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We study experimentally and theoretically the effects of disorder, nonlinear screening, and mag-
netism in semiconductor heterostructures containing a δ-layer of Mn, where the charge carriers are
confined within a quantum well and hence both ferromagnetism and transport are two-dimensional
(2D) and differ qualitatively from their bulk counterparts. Anomalies in the electrical resistance
observed in both metallic and insulating structures can be interpreted as a signature of significant
ferromagnetic correlations. The insulating samples turn out to be the most interesting as they can
give us valuable insights into the mechanisms of ferromagnetism in these heterostructures. At low
charge carrier densities, we show how the interplay of disorder and nonlinear screening can result
in the organization of the carriers in the 2D transport channel into charge droplets separated by in-
sulating barriers. Based on such a droplet picture and including the effect of magnetic correlations,
we analyze the transport properties of this set of droplets, compare it with experimental data, and
find a good agreement between the model calculations and experiment. Our analysis shows that the
peak or shoulder-like features observed in temperature dependence of resistance of 2D heterostruc-
tures δ-doped by Mn lie significantly below the Curie temperature TC unlike the three-dimensional
case, where it lies above and close to TC . We also discuss the consequences of our description for
understanding the mechanisms of ferromagnetism in the heterostructures under study.

PACS numbers: 75.50.Pp, 73.21.Fg, 73.63.Hs, 75.75.-c, 72.20.-i

I. INTRODUCTION

Dilute magnetic semiconductors (DMS), incorporating
semiconducting and magnetic properties within a single
compound, are very promising materials for spintronics
(and spintronic devices) and are also important for un-
derstanding many fundamental questions such as the ori-
gin of ferromagnetism in a semiconductor1–7. The in-
teresting properties of DMS arise from the significant
role played by magnetic exchange interactions in addi-
tion to the interactions widely studied in the conventional
semiconductor structures, namely, the electron-electron
Coulomb and electron-phonon interactions, interactions
with strains and random potentials resulting from the de-
fects and inhomogeneous distribution of impurities. The
currently most widely studied DMS materials are those
based on III-V semiconductors, in particular Mn-doped
GaAs3–5. In such materials, if the Mn concentration
is not too high, Mn substitutes Ga acting as an accep-
tor, so doping GaAs with Mn yields both local magnetic
moments and free holes4–6. One of the important lines
of research here should be evidently related to the low-
dimensional and, especially, two-dimensional structures
given the planar character of existing microelectronic de-
vices. In addition, heterostructures δ-doped by Mn will
exhibit 2D ferromagnetic behavior, which is qualitatively

different from 3D ferromagnetism as there is no continu-
ous phase transition in 2D. Nevertheless, only a limited
number of studies dealing with the 2D DMS structures
have been reported in the literature8–17. In Refs. 9,10
concerning the GaAs/AlGaAs heterostructures δ-doped
by Mn, the ferromagnetic (FM) state was found at rather
high temperatures. However, the hole gas in these het-
erostructures was not quite two-dimensional since the
mobility of charge carriers was so low9 that broadening
of the quantized subband levels (≈300 meV) exceeded
even the depth of the quantum well (150–260 meV) in
this case. Such low mobility values were the result of a
high density of Mn, which is responsible not only for the
magnetism of the system but is also an acceptor and thus
an efficient scattering center. In addition, the authors of
Refs. 9,10 aimed to provide the highest hole density just
in the vicinity of Mn ions to maximize the Curie temper-
ature TC .

The GaAs/InxGa1−xAs/GaAs quantum-well struc-
tures δ-doped by Mn exhibiting ferromagnetic ordering
and a true 2D carrier energy spectrum were obtained by
selective doping that ensured a high hole mobility (more
than 2000 cm2/V · s at 5 K)11–13. The true 2D behavior
in DMS heterostructures was also observed in the simi-
lar structures elsewhere; however, in these cases, the FM
ordering manifested itself only at the millikelvin range of
temperatures14,15,17.
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Two mechanisms underlying the FM ordering in the
2D GaAs/InGaAs/GaAs heterostructures δ-doped by
Mn have been proposed in the current literature18,19.
The first model18 attributes the FM ordering to the in-
direct interaction of Mn atoms by means of holes in a 2D
conducting channel. The efficiency of this mechanism is
based on the large mean free path of 2D carriers due
to their remoteness from the Mn layer. In the second
model, FM ordering arises within the Mn layer, possi-
bly mediated by the holes in the layer like in usual DMS
structures19.

One of the most relevant questions is the effect of FM
ordering on the temperature dependence of resistivity, in
particular, the relation of the FM ordering to the resis-
tance anomaly (a peak or shoulder) near TC

20. Several
theories have been proposed21–26 for explaining the resis-
tivity in bulk DMS but we are not aware of any theoreti-
cal work on transport properties of 2D DMS heterostruc-
tures. In addition to magnetism, the disorder plays a
significant role in the DMS transport properties27, but
again the parameters of the disorder and its effect on
transport properties of the 2D DMS structures have not
yet been thoroughly investigated. In particular, a the-
oretical analysis providing quantitative agreement with
measurements and taking into account disorder effects
and peculiarities in the temperature dependence of resis-
tivity is still required.

In this paper, we study the effect of spatial disorder
of dopant concentration in the δ-layer on the electronic
properties of the 2D hole gas and show how at low car-
rier density, the competition of disorder and nonlinear
screening results in the formation of “metallic” droplets
separated by insulating regions. We make estimates for
the droplet sizes and interdroplet distance, the energy
level spacing in these droplet structures and the poten-
tial barrier separating neighboring droplets. Using these
as parameters in a simple model for the resistivity that
incorporates the effect of ferromagnetism on interdroplet
tunneling, we obtain a quantitative explanation of the
temperature dependence of resistivity in the DMS ferro-
magnetic structure with the 2D quantum well.

The rest of the paper is organized as follows. Section II
describes the experimental setup and the samples stud-
ied in this paper. In Section III, we discuss the available
experimental evidence proving the two-dimensionality of
the hole gas and the existence of ferromagnetic correla-
tions in our samples. The model of nanoscale inhomo-
geneities of the hole gas is developed in Section IV. In
Section V, we introduce a simple model for the resistivity
that incorporates the effect of energy level quantization
in the droplets and ferromagnetic correlation of electrons
in neighboring droplets. Section VI contains a discussion
of our findings and their implications for the mechanisms
of ferromagnetism in the DMS heterostructures.

