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We have designed 3D numerical simulations of a soft spheres model, with size polidispersity and
in athermal conditions, to study the transient shear banding that occurs during yielding of jammed
soft solids. We analyze the effects of different types of drag coefficients used in the simulations and
compare the results obtained using Lees-Edwards periodic boundary conditions with the case in
which the same model solid is confined between two walls. The specific damping mechanism and the
different boundary conditions indeed modify the load curves and the velocity profiles in the transient
regime. Nevertheless, we find that the presence of a stress-overshoot and of a related transient
banding phenomenon for large enough samples are a robust feature for overdamped systems, where
their presence do not depend on the specific drag used and on the different boundary conditions.

I. INTRODUCTION

Solids whose microscopic constituents are densely
packed into an amorphous assembly and basically insen-
sitive to thermal fluctuations form an integral part of our
everyday life, with examples ranging from pharmaceuti-
cal, cosmetic and food products to wet cement. Hence
understanding the flow properties of such materials is of
technological importance [1–3]. Under shear deforma-
tions, these materials flow only when the applied shear
stress is above a threshold value, the yield stress. As the
imposed strain increases at a fixed shear rates, they show
an initial linear increase in the stress, often followed by
a stress overshoot, beyond which the system yields be-
fore reaching a steady flow state [4–7]. The steady state
shear stress (σ) as a function of the applied shear rate
(γ̇) provides a constitutive behavior (flow curve) that in
most cases is well described by the Herschel-Bulkley (HB)
curve σ = σY + κγ̇n, where the yield stress σY , the ef-
fective viscosity κ and the exponent n are in principle
material specific [8, 9]. While the constitutive behavior
under flow is interesting in itself and is the subject of
many investigations [10–16], here we are interested in-
stead in the transient behavior of the material before
it reaches the steady-state flow, where it maintains fea-
tures of both its solid and fluid response. Before reaching
the steady flowing state, jammed soft solids often display
flow instabilities which manifest in terms of strong spa-
tial inhomogeneities in the flow profile, often called shear
localization or shear banding, even when the material is
homogeneously driven.

Shear banding in complex fluids like polymer solu-
tions and wormlike micelles has been extensively stud-
ied and, in many cases, its origin is understood in terms
of flow alignment of the microstructure or flow induced
crystallization, through theoretical approaches that cou-
ple the flow fields with the microstructure [3, 17–20].
In jammed and soft glassy materials, these phenomena
are the subject of intense investigations [3, 5, 6, 13, 21–
27] and their possible association to an underlying non-
equilibrium phase transition is increasingly debated [28–

33]. However a good understanding of their microscopic
origin is fundamentally lacking and particularly elusive
when the shear banding is observed as a transient fea-
ture that does not persist in steady-state [5–7, 23].
Microscopic computer simulations can be effective in

bringing new insight, but most of the existing studies
have been performed in 2D and in the quasi-static limit
(i.e. zero shear rate) while experiments are always per-
formed at finite shear rates and nearly always in 3D.
Together with meso-scale simulations based on elasto-
plastic models [13, 16], most of existing microscopic sim-
ulation studies have focused on the part of the phe-
nomenon that can be rationalized in terms of the emer-
gence of local plastic rearrangements in an elastic back-
ground [11]. That is, they do not capture the coupling
of the microscopic dynamics to the imposed deformation
rate. Recent works, instead, have pointed precisely to
the crucial role of the rate dependent dynamics, calling
for dedicated numerical investigations [5, 23, 34].
To be able to address such questions, we have devised

a numerical study using 3D microscopic simulations and
finite deformation rates. In this paper we analyze the
outcomes for the shear start-up response under varying
shearing protocols and boundary conditions, with the
goal to extract the robust features that do not depend
on the specifics of the numerical simulations. We study
a jammed suspension (at volume fraction φ ≃ 0.7) of
polydisperse spheres with soft repulsive interactions, i.e.,
a deeply jammed soft amorphous solid. We find that
the shear start-up is characterized by a stress-overshoot
and formation of a transient band, which eventually dis-
appears upon reaching the steady state. We extensively
test whether such findings depend on different implemen-
tations of the viscous drag due to the background solvent
or on different types of boundary conditions. Our study
indicates that the stress-overshoot and the shear band-
ing during the shear start-up are robust features emerg-
ing from the microscopic physics of our model material,
they do not qualitatively change with the different shear-
ing protocols used here and are mainly controlled by the
sample age that we can change through the preparation
protocol.
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The paper is organized as follows. In section II we dis-
cuss the model system and the sample preparation pro-
tocol as well as the rheological and structural characteri-
zation of the initial sample configurations. In section III
we discuss the shearing protocols followed in our work for
performing finite shear rate simulations. Sections IV and
V contain the results comparing the transient rheological
properties obtained from different protocols. At the end,
in section VI we present conclusions and discussion.

