(η20 − 1)η0r = 0 .

The solutions are

η0 = 0,±1 ,

and we choose η = 1 and η = −1 in the two sides of the
interface to represent the blue and red phases, respec-
tively. Here let us assume η = −1 in the side s < s0; and
η = 1 in the side s > s0.
In the inner layer, we expect η to vary rapidly from −1

to 1 and introduce a new stretched arc-length variable

S =
s− s0
ξµ

,

where µ is an yet undetermined parameter. We now ex-
press η as a function of the stretched variable S and ex-
pand η as

η̃(S) ∼ η̃0(S) + ξη̃1(S) + · · · . (A3)

Notice that

r(s) = r(s0 + ξµS) = r(s0) + ξµSr′(s0) +O(ξ2µ),

Upon rewriting Eq. (A1) in terms of the stretched vari-
able S and, subsequently, using Eq. (A3) we obtain

−ξ2−2µr(s0)
d2η̃0
dS2

− ξ2−µr′(s0)
d

dS

(
S
dη̃0
dS

)

+ (η̃20 − 1)η̃0
[
r(s0) + ξµSr′(s0)

]
+O(ξµ) = 0 (A4)

There are two possible choices for µ. If µ balances the
second and third terms, namely, 2 − µ = 0. Then the
leading order term is:

−r(s0)
d2η̃0
dS2

= 0

which implies η̃0 = aS + b. However, this solution does
not satisfy the matching conditions

η̃0(−∞) = η0(0) = −1, η̃0(+∞) = η0(ŝ) = 1 .

Another choice is to balance the first and third terms
of equation (A4), namely, µ = 1, and one gets the leading
order term:

−r(s0)
d2η̃0
dS2

+ (η̃20 − 1)η̃0r(s0) = 0.

If the boundary condition η̃0(−∞) = −1, η̃0(+∞) = +1
are imposed, a typical solution of the above nonlinear
equation, which satisfies the matching condition, is

η̃0(S) = tanh
( S√

2

)
.

Then the composite solution of (A1), given by

inner solution + outer solution - matching solution,

takes the form

η̃0(S) + η−0 (s)− η−0 (0) + η+0 (s)− η+0 (ŝ),

and explicitly

η(s) ∼ tanh
(s− s0√

2ξ

)
+ . . .
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[16] R. Lipowsky and H.-G. Döbereiner, “Vesicles in contact
with nanoparticles and colloids,” Europhysics Letters 43,
219–225 (1998).

[17] M. Deserno and W. M. Gelbart, “Adhesion and wrapping
in colloid-vesicle complexes,” Journal of Physical Chem-
istry B 106, 5543–5552 (2002).

[18] M. Deserno and T. Bickel, “Wrapping of a spherical col-
loid by a fluid membrane,” Europhysics Letters 62, 767–
773 (2003).

[19] M. Deserno, “Elastic deformation of a fluid membrane
upon colloid binding,” Physical Review E 69, 031903
(2004).

[20] J. Zhang, S. Das, and Q. Du, “A phase field model for
vesicle substrate adhesion,” Journal of Computational
Physics 228, 7837–7849 (2009).

[21] F. Julicher and R. Lipowksy, “Shape transformations of
vesicles with intramembrane domains,” Physical Review
E 53-3, 2670 (1996).

[22] W. helfrich, “Elastic properties of lipid bilayers theory
and possilbe experiments,” Z. Naturforsch 28c, 693–703
(1973).

[23] T. Baumgart, S. Das, W. W. Webb, and J. T. Jenkins,

“Membrane elasticity in giant vescles with fluid phase
coexistence,” Biophysiccal Journal 89, 1067–1080 (2005).

[24] T. Baumgart, S. Hess, and W. W. Webb, “Imaging co-
existing fluid domains in biomembrane models coupling
curvature and line tension,” Nature 425, 821–824 (2003).

[25] S. Das, Studies of axisymmetric lipid bilayer vesicles: pa-

rameter estimation, micropipette aspiration, and phase

transition (Phd thesis, 2007).
[26] Q. Du, C. Liu, and X. Wang, “A phase field approach

in the numerical study of the elastic bending energy for
vesicle membranes,” Journal of Computational Physics
198, 450–468 (2004).

[27] Q. Du, C. Liu, R. Ryham, and X. Wang, “Modeling the
spontaneous curvature effects in static cell membrane de-
formations by a phase field formulation,” Communication
in Pure and Applied Analysis 4, 537–548 (2005).

[28] K. Kassner T. Biben and C. Misbah, “Phase-field ap-
proach to three-dimensional vesicle dynamics,” Physical
Review E 72, 041921 (2005).

[29] F. Campelo and A. Hernandez-Machado, “Dynamic
model and stationary shapes of fluid vesicles,” Eur. Phys.
J. E 20, 37–45 (2006).

[30] J. S. Sohn, Y. H. Tseng, S. Li, A. Voigt, and J. S. Lowen-
grub, “Dynamics of multicomponent vesicles in a viscous
fluid,” Journal of Computational Physics 229, 119–144
(2010).

[31] L. Gao, X. Feng, and H. Gao, “A phase field method
for simulating morphological evolution of vesicles in elec-
tric fields,” Journal of Computational Physics 228, 4162–
4181 (2009).

[32] X. Wang and Q. Du, “Modeling and simulations of multi-
component lipid membranes and open membranes via
diffuse interface approaches,” Journal of Mathematical
Biology 56, 347–371 (2008).

[33] J. S. Lowengrub, A. Ratz, and A. Voigt, “Phase-field
modeling of the dynamics of multicomponent vesicles:
Spinodal decomposition, coarsening, budding, and fis-
sion,” Physical Review E 79, 031926 (2009).

[34] S. Das and J. T. Jenkins, “A higher-order boundary layer
analysis for lipid vesicles with two fluid domians,” J Fluid
Mech 597, 429–448 (2008).

[35] J. T. Jenkins, “Static equilibrium configurations of a
model red blood cell,” Journal of Mathematical Biology
4, 149–169 (1977).

[36] T. S. Ursell, W. S. Klug, and R. Philips, “Morphol-
ogy and interaction between lipid domains,” PNAS 106,
13301–13306 (2009).

[37] S. L. Das, J. T. Jenkins, and T. Baumgart, “Neck ge-
ometry and shape transitions in vesicles with co-existing
fluid phases: Role of gaussian curvature stiffness versus
spontaneous curvature,” Europhysics Letters 86, 48003
(2009).

[38] A. Roux, D. Cuvelier, P. Nassoy, J. Prost, P. Bassereau,
and B. Goudh, “Role of curvature and phase transition
in lipid sorting and fission of membrane tubules,” EMBO
Journal 24, 1537–1545 (2005).

[39] J. Blowey and C. Elliott, “A phase field model with a
doble obstacle potential,” Motion by mean curvature and
related topics: proceedings of the international confer-
ence held at Trento, July 20-24, 1992, 1–22(1994).

[40] M. H. Holmes, Introduction to perturbation methods,

Texts in applied mathematics 20 (Springer-Verlag, 1995).