Figure 1: Schematic layout of the heterostructure δ-doped by
Mn.

II. SAMPLE AND SETUP DETAILS

A schematic layout of the studied structures is shown
in Fig. 1.
The structure consists of an InxGa1−xAs quantum well

(QW) inside a GaAs matrix with a Mn δ-layer separated
from the QW by a GaAs spacer of width 3 nm. The QW
thickness W was about 10 nm and the In fraction in it
was x ≈ 0.2.A carbon δ-layer (≈ 2×1012cm−2) was intro-
duced at a distance 10–15 nm below the QW just at the
top of the buffer layer to compensate the hole depletion
of the QW by the (undoped) buffer layer. The quan-
tum well and the surrounding GaAs layers were grown
by MOCVD at 600◦C while the Mn δ-layer and GaAs
cap layers were prepared by the laser plasma deposition
at 450◦C.
The detailed description of such structures was ob-

tained from X-ray studies reported in Ref. 11, and the
methods of their growth were described in detail in
Ref. 13. The X-ray results of Ref. 11 demonstrate that
the Mn layer is slightly smeared forming a Ga1−yMnyAs
region 3− 5 nm thick and with a maximum Mn content
y ≤ 0.05 − 0.08 and not overlapping significantly with
the quantum well. This is also confirmed by the values
of hole mobility in the studied structures, which we find
to be more than by two orders of magnitude higher than
those in traditional bulk Mn-doped GaAs samples28. The
mobility and other electrical and structural parameters
of the studied structures are presented in Table I.
As we have already mentioned, the main feature of

these structures is that they are really two-dimensional
and exhibit FM ordering at relatively high tempera-
tures11,29. The two-dimensionality is confirmed by our
observation of Shubnikov-de Haas oscillations and of the
quantum Hall effect. We expect that the transport is
mostly due to light holes because of the large splitting
between the light and heavy hole Γ8 subbands (about 90
meV for InxGa1−xAs for x ≈ 0.2)30,31. This splitting
arises from the biaxial strain caused by the lattice mis-
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Sample Mn
content,

monolayers
(cm−2

×

1014)

In
content

x

Quantum
well depth
−V0, meV

Vfluc(z
=0, Rc)
at 77 K,
meV

Overlap
probability
of the hole
wavefunc-
tion with
Mn layer
(77 K)

Hole
mobility

µp

(77 K),
cm2/V·s

Hole
density p
(77 K),

cm−2
×1012

Overlap
probability
of the hole
wavefunc-
tion with
Mn layer
(5 K)

Hole
mobility
µp (5 K),
cm2/V·s

Hole
density p
(5 K),

cm−2
×1012

1 1.2 (6.0) 0.18 85 260 0.15×10−2 1350 1.8 0.15×10−3 180 0.3
2 0.5 (3.0) 0.21 100 170 0.51×10−2 1860 2.0 0.52×10−3 2950 0.71
3 0.4 (2.5) 0.23 115 160 0.39×10−2 1930 1.8 0.63×10−3 3240 0.79

4 0.35 (2.0) 0.17 70 145 0.72×10−2 2370 1.4 0.9×10−3 3400 0.46
5 0 0.18 85 – – 1600 0.5 – – –

Table I: Parameters characterizing the samples under study. Samples 1–4 are δ-doped by Mn. Sample 5 is δ-doped by carbon
instead of Mn. All the samples have a carbon layer too as shown in Fig. 1. We also present the model estimates for the
fluctuation potential Vfluc at the quantum well edge facing the Mn dopant layer, and the overlap probability of the hole
wavefunction with a 1 nm thick region centered at the δ-layer of Mn situated 3 nm away from the quantum well. Here, Rc

is the screening length. At each In content, the quantum well depth was estimated using the known experimental results,
according to which the valence band discontinuity is about 1/3 of the band gap discontinuity33.
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Figure 2: (color online) Effective mass dependence on mag-
netic field for Sample 2 (red circles) measured by ShdH oscilla-
tions and for Sample 4 (blue diamonds) measured by cyclotron
resonance. Solid black line corresponds to m∗/me = 0.14.

match of GaAs and InxGa1−xAs and results in light mass
behavior of holes (see Ref. 32 and references therein).

To find the actual value of the effective mass in our
structures, which is important for calculations of the en-
ergy levels in quantum wells and for the adequate inter-
pretation of the transport data, we performed cyclotron
resonance and Shubnikov–de Haas (ShdH) oscillations
measurements (see Fig. 2). The cyclotron resonance mea-
surements were performed at the Toulouse High Mag-
netic Field Laboratory (LNCMP) using a long-pulse coil,
delivering magnetic fields up to 40 T with a total pulse
length of 800 ms. The obtained values of the hole effec-
tive mass m∗ ≃ 0.14me are in agreement with m∗ deter-
mined in nonmagnetic GaAs/InGaAs/GaAs heterostruc-
tures from the ShdH oscillations30 as well as from the
recent cyclotron resonance measurements32.

In our opinion, such samples are optimal for studies
of disorder and magnetic properties in a two-dimensional

hole gas. We have performed measurements using sam-
ples with different Mn content to understand the effect of
disorder and doping on the crossover from the metallic-
like to insulating behavior. This crossover is also affected
by the degree of ionization of the Mn dopants as we will
see below. Samples for transport measurements were pre-
pared by photolithography and have a Hall-bar geometry
of width 0.3 mm between the Hall probes and 1.5 mm
between resistance probes. Measurements of the temper-
ature and magnetic field dependence of sample resistance
and Hall effect were performed in the 5− 300 K temper-
ature range at magnetic fields up to 3 T.