II. MODEL AND SAMPLE PREPARATION

The 3D model for soft amorphous material we in-
vestigate is composed of a non-Brownian suspension of
soft repulsive particles interacting via a truncated and
shifted Lennard-Jones potential [35], given by U(r) =
4ǫ

[

(aij/rij)
12 − (aij/rij)

6
]

+ ǫ, for rij ≤ 21/6aij , else
U(rij) = 0. Here ǫ is the unit energy in the simulations,
rij being the center to center distance between the parti-
cle i and j and aij = 0.5(ai+aj), with ai and aj being the
diameter of particles i and j respectively. The diameters
of the particles are drawn from a Gaussian distribution
with variance of 10%, whose mean is used as unit length
a. All the simulations are performed at a volume frac-
tion φ ≈ 70%, consisting of 105 (97556) particles (unless
otherwise mentioned). Albeit simple, this type of model
has been successfully used for numerical simulations of
soft solids in various contexts, and proven to capture the
fundamental physics of their behavior under deformation
[7, 15, 26, 36].
We prepare the numerical samples to be sheared using

the following procedure. An initial FCC crystal at the
chosen volume fraction of 0.70 (with lx = ly = lz =
42.1798a) is melted at T = 5.0ǫ/kB and equilibrated
at the same temperature using NVT Molecular Dynam-
ics (MD) for ≃ 5 · 104 MD steps, with a MD timestep

of ∆t = 0.001τ0 (where τ0 =
√

ma2/ǫ is the unit of
time and m is the unit mass). After making sure that
there is no signature of crystallinity in the equilibrated
sample by measuring the bond orientational order pa-
rameter Q6 [37], the melt is subjected to a systematic
temperature quench. From the initial temperature of
T = 5.0ǫ/kB we decrease the system temperature by ∆T ,
after which we let the system relax at the temperature
T − ∆T for 104 MD steps. We repeat this procedure
several times, until T = 0.001ǫ/kB is reached. By chang-
ing the ∆T we control the cooling rate Γ. The samples
discussed here have been prepared for Γ corresponding
to 5 · 10−2, 5 · 10−3, 5 · 10−4ǫ/(kBτ0). After the system
reaches T = 0.001ǫ/kB, we perform an energy minimiza-
tion using the conjugate gradient (CG) method to take
the system to the zero temperature limit. For the fastest
quench rate case, we minimise the energy directly from
the equilibrium liquid state at T = 5.0ǫ/kB using CG.
Following the above described protocol we prepare five
independent samples at each cooling rate (except for the
lowest one, where we have three samples). The initial

configurations so obtained are subjected to shear defor-
mation at finite shear rate. Before studying the shear
start-up behaviour we carefully analyze various proper-
ties of the initial sample configurations.
In Fig. 1(a) we show the pressure measured as a func-

tion of the temperature as the sample is quenched at a
chosen cooling rate Γ. The pressure dependence on the
temperature does not change with Γ until T = 3.0ǫ/kB,
which in our model corresponds to the onset of slow
glassy dynamics. Below such onset temperature, the
pressure achieved through our cooling protocol decreases
with decreasing Γ. In Fig. 1(b), we plot the energy of the
closest local minimum accessible to the system, obtained
through CG, as a function of T . One can clearly see that,
upon decreasing Γ, we access deeper local minima (or in-
herent structures) of the total potential energy [38–41]
below the onset temperature. We next characterize the
mechanical and structural properties of these inherent
structure configurations obtained from difference Γ.
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FIG. 1. (a) Pressure computed as a function of applied tem-
perature for samples quenched at different cooling rates. The
inset shows the zoomed-in part near the final applied tem-
perature (T = 0.001ǫ/kB). (b) The inherent structure energy
or the energy associated with the nearest local minimum in
the potential energy landscape, as a function of temperature
for different cooling rates. With the decrease in the cooling
rate, one explores the deeper basins of the potential energy
landscape.

A. Linear viscoelastic response of the initial

configurations

In order to characterize the mechanical properties of
the initial configurations, we compute the complex mod-
ulus by performing small amplitude oscillatory shear. By
applying a shear strain γ(t) = γ0sin(ωt), for a strain am-
plitude of γ0 = 1%, we monitor the stress response for
varying frequencies ω [42]. We monitor the energy and
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FIG. 2. (main panel) The complex moduli (elastic - G’ and
plastic - G”) computed as a function of frequency for an intial
configuration prepared at a cooling rate Γ = 5 · 10−4. (inset)
The zero frequency storage modulus G’ as a function of cool-
ing rate Γ. The G’ increases with decreasing the cooling rate.
The arrow indicates the value computed for the infinitely fast
cooling rate, obtained from the CG minimization of a high T
configuration.

