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Abstract. This paper presents an elasto-plastic element free Galerkin formula-

tion based on Newton–Raphson algorithm for damage growth analysis. Isotropic

ductile damage evolution law is used. A study has been carried out in this paper

using the proposed element free Galerkin method to understand the effect of initial

damage and its growth on structural response of single and bi-material problems.

A simple method is adopted for enforcing EBCs by scaling the function approxima-

tion using a scaling matrix, when non-singular weight functions are used over the

entire domain of the problem definition. Numerical examples comprising of one-

and two-dimensional problems are presented to illustrate the effectiveness of the

proposed method in analysis of uniform and non-uniform damage evolution prob-

lems. Effect of material discontinuity on damage growth analysis is also presented.

Keywords. Damage mechanics; mesh-free method; elasto-plastic element free

Galerkin method; essential boundary condition; material discontinuity.

1. Introduction

Damage is a progressive physical mechanism which leads to the initiation and growth of

micro-voids or micro-cracks. Proper understanding of damage growth is essential to under-

stand the effect of the presence of voids and internal defects on the global response of

mechanical/structural system and also on the process which leads these internal defects to

final fracture. Evolutionary concept of damage mechanics is proposed by Kachanov (1958),

which is based on one-dimensional surface damage variable. Later, an effective stress con-

cept (Rabotnov 1969) associated with strain equivalence principle (Lemaitre 1971) is devel-

oped. A well-documented research on damage mechanics is available elsewhere (Lemaitre

1985; Chaboche 1988; Chaboche 1988; Voyiadjis & Kattan 1990; Lemaitre 1992; Lemaitre &

Desmorat 2005; Voyiadjis & Kattan 2005). For implementation of damage coupled nonlin-

ear equations in finite element method (FEM), Benallal et al (1988) proposed an integration
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algorithm based on Newton method, to solve the nonlinear global equilibrium equations as

well as the nonlinear local equations obtained by fully implicit integration of the constitutive

equations. The applications of different damage models and analysis using numerical tools

like FEM are well-explained by Kattan & Voyiadjis (2002). In recent years mesh-free meth-

ods are becoming increasingly popular in the areas of fracture mechanics and related topics.

Mesh-free methods such as smooth particle hydrodynamics (Lucy 1977; Monaghan 1988)

diffuse element method (Nayroles et al 1992), element free Galerkin method (EFGM)

(Belytschko et al 1994; Lu et al 1994; Belytschko et al 1995), h–p clouds (Duarte & Oden

1996), partition of unity (Melenk & Babuska 1996), and reproducing kernel particle method

(RKPM) (Liu et al 1995; Liu et al 1997) have been demonstrated particularly attractive for

various reasons as they avoid burdensome mesh generation, can easily model the evolution

of discontinuities such as cracks and interfaces. Among these methods, EFGM is particularly

appealing, due to its simplicity, alleviation of numerical difficulties of mesh entanglement,

faster rate of convergence, and formulation that corresponds to well-established FEM. The

main drawback that EFGM faced is the problems associated with imposition of the essential

boundary conditions (EBCs). Use of non-singular weight functions for moving least square

(MLS) approximation will lead to lack of Kronecker delta property of EFGM shape functions,

and further leads to difficulties in imposition of EBCs. Researchers came up with different

methods to address this problem, like coupled finite element-EFGM (Krongauz & Belytschko

1996), Lagrange multiplier technique (Dolbow & Belytschko 1998), penalty method (Liu

2002), full transformation method (Chen & Wang 2000; Arun et al 2007), extended partition

of unity finite element (PUFEM) weight function (Alves & Rossi 2003), etc. Efficiency of

EFGM has been demonstrated in the areas of crack propagation (Rao & Rahman, 2000; Lu

et al 1995), moving boundaries (Li & Belytschko 2001), large deformation problems (Pon-

thot & Belytschko 1998), and others (Nagashima 1999). However, damage analysis using

mesh-free techniques has not received much attention. Alves & Rossi (2003) presented a

method which combines the element-free Galerkin with an extended PUFEM, that is able

to enforce, in some limiting sense, the essential boundary conditions as done in the FEM

and solved some coupled elasto-plastic damage problems using the integration algorithm

proposed by Benalall et al (1988). This method requires an iterative scheme for solving

global equilibrium equations and also for the local integration of constitutive equations. This

will enhance the computational cost required. Moreover, combining extended PUFEM with

EFGM can increase the computational complexity of the problem.

In this paper, elasto-plastic element free Galerkin formulation is presented based on

Newton–Raphson method for solving the global equilibrium equations and a simple implicit

algorithm (Sivakumar & Voyiadjis 1997) for local integration of constitutive equations. The

effect of initial damage on further material behaviour is analysed, since always there exists

a probability that an initial damage in the form of micro-cracks or micro-voids be present in

all engineering materials and hence materials behave differently from what is expected. The

presence of damage in problems with material discontinuities, such as bimaterial problems,

is also considered in the present work as different material properties will lead to different

rate of damage growth in each of the materials and will affect the interface stresses and

strains. In the present work a method using transformation matrix, by which the displace-

ment approximations are scaled along the essential boundaries to get the Kronecker delta

properties (Arun et al 2009), is used for EBC and material discontinuity treatment. Isotropic

damage evolution law (Lemaitre 1985; Lemaitre & Desmorat 2005) is used in this study. The

paper is organized as follows. Section 2 presents a brief outline of continuum damage theory.