III. EXPERIMENTAL OBSERVATIONS AND

THEIR CONSEQUENCES

The main purpose of this paper is the quantitative de-
scription of disorder and peculiarities of temperature de-
pendence of the resistance R(T ) in 2D DMS structures.
In this part of the paper, we summarize and present ex-
perimental results needed for this quantitative explana-
tion. For that, we need first, to recall that the metal to
insulator transition occurs in dilute magnetic semicon-
ductors with increase of Mn content, to present the data
confirming that it indeed takes place in 2D heterostruc-
tures, such as our samples, and to provide arguments for
its percolative nature; second, to illustrate the 2D char-
acter of the electron energy spectrum in our case; third,
to provide evidence for FM correlations; and fourth, to
present experimental data on peculiarities of R(T ) re-
lated to FM ordering. Here we will present experimental
data in accordance with each of these items.
1. The temperature dependence of resistance R(T ) for

all samples listed in Table I is plotted in Fig. 3 (some of
these data were also presented in Ref. 11).
It is seen that the low-temperature resistance of these

samples ranges from 10 kOhm to 500 kOhm and the ra-
tio R(5K)/R(70K) also drastically changes for samples



4

0 20 40 60 80 100
10

100

10

12

14

16

18

20
4

R
xx

 (k
O

hm
)

T (K) 

5

2

1

3 R
xx

 (k
O

hm
)

Figure 3: (color online) Resistance data for the Mn δ-doped
heterostructures (1, 2, 3, and 4) for different carrier and dop-
ing densities (see Table I) and a carbon δ-doped heterostruc-
ture (5). Note the absence of any resistance anomaly in the
carbon δ-doped sample, while the Mn δ-doped samples ex-
hibit an anomaly (hump or shoulder), which is likely due to
the magnetic ordering.

with different Mn content (about 30 for Sample 1 and
1.1(5) for Sample 3). This suggests that we have a set
of samples ranging from very insulating to nearly metal-
lic. Note that strictly speaking even the most “metallic”
samples are not the classical metals since their resistance,
although rather low, increases with lowering temperature
in the range 40–100 K. Samples 2 and 3 also show a larger
mobility at 5 K compared to 77 K, which is indicative of
metallic behavior while Sample 1 has lower mobility at
5 K, as should be the case with an insulator. Note also
that the resistivity of our samples turns out to be of the
same order of magnitude as the value ρ ∼ 0.2h/e2, at
which the metal-insulator transition occurs in 2D DMS
structures34.

The existence of well pronounced Shubnikov–de Haas
(ShdH) oscillations in Samples 2 and 3 tells us that these
two samples are on the metallic side of the percolation
transition. In Fig. 4, we show the magnetic field depen-
dence of the resistance at two values of the temperature.
The inset shows ShdH oscillations previously discussed
in Ref. 11. In general, the magnetic field dependence of
the resistance is determined by both the proximity to the
ferromagnetic transition and quantum corrections. Our
low-temperature (T ≪ TC) negative magnetoresistance
occurs evidently not due to any spin phenomenon but is
related to the destructive effect of the magnetic field on
quantum corrections to the sample conductivity related
to interference of scattered carriers as was pointed out for
bulk DMS materials in Ref. 22. In fact, in the range 0.04–
0.3 T, the observed conductivity is proportional to log(B)
as it should be for weak localization corrections in 2D. In
contrast to the results of Ref. 31, where quantum correc-
tions to conductivity were studied in a similar structure
doped by C instead of Mn, we did not observe antilo-
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Figure 4: (color online) Magnetic field dependence of the resis-
tance of Sample 3 at different temperatures. The inset shows
Shubnikov–de Haas (ShdH) oscillations indicating metallicity.
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Figure 5: (color online) Plot of logR(T ) vs T for Sample 1
demonstrating an Arrhenius behavior for temperatures higher
than about 30 K and a hopping behavior at low temperatures.

calization. In our case, the absence of antilocalization
is due to the hole spin splitting caused by ferromagnetic
ordering. The negative magnetoresistance presented in
Fig. 4 resulting from weak localization is a signature of
the important role of disorder in transport properties of
the studied samples.
In contrast to Samples 2 and 3, Sample 1 is quite insu-

lating, with R(5K)/R(70K) ≈ 30. The resistance R(T )
exhibits an Arrhenius behavior (activation energy ≈ 110
K for T & 30 K) with crossover to the hopping regime at
temperatures less than 30 K (see Fig. 5).
Sample 4 with a smaller carrier density compared to

Samples 2 and 3 is closer to the percolation transition
having high enough values of R(5K) = 19.7 kOhm and
R(5K)/R(70K) ≈ 1.5. We found that the temperature
dependence of the resistivity can be fitted to the Arrhe-
nius law (activation energy ≈ 20 K for T & 30 K).
Thus, we have a wide enough set of samples on both

sides of the metal-insulator transition. We believe that
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this transition is of the percolation type because, as
we find below, the parameter kF l near the percolation
threshold is greater than unity (l is the hole mean free
path or scattering length). For the above mentioned set
of samples, we will calculate in theoretical part param-
eters of fluctuation potential (or disorder) and the elec-
tronic structure in the quantum well, which consists of
metallic droplets separated by insulating barriers. The
insulating samples are most interesting as they can give
us valuable insights into the mechanism of ferromag-
netism in these DMS heterostructures and we will con-
centrate on these samples. We believe all the studied
samples are close to the percolation transition since all
of them demonstrate some features of both metallic and
insulating behavior.
2. For comparison with the theoretical calculations,

we need to prove that the hole gas in our samples has a
2D energy spectrum.
The 2D character of Samples 2 and 3 is proved by ShdH

oscillations, which are observed only when the magnetic
field is perpendicular to the sample plane as seen in the
inset of Fig. 4. Manifestations of the quantum Hall effect
(QHE) were observed even in the most insulating Sample
1 (see Ref. 11), which establishes its 2D nature. The ex-
istence of the QHE on the insulating side of the percola-
tion transition can be explained following the arguments
presented in Refs. 35. Near the percolation transition,
a sample consists of “metallic” droplets and insulating
regions, and in 2D, the Hall constant R(xm) is related to
the conductivity σ(xm)11,36 as

R(xm) ≈ Rm

[

1− σ2
d

σ2(xm)

]

, (1)

where xm is the fraction of the metallic phase, and the
subscripts d and m refer to the insulating and metallic
regions. Under conditions of finite tunneling between
metallic droplets, the Hall constant is approximately
equal to Rm in some region near the percolation tran-
sition even when the sample is in the insulating phase11.
Experimental observation of QHE in disordered insula-
tors has also been reported elsewhere37,38.
3. The evidence for ferromagnetic (FM) correlations

comes from the observation of a hump or shoulder in
the temperature dependence of resistivity as presented
in Fig. 3. The fact that this feature is observed for all
samples doped by Mn but is absent for Sample 5 doped
by C instead of Mn shows that it has a magnetic origin.
The direct evidence of FM ordering for Samples 1 and 4
was through the observation of a hysteresis loop in the
magnetization curve12,39,40. The observation of anoma-
lous Hall effect (AHE) in all mentioned samples 11,12,29

is yet another evidence.
4. The temperature dependence of resistivity R(T ) is

presented in Fig. 3. It is commonly accepted that the
“anomalous” hump or shoulder of this temperature de-
pendent resistance could be used as a measure of the
Curie temperature4,20,23. There are differing opinions
on whether the anomaly in R(T ) or dR/dT should be

accepted as TC
41. While it is justified for the case of

bulk metals to associate the temperature, at which the
anomaly occurs, with TC , we will show below that in the
2D case, the situation is quite different. A comparison of
our experimental results and theoretical calculations of
R(T ) for Samples 1 and 4 is presented below in Fig. 12.
Thus, now we have a good basis to formulate a theo-

retical model for the charge distribution in 2D δ-doped
DMS heterostructures, which can be used further on for
calculations of the temperature dependence of resistivity.