pressure evolution during the oscillatory shear cycles and
once the system reaches a saturation in these quantities
as a function of the number of cycles, we extract the lin-
ear visco-elastic moduli (respectively storage and loss)
using

G′(ω, γ0) =
ω

γ0π

∫ t0+2π/ω

t0

σxy(t)sin(ωt)dt, (1)

G′′(ω, γ0) =
ω

γ0π

∫ t0+2π/ω

t0

σxy(t)cos(ωt)dt (2)

In Fig. 2 we show the G′(ω, γ0 = 0.01) and G′′(ω, γ0 =
0.01) as a function of the applied frequency ω for the
initial configuration prepared at a cooling rate Γ = 5 ·

10−4ǫ/kBτ0. The data show that the sample is solid,
with G′ >> G” at low frequencies and the zero frequency
storage modulus can be extracted by extrapolating the
data to ω = 0. We compute the zero frequency storage
modulus for samples prepared with different Γ, as shown
in the inset of Fig. 2. The arrow in the inset of Fig.
2 corresponds to the fastest cooling rate, where a liquid
configuration is directly subjected to CG minimization.
With decreasing the cooling rate Γ, the configurations in
deeper local minima of the potential energy landscape,
as identified in Fig. 1 (b), clearly correspond to solids
with higher mechanical strength.

B. Structural analysis

In order to gain insight into the microscopic structural
underpinnings, we analyze the structure of the samples
by constructing a 3D radical Voronoi tesselation with the
Voro++ open source software library [43] and compute
the Voronoi polyhedra. This method is well suited for
our samples made of polydisperse spheres. For samples
prepared at different cooling rate Γ, we obtain the statis-
tics of various Voronoi polyhedra (defined by number of
faces, edges and vertices). In Fig. 3, we show the fraction
of different polyhedra (which constitute more than 5% of
each sample) as a function of the cooling rate. The data
show that the fraction of Voronoi dodecahedra is clearly
affected by the cooling rate Γ, whereas the contribution
of the other polyhedra does not change much. A Voronoi
dodecahedron corresponds to a local packing which is an
icosahedron, where neighbouring particles form an icosa-
hedron around a reference particle. Relatively higher per-
centages of local icosahedral packing are expected and
widely observed in slowly quenched supercooled liquids
[44], as well as in glasses, with similar spherically sym-
metric interactions [45–47].
Having characterized the rheological and structural

properties of the initial configurations prepared at the
various cooling rates, we now analyze the rheological re-
sponse of a sample obtained with the slowest cooling rate,
by subjecting it to a continuous shear deformation at a
finite rate.

III. SHEARING PROTOCOLS

The samples characterized as described above are sub-
jected to a shear deformation of strain amplitude γ(t)
with constant imposed rate γ̇, either using Lees-Edwards
boundary conditions (LEBC) or using a wall-based pro-
tocol (WB). Note that in all simulations discussed below
[x,y,z] refers respectively to flow, gradient and vorticity
directions. In the WB protocol, we confine the sample
in y direction by freezing two layers of particles at the
simulation box boundary. Ly is the width of the box in
the y direction for the confined samples. All shear rates
are measured in units of τ−1

0 .
For LEBC we solve the equations of motion in two

different ways. In the first way, which in the following
we call LEBC1, we use the following dissipative particles
dynamics (DPD) equations of motion [48]:

m
d2~ri
dt2

= −ζDPD

∑

j( 6=i)

ω(rij)(r̂ij · ~vij)r̂ij − ▽~riU (3)

where m is the mass of the particle and the first term
in the right hand side (RHS) is the damping force which
depends on the damping coefficient ζDPD. The relative
velocity ~vij = ~vj − ~vi is computed over a cut-off distance
rij ≤ 2.5aij, with the weight factor ω(rij) = 1. These
choices for the cut-off distance and the weight factor are
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FIG. 3. Fraction of different Voronoi polyhedra in a sam-
ple prepared using different cooling rates. In each initial
configuration, a Voronoi polyhedron is identified from the
number of faces, vertices and edges, using a Voronoi tesse-
lation analysis. Any polyhedron species that corresponds to
at least 5% of the total is considered. Open circles corre-
spond to Face(F)=12, Edges(E)=30 and Vertices(V)=20, a
Voronoi dodechedron or a particle with Icosahedron neigh-
bors. Likewise, squares (F=13;E=33;V=22), diamonds
(F=14;E=36;V=24), upside triangles (F=15;E=39;V=26),
left-side triangles (F=16;E=42;V=28) and down-side trian-
gles (F=17;E=;V=30). The star denotes the data for the
infinitely fast cooling rate, obtained from conjugate gradi-
ent minimization. Compared to other polyhedra, clearly the
icosahedra fraction increases with decreasing cooling rate.

consistent with other studies in the literature for sim-
ilar systems [48–51]. In the viscous damping we have
only considered the radial contribution of the relative ve-
locities, since the particles are point-like and the main
sources of change in the velocity are the inter-particle
forces which are purely radial [52]. Nevertheless, the
tangential contribution to the damping forces can also
be included as ((r̂ij ·~vij)r̂ij)+ (~vij − (r̂ij ·~vij)r̂ij) [53]. In
most of this work we have used the formulation with only
the radial contribution, but in one of the following sec-
tions we briefly discuss the effect of including the trans-
verse term, which has also been investigated recently in
[54]. The second term in the RHS is the force due to the
interactions between particles.
In the second way, which we indicate as LEBC2, we

solve equations of motion where the solvent drag is
Stokes-like and only depends on the absolute particle ve-
locity [55–58], as in a free draining approximation, given
by

m
d2~ri
dt2

= −ζSD

(

d~ri
dt

− γ̇yi~ex

)

− ▽~riU (4)

where again m is the particle mass and the first term
in the RHS is the damping force which depends on the

damping coefficient ζSD. Hence the drag force is pro-
portional to the difference between the particle’s velocity
d~ri/dt and an affine background velocity, dictated by im-
posed shear rate, given by γ̇yi~ex. The second term in
the RHS is the force due to the interactions between par-
ticles. While one concern with this second approach is
that it does not strictly conserve momentum (i.e., it is not
Galileian-invariant) [50, 59], its use can still be justified
in systems where most of the stress induced through the
imposed deformation is due to inter-particle interactions
and the contribution of the solvent is a minor correction,
since this type of drag term allows for simpler and faster
simulations, with no need to adjust additional parame-
ters such as the cut-off or the form of the weight factor in
the DPD one. We will show in the following that this free
draining approximation works well in the case of deeply
jammed systems as those of interest here.

For the wall based shear deformation tests, which we
call WB in the following, we follow the procedure of
Varnik and co-workers in [4]. Two walls confine the sam-
ples along the direction ŷ, at a relative distance Ly: one
wall moves at a velocity ~v = vwall

x x̂ = γ̇Lyx̂), while the
other is kept fixed. The particles that form the wall are
completely frozen during the evolution of the system, but
the interactions between the wall and the sample parti-
cles are the same as in the sample. For the WB shear
deformation we use only the DPD approach as in eqn.(3).
In fact, if the drag coefficient is directly proportional to
the particle velocity as in eqn.(4), in the WB simulations
the particles near the moving wall feel more drag than
the ones away from it. As a consequence, for large sam-
ples the time needed for particles near to the non-moving
wall to sense the deformation is quite a long (i.e., quite
larger than the sound speed in the system). This behav-
ior could be mistaken for a shear banding but it is only
a numerical artifact due to the use of eqn.(4) in this ge-
ometry and disappears using instead the DPD equation,
eqn.(3).

Finally, both eqs. 3 and 4 include the particle inertia
since this allows us to use the same efficient and precise
algorithms devised for MD [60]. Nevertheless we can ef-
fectively study the dynamics in the overdamping limit
regime by suitably adjusting the damping coefficients
ζSD and ζDPD. As a measure of the extent of damping,
we can define an inertial quality factor Q = τdamp/τvib,
that measures the ratio between the time scale over which
the inertial motion is damped τdamp = m/ζ, due to the

solvent drag, and the time scale τvib =
√

ma2/ǫ over
which a particle of mass m and diameter a is accelerated
by the force ǫ/a. For a fully over-damped system Q → 0.
It has been shown that for the athermal conditions con-
sidered here, and for similar type of interactions, Q ≈ 1
well approximates the overdamped regime [48, 61]. Hence
here we focus on Q ≈ 1 and show also that the results
we obtained do not vary significantly by decreasing Q or
varying it around 1. As stated above, the shear rates in
the following are always expressed in units τ−1

0 ≡ τ−1
vib .

All simulations have been performed using LAMMPS
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FIG. 4. Simulation rendering of samples prepared at Γ =
5 · 10−4ǫ/(kBτ0 and sheared at γ̇10−4τ−1

0
using LEBC (top)

and wall based (bottom) protocol. In both cases, we have
used the DPD based protocol with Q = 1. We use the hot
colour gradient scheme based on the velocities of the particles
which vary between 0 a/τ0 (white) and 0.005 a/τ0 (black).
In the wall based protocol the top wall (dark blue particles)
is moved at chosen velocity associted with the applied shear
rate, while the bottom wall (maroon particles) is kept fixed.

molecular dynamics package [62], with modifications to
the source code to incorporate continuous polydisperse
interactions, since we use a distribution of particle sizes
and the interaction shape depends on the particle di-
ameters. In the Fig. 4, we show a rendering of sam-
ples prepared at Γ = 5 · 10−4ǫ/(kBτ0) and sheared at
γ̇ = 10−4τ−1

0 (the snapshots are both taken at γ = 0.12,
during the stress decay) using LEBC and wall based pro-
tocols. We use the color scheme to show the velocities
of the particles which vary between 0 a/τ0 (white) and
0.005 a/τ0 (black).
In the following section we present a comparative study

of the rheological response starting from the load curves,
using the two different boundary conditions and the two

different equations of motion introduced above.