IV. MODEL OF NANOSCALE

INHOMOGENEITIES

For the purpose of analysis, we can consider the fol-
lowing system, which captures the main physics. The
two-dimensional hole gas (2DHG) is formed within the
InGaAs quantum well. The holes in the 2DHG are pro-
vided by Mn acceptors distributed in a δ-layer with den-
sity na, which is spatially separated from the quantum
well by a GaAs spacer with thickness λ. We thus have
two interacting subsystems - the δ-layer, where the Mn
atoms are a source of holes as well as of magnetism owing
to their spins, and the quantum well, where the behav-
ior of the holes is affected by the charge and spin of Mn
atoms. In addition, the holes in the 2DHG are known
to affect the distribution of magnetization in the δ-layer.
This will be particularly true for the more metallic sam-
ples18.
The parameters characterizing the samples under

study are listed in Table I. The table shows the total
Mn content in the δ-layer, the quantum well depth V0
in the absence of fluctuations, the hole densities p, and
mobilities µp in the 2DHG layer at two different temper-
atures on either side of the ferromagnetic transition.
At low carrier density, it has been shown42–46 that

the interplay of disorder (due to random potentials of
the charged Mn atoms) and nonlinear screening by the
holes can lead to inhomogeneities in the carrier density.
The physical picture of droplet formation and metal-
insulator transition is as follows. Charge fluctuations
of the ionized Mn acceptors create a fluctuating poten-
tial for the hole gas in the quantum well. The holes
begin filling the deepest energy levels in the potential
relief. Introduction of holes also affects the size of the
potential fluctuation because of screening. We assume a
Gaussian white noise distribution for the charge density
ρ(r, z) = en(r)δ(z + λ) of the Mn atoms in the δ-layer
(z axis is directed perpendicular to the δ-layer, z = 0
corresponds to the GaAs/InGaAs interface). For points
r, r′ lying in the δ-layer we have,

〈n(r)n(r′)〉 − 〈n2〉 = n′
aδ(r− r

′), (2)

where n′
a is the total density of negative ionized accep-

tors and positively charged compensating donors in the
Mn δ-layer: n′

a = n−
a + n+

d . In actual heterostructures,
the ionization is usually partial due to several causes: (a)
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Mn atoms could substitute Ga being acceptors or enter
interstitial positions acting as donors, thus leading to a
compensation. Comparing Mn content in the Mn doped
layer, which is in fact Ga1−yMnyAs, with results for bulk
material it is natural to suggest that percentage of Mn in
interstitial position is about 10%, such results are sum-
marized in review articles Refs. 4,6; (b) Mn atoms could
form compounds with Ga and As; (c) there also exists
the density correlation of the dopants related to their
frozen nonequilibrium distribution46. According to the
latter effect, for example, for Sample 4, we have esti-
mated n′

a ∼ 0.06na, mimicking an ionization degree of
0.06. In the further calculations, for simplicity and con-
sistency, we take a typical value of n′

a and hence assume
that n′

a = 0.1na, which is in agreement with the effective
ionization of about 0.1 observed in Ga1−yMnyAs sam-
ples4,6 although the actual degree of ionization degree
can be even smaller.
From Eq. (2), it is easy to see that the variance of

the fluctuation charge density in a circular region of size
R is 〈δn2(R)〉 = n′

a/(πR
2). The random distribution of

charges creates a fluctuating potential φ at the interface.
In the presence of holes in the 2DHG, the potential fluc-
tuations are screened beyond a length scale Rc where the
fluctuation charge density

√

〈δn2(Rc)〉 =
√

n′
a/π/Rc be-

comes less than the hole density p. The variance of the
potential fluctuations at the interface is45

〈δφ2〉 = n′
ae

2

8πκ2ǫ20

{

ln

[

4d2

λ(2d− λ)

]

−2 ln

[

(

λ2 +R2
c

(2d− λ)2 +R2
c

)
1

4

+

(

(2d− λ)2 +R2
c

λ2 +R2
c

)
1

4

]}

.

(3)

Here, κ = 12.9 is the permittivity of GaAs and Rc =

n′
a
1/2
/πp is the characteristic screening length described

above. Parameter d is a length scale, beyond which the
potential fluctuations get screened even in the absence of
holes in the quantum well. Often there is a metallic gate
on the sample, in which case d is equal to the distance
from the quantum well to the gate.
In cases where the inequality 2d ≫ Rc, λ is met, the

potential fluctuations can be expressed in a much simpler
form,

〈δφ2〉 ≈ n′
ae

2

16πκ2ǫ20
ln

[

1 +

(

Rc

λ

)2
]

. (4)

The holes in the quantum well are centered at a dis-
tance z0 (measured from the interface closest to the Mn
layer) in the direction perpendicular to the interface. To
obtain z0, we solve the Schrödinger equation in the quan-
tum well in the quantum well taking into account the
(z-dependent)fluctuating potential,

[

− ~
2

2m∗
d2

dz2
+ V (z)

]

ψn = Enψn. (5)

Here V (z) is the quantum well potential together with
the fluctuations (see Fig. 6). n = 1, 2, 3 . . . refers to the
subband index¿ For holes, we use the approximation of
the parabolic dispersion with the effective mass m∗ =
0.14me as measured from cyclotron resonance for these
structures. We approximate V (z) as follows. For z < 0,
V (z) = α(|z + λ| − λ), α = ep/κǫ0. For z > W, we have
V (z) = 0, where W is the quantum well thickness. For

0 < z < W, we have V (z) = VQW (z) − e
√

〈δφ2(Rc, z)〉,
where VQW (z) = −V0 + αz. For the present devices, we
have taken W = 10 nm, λ = 3 nm and the values of
V0 are as shown in Table I. We also assume that the
spatially varying fluctuation potential does not affect the
valence band position away from the quantum well. The
condition for existence of a subband is En < 0. Table I
shows the overlap probability

∫

δz
dz|ψ1(z)|2, where δz is

a 1 nm thick region centered at the δ-layer.
We also find the hole wavefunction in the GaAs region

decreases away from the quantum well with a localiza-
tion length ξz having a value ranging from 1 nm to 2 nm.
This is comparable to the localization length estimated
in Ref. 18. We will henceforth use λ+ z0 as the distance
of the hole gas from the δ-layer for the purpose of calcu-
lating the potential fluctuations. For a given subband n,
we determine z0,n as z0,n =

∫

dz z|ψn(z)|2. Tables II and
III represent the values of En and z0,n for the first two
subbands. For simplicity, we will from now on denote
e
√

〈δφ2(d+ z0,n, λ+ z0,n, R)〉 by Vfluc(z0,n, R). The val-
ues of the fluctuation potential are also shown in Table I.

Now, we describe how at low enough density, the holes
in the 2DHG can get organized into charge droplets.
Let Rp,n be the size of a droplet. The potential fluc-
tuations associated with this length scale are given
byVfluc(z0,n, Rp,n). Suppose that the holes fill this po-
tential well up to a wavevector kmax. From the virial the-
orem,

~
2k2max,n

2m∗ =
1

2
Vfluc(z0,n, Rp,n), (6)

where the factor of 1/2 is for a linear-in-Rp,n confining
potential, which is approximately the case here. The
number of occupied states in the droplet is approximately
(kmaxRp)

2/2, which can be equated with the fluctuation

charge Nh = πR2
p ×

√

n′
a/π/Rp =

√

πn′
aRp, if only the

lowest subband is occupied. We will discuss below the
case, where more than one subband is occupied. If only
the lowest subband is occupied and 2d≫ Rc, λ , Eq. (6)
yields a very simple solution for the droplet size

Rp,1 ≈
√

2aB(λ+ z0,1). (7)

Eq. (7) is valid when λ+z0 is much greater than aB. The
Bohr radius corresponding to these parameters is aB ≈
5.3 nm. In our case λ+ z0 ≈ aB, and this approximation
does not give the correct values. Therefore we solve for
Rp numerically using Eqs. (6) and (8). The droplet size
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Figure 6: (color online) Schematic of the quantum well po-
tential (shown inverted). Dashed (blue) line represents the
quantum well potential in the absence of fluctuations and the
solid (red) line shows the potential well with an attractive fluc-
tuation potential. The dotted line indicates the Mn dopants
at a distance λ from the left face of the quantum well. The
quantum well of thickness W is defined in the InGaAs layer
sandwiched between GaAs regions.

Rp and the number of holes per droplet are only weakly
dependent on p.
Now, let us discuss the case where two subbands are

occupied. The energy of the highest occupied state mea-
sured from the bottom of the lowest subbands (n = 1) is
of the order of (we will obtain a better estimate below)

Emax,1 =
~
2kmax,1

2m∗ =
~
2
√

πn′
a

m∗Rp,1
. (8)

From this estimate of Emax,1 and the energies E1 and
E2, we can see that the second subband is also partially
occupied for Sample 1. It may seem natural to esti-
mate the droplet sizes Rp,n of the two subbands inde-
pendently, in which case we would get the droplet sizes
Rp,n ≈

√

2aB(λ+ z0,n). However, the filling of the two
subbands is not independent and the following two con-
ditions need to be satisfied in addition to the relations
in Eq. (6). First, the chemical potential of the droplets
corresponding to the two subbands should be the same
(see Fig. 7)

Emax,1 − Emax,2 =
~
2

2m∗ (k
2
max,1 − k2max,2) = E2 − E1.

(9)

Second, the total number of bound holes is now dis-
tributed over the two bands. This effectively results in
the transfer of some of the higher energy holes in the
lower subband to lower energy empty states in the upper

Figure 7: A schematic picture of the dispersion curves E(k)
(at small k) corresponding to the two lowest subbands n = 1
and n = 2. E1 and E2 are the fluctuation potentials cor-
responding to z0,1 and z0,2 respectively, and R = Rc. The
shaded region represents filled states. The two subbands have
a common chemical potential.

subband. This would lead to a decrease of the droplet size
corresponding to the lower subband, and a finite droplet
size in the upper subband. The transfer of charge from
the lower subband to the upper subband naturally makes
higher the concentration of charge in the droplet since the
charge carriers can occupy two bands in the same region.
We must now satisfy the following relationship

√

πn′
aRp,1 =

(kmax,1Rp,1)
2

2
+

(kmax,2Rp,2)
2

2
. (10)

Eqs. (9), (10), and (6) form a system of coupled nonlin-
ear equations that may be solved for Emax,n and Rp,n.
Tables II and III show the calculated values of Emax,1,
Rp,1, and Rp,2.
Now we analyze the conditions for a metal-insulator

crossover. The localization length, which characterizes
the spread of the hole wavefunction outside the droplets
is

ξ =
~

√

2m∗(|E1| − |VQW (z0)| − |Emax,1|)
. (11)

A percolation transition to a more conducting regime
is expected when the droplets begin to overlap. The
droplets are said to “overlap” once the interdroplet tun-
neling becomes significant; in other words, the localiza-
tion length ξ of holes in the droplets becomes comparable
to the separation D1 between the surfaces of neighbor-
ing droplets (D1/ξ ∼ 1). To obtain the separation of
the droplets, we note that the total number of holes in a
droplet with both bands considered is Nh =

√

πn′
aRp,1.

These holes are “drained” from an area of size R such
that Nh = πR2p. We thus get the size of the catch-
ment area of a droplet, R =

√

Rp,1Rc. The distance
D1 between the surfaces of neighboring droplets is then
D1 = 2(

√

Rp,1Rc − Rp,1). Assuming that the potential
well corresponding to the second subband is also centered
at the well corresponding to the first subband, we find the
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distance between the droplets corresponding specifically
to holes in the second subband, D2 = 2(

√

Rp,1Rc−Rp,2).