IV. LOAD CURVES AND FLOW PROFILES:

COMPARISON OF THE DIFFERENT

SHEARING PROTOCOLS.

We begin with the rheological data obtained for a sam-
ple prepared at cooling rate Γ = 5 · 10−4ǫ/(kBτ0), i.e.,
a well annealed sample, and for a sample obtained by
directly minimizing the energy of the high temperature
fluid with CG, i.e., a poorly annealed sample. Both sam-
ples are sheared at γ̇ = 10−4τ−1

0 and γ̇ = 10−2τ−1
0 ,

using the different protocols discussed above. All data
in this section corresponds to the overdamping limit,
with the inertial quality factor Q = 1. Since all the
simulations are performed in athermal conditions, the
shear stress is computed from the virial stress tensor

σαβ = 1
V

∑

i

∑

j>i r
α
ijf

β
ij , where V(= lx ∗ ly ∗ lz) is the

volume of the system, rij represents the distance between
particle i and j, fij is the force on the particle i due to
particle j and α, β ∈ X,Y, Z. We indicate the shear com-
ponent of the stress σXY with σ and the virial pressure
is obtained as P = 1

3 (σXX + σY Y + σZZ ). The first nor-
mal stress difference is computed as σ11 = σXX − σY Y .
In Fig. 5 we show load curves, i.e., the shear stress

σ vs. applied strain γ, for the three different protocols
(LEBC1, LEBC2 and WB) and for the two different sam-
ples (the well annealed one and the poorly annealed one
mentioned above), sheared at γ̇ = 10−4τ−1

0 , a relatively
low shear rate, and γ̇ = 10−2τ−1

0 , a higher shear rate. At
low shear rate, all the protocols show comparable load
curves. For the well annealed sample, independent of the
protocol used, we find that the initial linear regime is
followed by a stress overshoot before reaching a steady
state value (see Fig. 5 (a)). The poorly annealed sample
do not show any overshoot (see Fig. 5). At relatively
high shear rates (see Fig. 5 (b) and (d)), load curves
consistently show the dependence on preparation pro-
tocol w.r.t the stress overshoot, but we also note that
the dependence on shear protocol become more promi-
nent. We also note that, approaching the steady state,
the stress fluctuations are larger in the case of LEBC2
compared to LEBC1 and WB. When comparing LEBC1
and WB at high rate, we note that the difference in the
boundary conditions does not seem to affect the value of
the stress overshoot nor of the steady-state value, which
instead change with changing the damping mechanism
(LEBC1 vs LEBC2). Now we focus our discussion on
the low shear rate case (γ̇ = 10−4τ−1

0 ) and on the well
annealed samples, to analyze the corresponding velocity
profiles. Figs. 6, 7 and 8 show the velocity profiles re-
spectively obtained with the LEBC1, LEBC2 and WB
protocols from the same initial configurations. For dif-
ferent regimes in the load curves (Figs. 6 (a), 7(a) and
8(a)), we show the associated velocity profiles in Figs. 6,
7 and 8 (b) (i-ix). The velocity profiles are computed
over a strain window of ∆γ = 0.02. In spite of some
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FIG. 5. Load curves obtained from uniform shearing at shear rate γ̇ = 1E−04τ−1

0
(left panel - (a) and (c)) and at γ̇ = 1E−02τ−1

0

(right panel - (b) and (d)) for initial configurations prepared at slow cooling rate (top panel) and at inifintely fast cooling rate
(bottom panel). In each of the panel, the load curves are obtained from two different shear protocol, involving pair wise
dissipation of drag (DPD protocol) and particle wise dissipation of drag (LD protocol). At low shear rates, both protocols
show similar behaviour with the shear stress as a function of strain shows an initial elastic response, followed by an overshoot
in stress, which eventually decays to reach a steady state value. The effect of dissipation is quite evident at the higher shear
rate

.