From Tables II and III, it is clear that the droplet size
is fairly constant for different temperatures and hole den-
sities. Sample 1 is insulating at all temperatures. The
behavior of the remaining samples differs significantly for
T = 77 K and T = 5 K. For these samples at 77 K,
the interdroplet separation is comparable to the localiza-
tion length ξ which means that they are more “metallic”.
Note that the interdroplet distance is larger for Sample
4, which gives rise to an Arrhenius-type behavior in a
wide enough temperature range. At T = 5 K, the inter-
droplet separation far exceeds ξ so that all the samples
are in the insulating regime. That does not agree with
experimental results because Samples 2 and 3 exhibit a
quasimetallic behavior even at T = 5 K. This could re-
sult from the strong dependence of D1 on the sample
parameters (the carrier density, for example) at low tem-
peratures. Thus, the droplet picture following from our
calculations being quite reasonable at T = 77 K, may
give overestimated values of the interdroplet distances at
T = 5 K. Since D1 is very sensitive to the carrier density
p, and p changes rapidly with temperature, the insula-
tor to metal crossover will take place in Samples 2-4 as
the temperature is increased from 5 K. We also find that
in contrast to the usual situation encountered in GaAs
heterostructures, where the contribution of all but the
lowest subbands can be neglected, in Sample 1, the sec-
ond subband is also occupied.

The energy level spacing, ∆, of a droplet can be found
by noting that addition of a hole to a droplet increases
Rp,1 by an amount 1/

√

πn′
a. The difference of the values

of Emax,1 of the droplets of size Rp,1+1/
√

πn′
a and Rp,1

respectively gives us the level spacing at the chemical po-
tential. The level spacing is of the order of 30 K, which
falls within the range of the measured activation energies
for resistivity. As one approaches the metal-insulator
crossover, the potential barrier separating neighboring
droplets (see Eq. (11)) decreases. Holes near the Fermi
level in the potential wells can be thermally excited above
the potential barrier to energies above the percolation
threshold; this is an alternate mechanism for transport
as against the usual interdroplet tunneling followed by
Coulomb blockade. Fig. 8 shows the dependence of the
interdroplet potential barrier on the dimensionless pa-
rameter Rc/Rp. The dependence is approximately linear
in Rc, similar to the findings in Ref. 47.

We end this Section with a few more words on the
effect of partial ionization of the dopants. Using the re-
duced dopant density n′

a does not affect the droplet sizes

significantly but it does reduce Rc by a factor
√

n′
a/na,

thus bringing the system closer to the metallic percola-
tion transition. Therefore, even small variations of n′

a

can strongly affect the potential barrier separating the
droplets. In Fig. 9, we show the interdroplet separation
(in units of the localization length) as a function of the
degree of ionization for Sample 3 at 77 K. The metal-

Figure 8: Plot of the potential barrier (for Sample 3) Vbarrier

for holes at the Fermi levels in the droplets as a function of
the parameter Rc/Rp.
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Figure 9: Plot of the calculated value of log(D1/ξ) against the
degree of ionization for Sample 3 at 77 K. The metal-insulator
transition corresponds to log(D1/ξ) = 0.

insulator transition occurs when the effective degree of
ionization is in the range from 0.05 to 0.1.
Since we are looking at the charge distribution at the

moment, we have ignored magnetism. Magnetism, and
its effect on transport will be considered in the next sec-
tion.

V. RESISTIVITY

The droplet picture developed in the previous section
can be used to understand the experimentally observed
temperature dependence of the resistivity of the insulat-
ing samples. We will specifically study the resistivity of
Samples 1 and 4 where the holes are well-localized in a
droplet phase. In addition to localization effects, we will
also need to take into account the effect of ferromagnetic
correlations.
To our understanding, temperature dependent trans-

port in insulating 2D DMS heterostructures has not yet
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Sample Rc (nm) z0,1(nm) E1(meV) z0,2(nm) E2(meV) Rp,1(nm) Rp,2(nm) Emax,1(meV) D1(nm) D2(nm) ξ(nm)

1 24.28 1.79 -203 3.62 -80 8.96 0 83 11.58 – 1.82
2 15.45 1.57 -142 0.78 -33 8.79 0 60 5.72 – 3.50
3 15.67 1.71 -147 2.30 -40 8.90 0 54 5.82 – 3.70
4 18.02 1.71 -106 1.34 -17 8.90 0 48 7.53 – 3.46

Table II: Calculated values at a temperature of 77 K for the screening length Rc, droplet sizes Rp,n, droplet separations Dn

corresponding to Rp,n, penetration depths z0,n, energy levels En, the maximum energy, Emax,1, of occupied states measured
from the bottom of the potential well for the lowest subbands (n = 1) and the localization length ξ. The calculations are for
an effective n′

a = 0.1na . Note that in the last three samples, the separation of the droplets is comparable with the localization
length, implying proximity to the “metallic” phase.

Sample Rc (nm) z0,1(nm) E1(meV) z0,2(nm) E2(meV) Rp,1(nm) Rp,2(nm) Emax,1(meV) D1(nm) D2(nm) ξ(nm)

1 145.7 2.99 -275 5.37 -204 9.8 0.6 76 55.59 73.59 1.45
2 43.52 2.64 -206 5.16 -128 9.57 0 55 21.68 – 1.93
3 35.71 2.58 -198 5.10 -119 9.51 0 51 17.83 – 2.13
4 54.85 2.93 -155 5.36 -91 9.77 0 41 26.75 – 2.11

Table III: Calculated values at a temperature of 5 K for the same quantities as described in Table II for an effective n′

a = 0.1na.
Note that all the samples are found to be well-insulating at this temperature. The interdroplet distance D1 is very sensitive to
the hole density p, and since p increases rapidly with temperature, the ratio D1/ξ can become comparable to unity at relatively
low temperatures enabling a transition to the “metallic” phase.

been theoretically studied although numerous studies of
corresponding nonmagnetic heterostructures exist in the
literature. In the absence of magnetism, as in many dis-
ordered insulators, the temperature dependence of resis-
tivity is expected to be of variable-range hopping type at
very low temperatures and of Arrhenius type at higher
temperatures. In the Arrhenius regime, one could either
have nearest-neighbor tunneling together with an activa-
tion energy of the order of the mean droplet level spacing,
∆, or the classical thermal excitation over the barrier (see
Fig. 8) separating neighboring droplets. Our resistivity
measurements will not distinguish the two mechanisms
and we will henceforth denote the Arrhenius energy fit-
ting the data by EA; and EA = ∆ for the tunneling
mechanism, which was estimated in the previous sec-
tion. Next, we analyze the behavior of resistivity across
the Curie temperature TC , below which the ferromag-
netic correlations increase rapidly. There is no continu-
ous transition to a ferromagnetic state in two dimensions
at a finite temperature and TC is a characteristic energy
scale of the order of the exchange interaction associated
with the ferromagnetism. Since TC is in the vicinity of
30 K, we are in the Arrhenius regime. This was experi-
mentally observed for Samples 1 and 4.

In the absence of magnetism, the resistivity would be-
have as ρ(T ) ∼ eEA/T . When the droplets are magnet-
ically polarized, there is an additional energy cost as-
sociated with introducing an extra charge into a given
droplet if the spin orientation of the electrons in the
droplet differs from that of the extra charge. Suppose the
droplets are individually polarized (with different orien-
tations) and let θij be the angle between the magnetiza-
tions in the droplets at sites i and j.When a hole tunnels
between these two droplets, the extra energy cost ∆mag

ij
at the destination droplet depends on the relative orien-

tations of the magnetizations

∆mag
ij = J(1− cos θij). (12)

If the magnetic order in the droplet is induced by the
Mn layer, then J is related to local magnetization in the
Mn layer. If the magnetic order is mainly determined by
interaction of holes in the quantum well, then J is related
to the exchange interaction in the droplets. Our analysis
is not dependent on the mechanism of ferromagnetism
since J and TC are phenomenological parameters. The
temperature dependence of resistivity is governed by the
total energy EA + ∆mag

ij associated with introducing an
extra charge carrier into the droplet j from a neighboring
droplet i

ρ(T ) ≈ AeEA/T+J(1−〈cos θij〉)/T , (13)

where we have approximated 〈e− cos θij/T 〉 ≈ e−〈cos θij〉/T .
For a two-dimensional ferromagnet, 〈cos θij〉 =

e−D1/ξM (T ), where48–50

ξM (T ) =

{

a/
√

1− TC/T , T ≫ TC
a exp[πTC/2T ], T ≪ TC

. (14)

Here a ∼ 1/
√
nd is a length scale of the order of inter-

atomic separation of the Mn dopants for the first fer-
romagnetic mechanism and interdroplet distance for the
second mechanism and TC is the Curie temperature, be-
low which the ferromagnetic correlations increase rapidly.
If ferromagnetism is intrinsic to the Mn layer, then be-
cause of disorder we expect the local ferromagnetic inter-
action J to be larger than the global transition temper-
ature TC . For a homogeneous distribution of Mn atoms,
J ∼ TC for the same mechanism of ferromagnetism. If
ferromagnetism is due to indirect exchange mediated by
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Figure 10: Calculated resistivity (in arbitrary units) as a func-
tion of temperature. Parameters from Sample 1 were used.
We assumed a degree of ionization of 0.1, ferromagnetic tran-
sition temperature TC = 30 K, exchange integral J = 70K.
The peak in the resistivity occurs at a temperature lower than
TC .

the holes, then TC falls with interdroplet tunneling prob-
ability and is smaller than J in general.

Fig. 10 represents the calculated resistivity as a func-
tion of temperature. While we assumed a TC of 30 K,
the peak in the resistivity appears at a significantly lower
temperature. This is a characteristic feature of the 2D
DMS heterostructures in contrast with bulk DMS where
the peak appears near TC (and usually at temperatures
higher than TC). In the bulk case, while the peak does
not also coincide with TC , it is nevertheless possible to
obtain the TC based on resistivity measurements4. The
key physical difference is that the magnetic correlation
length for bulk DMS diverges upon approaching TC from
higher temperatures, whereas in 2D, the magnetic corre-
lation length remains finite except at T = 0 (see Eq. (14))
due to the absence of true long-range ferromagnetic or-
der at finite temperatures in 2D. The peak is related to
the temperature when the magnetic correlation length
becomes comparable to the interdroplet separation: the
temperature corresponding to this peak is determined by
the specific values of parameters of the sample and not
only by TC . In Fig. 12, we show the observed resistance
and a fit based on our model for Samples 1 and 4. Fig. 11
shows that the shoulder in the resistivity of Sample 1 oc-
curs near the temperature where ξM/D1 ∼ 1.

While making the fits, we made a number of observa-
tions. The position of the peak or shoulder is sensitive
to TC and D1, while J and EA determine the sharp-
ness of the resistance anomaly. If D1 is reduced, then
〈cos θij〉 = e−D1/ξM (T ) changes from 0 to 1 at a higher
temperature, which shifts the resistance anomaly to a
higher temperature. However, reducingD1 also decreases
the sharpness of the anomaly since then e−D1/ξM (T )

changes much more slowly with temperature. While this
can be addressed to some extent by increasing J, that in
turn corresponds to a much larger (Arrhenius) activation

Figure 11: Plot of log(ξM/D1) showing the variation of mag-
netic correlation length ξM for Sample 1 as a function of tem-
perature (solid line). The dots show log[ρ(T )/ρ(77K)] for the
same sample. The anomaly in the resistivity ρ(T ) occurs in
the vicinity of the temperature where ξM/D1 ∼ 1.

energy at higher temperatures. Increasing TC also shifts
the anomaly to a higher temperature but this happens
without making the anomaly less sharp or increasing the
Arrhenius energy. We found that values of D1 and EA

chosen near the calculated values generally gave good fits.

We conclude this Section with some observations about
the metallic Samples 2 and 3 in the context of exist-
ing work on bulk metallic DMS systems. Temperature-
dependent resistivity of bulk, metallic DMS samples in
the vicinity of the Anderson transition has been analyzed
in Ref. 21. Such an approach may be generalized to our
two-dimensional heterostructures. While in 2D we do not
have an Anderson transition, scaling theory for 2D may
be used instead, and ferromagnetism effects can be in-
corporated as in the 3D calculation. In essence, we make
use of the 2D scaling equation for the conductance,

g(ξ) = g(ξ0)−
e2

π2~
ln(ξ/ξ0), (15)

where ξ is the localization length and ξ0 is a short length
scale corresponding to g(ξ0), together with the relation-
ship

g(ξ) = e2ν(ǫF )D ≈ e2ν(ǫF )(kBT )ξ
2, (16)

which describes inelastic hopping transport in a regime
where the Thouless energy D/ξ2 ∼ kBT. The depen-
dence on magnetism is through g(ξ0, T,H) ≈ g0(1 +
qM2(T/TC , H)) as in Ref. 21, where M is the magne-
tization.