differences in the details of the velocity profiles, we can
recognize the following features for all the shearing pro-
tocols considered. 1) In the linear response regime of the
load curve (i-ii), the velocity profile show a homogeneous
flow with local shear rates (obtained as the slope of the
velocity profile) similar to that of applied shear rate. 2)
In the vicinity of the stress overshoot (iii) a flow instabil-
ity develops, as indicated by the deviation from the linear
velocity profile. Following the stress overshoot, the stress
decays back, with dσ/dγ < 0 and in this region we find
a back-flow in the system as the velocity profile show a
negative slope [5, 63]. We note that the width of the
shear band seems to be set by the amount of back flow
in the system (iv). 3) Upon further shearing, the width
of the band grows and eventually the whole system flow
homogeneously. The shear component of the stress has
a much weaker (although non-negligible) dependence on
the strain and the pressure evolution with γ clearly shows
that saturation of the stress tensor only happens once the
profile returns to be homogeneous (Figs. 6, 7 and 8 (c))
[18, 23].

When analyzing the local packing through the Voronoi
tessellation, we find that the fraction of icosahedrally
packed particles has a similar trend. Fig. 6 (d) shows, for
the LEBC1 protocol, how the fraction of icosahedrally
packed particles evolves with the increasing strain and
the time required for it to saturate is consistent with the
vanishing of the transient shear banding. The connec-
tions between the evolution of the local packing and that
of the shear inhomogeneities, as well as their dependence
on the shear rate have been thoroughly investigated in
[64]. We also find that the evolution of the system dur-
ing the shear banding is accompanied by a positive first

normal stress difference (σXX−σY Y ), indicating the pres-
ence of dilation, which, although quite noisy, also seems
to grow as the bands develop and saturate as the flow
becomes homogeneous (see Fig. 6 (e)). When comparing
further the different protocols across Figs. 6 - 8, we note
that in WB the shear bands always nucleate near the
walls and that the time taken to reach an homogeneous
flow state is slightly longer than in LEBC1 and LEBC2.
We conclude that the features identified above, the

stress overshoot, the band formation and disappearing,
its correlation with the evolution of the normal stresses
and with the changes in the local packing, are robust
across the different protocols utilized. Hence they must
not be the result of numerical artifacts and are instead in-
herent of well aged jammed solids sheared at sufficiently
low rate.
In the next section we discuss the possible dependence

of our findings on the value of the drag coefficient chosen.

V. DEPENDENCE ON DISSIPATION

CO-EFFICIENT

The contribution of inertial terms to the rheology of
jammed suspensions has been extensively explored in
steady-state in [48, 61, 65]. Here we address instead how
the stress overshoot and the shear banding during the
transient preceding the steady state is affected by the dis-
sipation co-efficient. To do this, we consider the LEBC1
protocol and vary the value of the coefficient ζDPD be-
tween 2 (mτ−1

0 ) and 0.01 (mτ−1
0 ). This means that the

inertial quality factor Q defined above varies from 0.5 to
100, i.e. from the case where the damping time is much
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FIG. 6. (a) The load curve obtained from uniform shearing,
using the LEBC1 (pair-wise dissipation) protocol, for Q=1,
at shear rate γ̇ = 10−4τ−1

0
for a sample initially prepared at

cooling rate Γ = 5 · 10−4ǫ/(kBτ0). (b) The velocity profile
as a function of the coordinate in the gradient direction at
points (i-ix) of the load curve. (c) The variation of pressure
as a function of strain over the same range of strain as in the
load curve. (d) The first normal stress difference (σXX−σYY)
as a function of strain for the same sample. (e) The fraction
of icosahedral packing as a function of strain.

shorter than the characteristic time of the inertial mo-
tion (i.e., the overdamped limit) to a case where it is
100 times longer (underdamped case). In [48, 61] it has
been shown that a strongly underdamped dynamics may
qualitatively change the flow properties of the material,
with the possibility to develop even non-monotonic flow
curves. This is not the case here, where the flow curves
remain monotonic, suggesting that for the whole range

0

0.002

0.003

0.005

0
0.002
0.003
0.005
0.006

V
x 

(a
/τ

0)

-20 -10 0 10 20
0

0.002

0.003

0.005

-20 -10 0 10 20

Y (a)
-20 -10 0 10 20

10
2

10
3

10
4

10
5

Time γ/γ (τ0)

0
1
2
3
4

σ 
(ε

/a
3 )

0.0 0.1 1.0 10.0
Strain γ

54

55

56

P
 (

ε/
a3 )

0.0 0.1 1.0 10.0
γ

14

15

16

17

18

0
0.02
0.04
0.06
0.08

14

15

16

17

18

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

LEBC2 (Q=1); γ = 10
-4 τ0

-1

(i)

(ii) (iii)

(iv) (v) (vi) (vii) (viii) (ix)

(a)

(b)

(c)