VI. DISCUSSION AND CONCLUSIONS

We studied the effect of disorder, Coulomb interaction
and ferromagnetism on the transport properties of 2D
heterostructures δ-doped by Mn.
The observation of Shubnikov–de Haas oscillations for

fields perpendicular to the 2D direction of the quantum
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Figure 12: Observed temperature dependence of resistance
for (a) Sample 4, in units of the resistance at 70 K, and (b)
Sample 1, in units of the resistance at 90 K (points), and
theoretical fits (solid lines). Sample 4 is near the percolation
threshold and Sample 1 is well-insulating. The fits were made
using Eq. (13). Parameters such as the activation energy EA

and the droplet separation D1 were chosen close to the values
obtained from the droplet model. The magnetic parameters
J and TC were then varied to obtain the above fits. In both
cases, the best fit value of TC was significantly larger than
the temperature, at which the resistance anomaly (hump or
shoulder) was observed. At lower temperatures, the resistivity
becomes variable-range hopping type (not taken into account
in our model). For Sample 4 in panel (a), the values used for
the fit are D1 = 2 nm, EA = 9 K, J = 39 K, and TC = 30 K;
for Sample 1 in panel (b), the parameters are D1 = 9.4 nm,
EA = 51 K, J = 56 K, and TC = 49 K.

well confirmed the two-dimensionality of our samples.
Resistivity measurements as well as previously measured
magnetic hysteresis12,39,40 and anomalous Hall effect11,29

established magnetic ordering at low temperatures. Our
samples spanned the percolative metal-insulator transi-
tion region ranging from the very insulating to metallic
behavior. We put the main emphasis on the two most
insulating samples. The insulating samples are particu-
larly interesting to us for they provide valuable insights
into the mechanism of ferromagnetism in the DMS het-
erostructures.

We showed how at low carrier density the interplay of
disorder in the spatial distribution of the dopant atoms
and screening effects by the holes in the 2D quantum
well leads to electronic phase separation in the quantum
well. For this phase, we obtained the typical size of the
hole droplets, their mean separation, and their energy
levels. Unlike conventional nonmagnetic GaAs/AlGaAs
heterostructures, a two-subband model was used here as
the carrier density was much larger in these heterostruc-
tures. We introduced a simple nearest-neighbor hop-
ping model for the resistivity of this droplet phase taking
into account the discreteness of the energy levels in the
droplets and the effect of ferromagnetic correlations be-
tween spins on neighboring droplets. The values of the
parameters in the resistivity model were obtained from
droplet model where possible. The ferromagnetic param-
eters such as the Curie temperature were varied to fit the
observed data. A good agreement with the experiments
was obtained. To our understanding, ours is the first
theoretical study of the transport properties of 2D DMS
heterostructures.

An important understanding that emerged from our
study concerns the relation between the position of the
peak or shoulder in the resistivity data and the Curie
temperature. Unlike 3D DMS systems where such resis-
tance features are found in the vicinity of the Curie tem-
perature (and above it), we showed that in 2D DMS het-
erostructures, the peak or shoulder-like features are not
completely determined by the Curie temperature, and
furthermore, the Curie temperature is typically substan-
tially larger than the temperature at which such features
are observed. Physically, this is because the resistivity
changes once the magnetic correlation length becomes
comparable to the interdroplet separation. Clearly, the
divergence between the Curie temperature and the posi-
tion of the resistivity peak will be stronger for the more
insulating samples.

Our calculations of the resistivity are independent of
the microscopic mechanism of ferromagnetism since J
and TC are phenomenological parameters. Nevertheless
a study of the dependence of J and TC on sample pa-
rameters such as p, na, λ can give us crucial clues. Two
main possibilities are that (a) the ferromagnetic ordering
takes place in the Mn layer by some intrinsic mechanism
such as the Zener indirect exchange mediated by holes
in the δ-layer19, whereas the holes in the 2D transport
layer merely respond to the Mn spin polarization, and
(b) the ferromagnetic ordering of Mn atoms is mediated
significantly by the holes in the 2D transport layer18.
For mechanism (a), the transition temperature will be
insensitive to the spacer thickness λ as well as p. How-
ever, one must be very careful in obtaining the transition
temperature information from the resistance data. The
position of the anomaly in resistance, sensitive to both
D1, and TC , and D1 is affected by the spacer thickness
λ. Thus, even if TC is independent of λ, the position of
the anomaly in the resistance data does depend on λ. A
better test of mechanisms (a) and (b) is possible with
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the insulating samples. Note that as the sample becomes
more insulating, the separation D1 of the droplets will
increase and the interdroplet tunneling will decrease ex-
ponentially with D1. If the magnetism is mediated by the
holes in the 2D layer, then TC , which is of the order of the
strength of the magnetic interaction will be proportional
to the interdroplet tunneling probability, which depends
on the carrier density as e−C/

√
p sinceD1+2Rp1 ∝ 1/

√
p.

Another clue is provided by the values of TC , which we
extracted from the fits of the resistance data for Samples
1 and 4 with our model. We found that TC for the more
insulating Sample 1 was significantly larger than that of
Sample 4. One way to understand this result is by ob-
serving that the Mn doping density na is larger in Sample
1, which implies stronger magnetic interaction of the Mn
atoms. This seems to support the possibility (a) of an
intrinsic mechanism. “Metallic” samples discussed here
are more likely to have both mechanisms contributing
to ferromagnetism. We have seen that the localization
length ξz for the hole wavefunction in the GaAs region is
of the order of 1 nm in all our samples. This compares
well with the estimated localization length in Ref. 18.
An RKKY mechanism of ferromagnetism in a metallic
sample leads to a TC for Mn atoms in the δ-layer that
decreases exponentially with the distance to the spacer
layer as TC(λ) ≈ TC(0)e

−4λ/ξz . Mn atoms lying closer

to the quantum well can however give larger Curie tem-
peratures.

We thus believe that the insulating samples are ideally
suited for resolving the question of mechanism of fer-
romagnetism. In addition to resistivity measurements,
temperature dependent anomalous Hall effect measure-
ments can give us valuable clues to the mechanism of
ferromagnetism. It would be very interesting to compare
the values of the Curie temperature extracted from our
resistivity fits and from the temperature dependence of
the anomalous Hall effect.
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34 J. Jaroszyński, T. Andrearczyk, G. Karczewski, J. Wróbel,
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