FIG. 7. (a) The load curve obtained from uniform shearing,
using the LEBC2 protocol (Stoke’s like dissipation), for Q=1,
at shear rate γ̇ = 10−4τ−1

0
for a initial configuration prepared

at cooling rate Γ = 5 · 10−4ǫ/(kBτ0). (b) The velocity profile
as a function of the coordinate in the gradient direction at
points (i-ix) of the load curve. (c) The variation of pressure
as a function of strain over the same range of strain as in
the load curve. Similar to the results of DPD protocol, the
system shows the feature of transient shear banding as well
the decoupling between the stress and pressure.

of Q considered here the high density and the jammed
conditions control the material flow, rather than the par-
ticle inertia. In Fig. 9 (a) we show the load curves of
the same well annealed sample studied with LEBC1, but
now with different values of the inertial quality factor
Q. The applied shear rate corresponds to 10−4τ−1

0 . The
data show that the initial linear response remains unaf-
fected and the stress overshoot seems to slightly decrease
with the increasing Q. The decay after the overshoot be-
comes increasingly steeper with increasing Q. If we ex-
press the applied shear rate in terms of Weissenberg num-
ber (Wi = ζDPDa2/ǫγ̇), the higher the quality factor, the
lower is Wi. As a consequence, one could think of the in-
creasing quality factor Q as a way to reach effectively
lower shear rates. One might expect a trivial scaling of
the load curves if the load curve is presented in terms of
σ vs. γ/γ̇, with γ̇ in terms of Weissenberg number. But
since the initial linear response regime is unaffected by
the extent of damping, this scaling would not work. The
effect of the inertial contribution can be more intricate,
with inertia playing a role in increasing the kinetic tem-
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FIG. 8. (a) The load curve obtained from uniform shearing,
using the wall based protocol, at shear rate γ̇ = 10−4τ−1

0

for a initial configuration prepared at cooling rate Γ = 5 ·

10−4ǫ/(kBτ0). (b) The velocity profile as a function of the
coordinate in the gradient direction at points (i-ix) of the
load curve. (c) The variation of pressure as a function of
strain over the same range of strain as in the load curve.

perature in the athermal system and hence leading to a
softening of the system during shearing [48, 61].
In Figs. 9 (b)-(e), we show the velocity profiles related

to different Q and computed at a strain γ ≈ 0.2 by aver-
aging over a strain window ∆γ = 0.02. In all the cases,
as the stress decays from the overshoot, we observe the
formation of shear bands.
Finally, in the data of Fig. 9 (a) we also show the

results obtained in the protocol LEBC1 when including
the transverse contribution to the DPD drag, as dis-
cussed in section III, to demonstrate that such modifi-
cation changes slightly the value of the overshoot and
the shape of the decay towards the steady state, but it
does not modify the general phenomenology of formation
of shear band observed (see also the profile shown in Fig.
9 (c)).
With the idea to explore further how the specific form

of drag used may change the results obtained, we note
that in LEBC1 another important variable corresponds
to the pair-wise dissipation cutoff used in the DPD drag.
For the results shown so far, we have chosen such cut-
off to be 2.5aij, as done in [48]. In Fig. 10 (a), we
plot together the load curves obtained for LEBC1 with
the DPD cut-off 2.5aij and 1.5aij , along with the results

for the LEBC2 protocol. We observe that the linear re-
sponse regime is unaffected and so is the values of the
stress overshoot. The stress decay from the the over-
shoot shows instead a dependence on the cut-off chosen.
We observe that the results obtained with the LEBC2
protocol approach those for LEBC1 if the DPD cut-off
distance goes down towards a particle diameter, consis-
tent with the fact that LEBC2 corresponds to the free
draining approximation. The related velocity profiles are
shown in Figs. 10 (b)-(d) (these are computed at γ = 0.2
and averaged over ∆γ = 0.02), indicating that the decay
of the overshoot is always associated to the formation of
transient shear bands for both values of the DPD cut-off.
Finally, we have also analyzed how the difference or

similarities just described depend on the shear rate. We
summarize the outcome of this study in Fig. 11, which
shows, for the well annealed sample, the difference be-
tween the stress overshoot and the steady state value
of the shear stress as a function of the shear rate, for
different protocols as well as for two different damping
coefficients for LEBC1. The data indicate that changing
Q in the range of values explored here does not signifi-
cantly affect the results at sufficiently low rates, whereas
one should expect to see significant differences upon in-
creasing the shear rate. Note that we have expressed the
shear rate in terms of τ−1

0 , instead of using a viscous time
scale, in order to compare different protocols where vis-
cous terms are handled in different ways. Different pro-
tocols show that the occurrence of the stress overshoot
(which is essential for the formation of shear bands) is ro-
bust and its dependence on the steady-state stress across
different protocols is similar in the whole range of shear
rates (the lines through the data in the figure are power
law fits). Hence the stress overshoot and the banding
observed at low rates are robust features of the systems
we are studying, they are genuinely representative of the
emerging physics and not the result of artifacts in the
numerical simulations.

VI. DEPENDENCE ON THE SAMPLE AGE

At the end this study, we want to emphasize that the
tendency to have flow inhomogeneity upon yielding is de-
termined mainly by the age of the samples (which deter-
mines the stress overshoot and eventual decay to steady
state), due to the different degree of frozen-in stresses. In
the context of the study reported here, we have analyzed
the dependence of the stress overshoot on the shear rate
and of the sample age. Fig. 12 shows the difference be-
tween the stress overshoot and the steady state value of
the shear stress as a function of the shear rate, for dif-
ferent cooling rates Γ, corresponding to different sample
ages. The results clearly show how changing the sample
age can qualitatively change the overshoot and its rate
dependence. We have investigated how the age of the
samples also determine the persistence of the flow inho-
mogeneities, not only their presence, in the companion
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for a initial configuration prepared at Γ = 5 · 10−4ǫ/(kBτ0). Right panel (b-e) shows the velocity profile computed in a strain
window γ ≈ 0.2, averaged over 2% strain for systems sheared using different dissipation constants. Even in the systems which
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0
, for a ini-

tial configuration prepared at Γ = 5 · 10−4ǫ/(kBτ0). Bottom
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tocols shown in the load curve, computed in a strain window
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letter [64]. We refer the reader to that paper for further
insights.
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FIG. 11. The difference between the overshoot stress and
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plotted as a function of shear rate. The lines represent the
power law fit to the data points.

VII. CONCLUSIONS

We have devised a 3D numerical study of a jammed
suspension of soft spheres, polydisperse in size, under
shear. In particular here we have explored different
choices for imposing the shear deformation and boundary
conditions. We have compared the use of Lees-Edwards
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FIG. 12. The load curve for (a) γ̇ = 10−4τ−1
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0
computed from samples prepared with differ-

ent cooling rate Γ. (c) The difference in the overshoot stress
and the steady state stress computed for different sample ages
as a function of the applied shear rate.

boundary conditions with simulations where the samples
are confined within walls. We have also compared the
use of a DPD drag term to the free draining approx-
imation. Finally, we have compared simulations with
different degrees of inertia, quantified through the in-
ertia quality factor Q. The comparison has been done
in terms of load curves and velocity profiles during the
transient that leads to the steady-state flow. In all cases,
we find that at low rates the shear stress develops an
overshoot followed by a relatively long decay (not nec-
essarily gradual) towards the steady state value. Such
phenomenon is associated to a transient banding with a
part of the material that is basically stuck, and the rest
flowing. On the basis of the extended comparison carried
on here, we propose that these features (the stress over-
shoot and the transient shear banding) are the genuine
results of the emerging response of the material upon

yielding and not the consequences of numerical artifacts
or unphysical choices in the simulations parameters. We
have been able to elucidate the dependence of the stress
overshoot on the different choices for the simulation pa-
rameters and to clarify that what controls the response
reported here is ultimately the age of the samples, which
determines the spatial distribution of frozen-in stresses
in the initial solid, as it has to be expected for jammed
out-of-equilibrium materials.
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[21] L. Bécu, S. Manneville, and A. Colin, Physical Review

Letters 96, 138302 (2006).
[22] S. Fielding, M. Cates, and P. Sollich, Soft Matter 5, 2378

(2009).
[23] T. Divoux, D. Tamarii, C. Barentin, and S. Manneville,

Physical Review Letters 104, 208301 (2010).
[24] R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M. E.

Cates, and W. C. K. Poon, Physical Review Letters
105, 268301 (2010).

[25] V. Mansard, A. Colin, P. Chauduri, and L. Bocquet,
Soft Matter 7, 5524 (2011).

[26] E. Irani, P. Chaudhuri, and C. Heussinger, Physical Re-
view Letters 112, 188303 (2014).

[27] M. Gross and F. Varnik, Soft matter 14, 4577 (2018).
[28] R. L. Moorcroft, M. E. Cates, and S. M. Fielding, Phys-

ical Review Letters 106, 055502 (2011).
[29] J. M. Adams, S. M. Fielding, and P. D. Olmsted, Journal

of Rheology 55, 1007 (2011).

[30] A. Wisitsorasak and P. G. Wolynes, Proceedings of the
National Academy of Sciences 114, 1287 (2017).

[31] G. Parisi, I. Procaccia, C. Rainone, and M. Singh, Pro-
ceedings of the National Academy of Sciences 114, 5577
(2017).

[32] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tar-
jus, Proceedings of the National Academy of Sciences
115, 6656 (2018).
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