Section 3 describes elasto-plastic EFGM formulation for damage mechanics, imposition of
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Figure 1. Mechanical representation of damage.

EBCs and state determination procedure. Section 4 outlines the treatment of material dis-

continuity using the proposed method. Section 5 presents numerical examples to illustrate

the performance of the proposed methodology.

2. Continuum damage theory

Consider a damaged body as shown in figure 1, in which a representative volume element

(RVE) is isolated. Damage variable is physically defined by the surface density of micro-

cracks and intersections of micro-voids lying on a plane cutting RVE of cross section δS

(Lemaitre 1992; Lemaitre & Desmorat 2005). Damage variable D(�n), for the plane defined

by normal �n is

D(�n) =
δSD

δS
, 0 ≤ D(�n) ≤ 1, (1)

where δSD is the effective area of the intersections of all micro-cavities or micro-cracks that lie

in δS. An isotropic damage variable (Kachanov 1958; Lemaitre 1985) which is independent

of normal, assumes damage is equally distributed in all directions, is defined as

D =
δSD

δS
, (2)

where D is scalar. The effective stress tensor (Rabotnov 1969; Lemaitre 1985), based on

stress acting on resisting area, for a multi-axial case with isotropic damage is defined as

σ̃ij =
σij

1 − D
, (3)

where σ̃̃σ̃σ is the effective stress tensor and σσσ is the stress tensor.

The principle of strain equivalence (Lemaitre 1971; Lemaitre 1985), which assumes that the

strain behaviour is modified by damage only through the effective stress, states that the strain
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constitutive equations for a damaged material can be derived using the same formulations

used for an undamaged material except that the stress is replaced by the effective stress. The

thermodynamics of damage along with elasticity and plasticity is included in the isotropic

unified damage law (Lemaitre 1992; Lemaitre & Desmorat 2005), which is briefly discussed

below.

According to isotropic unified damage law, the main variable governing the damage evo-

lution is the damage rate and the associated variable is the energy density release rate

(Lemaitre & Desmorat 2005). The dissipative potential function, F is defined as

F = f + Fχ + FD, (4)

where f is the plasticity criterion function defined as,

f = (σ̃̃σ̃σ − χχχ)eq − κ − σY , (5)

where κ is the isotropic hardening stress variable, χχχ is the back stress related to kinematic

hardening, σY is the yield stress and

(σ̃̃σ̃σ − χχχ)eq =

√

3

2
(σ̃D

ij − χD
ij )(σ̃D

ij − χD
ij ). (6)

Fχ is the nonlinear kinematic hardening term modelled by

Fχ =
3γ

4c
χijχij , (7)

with c and γ are the temperature dependent material parameters. For linear kineamatic hard-

ening γ is set to zero. FD is the damage potential defined as

FD =
S

(s + 1)(1 − D)

(

Y

S

)s+1

, (8)

where S and s are the material parameters which depends on temperature, and Y is the energy

density rate given by

Y =
σ̃ 2

eqRv

2E0

, (9)

where Rv is the triaxiality function defined by

Rv =
2

3
(1 + ν) + 3(1 − 2ν)

(

σH

σeq

)2

, (10)

where ν is the poison ratio, σH = σkk/3 is the hydrostatic stress, σeq =
√

3
2
σD

ij σD
ij is the von

Mises equivalent stress with the stress deviator, σD
ij = σij − σH δij , and σ̃eq = σeq(1 − D) is

the effective von Mises stress. E0 is the Young’s modulus of virgin material.
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The evolution laws of internal variables are derived as

ε̇
p

ij = λ̇
∂F

∂σ̃ij

= λ̇
∂f

∂σ̃ij

, (11)

α̇ij = −λ̇
∂F

∂χij

, (12)

v̇ = −λ̇
∂F

∂κ
, (13)

and

Ḋ = λ̇
∂F

∂Y
= λ̇

∂FD

∂Y
, (14)

where λ̇ is the plastic multiplier obtained by the consistency conditions, f = 0 and ḟ = 0.

εεεp is plastic strain tensor, ααα is kinematic hardening state variable, and υ is isotropic hardening

state variable.

Using equations (8) and (14) the damage constitutive equation is derived as

Ḋ =

{

(

Y
S

)s λ̇
(1−D)

, if p > pD

0, if not

D = Dc → meso-crack initiation, (15)

where Ḋ is the damage rate, p is the accumulated plastic strain defined by p =
√

2
3
ε

p

ijε
p

ij for

von Mises yield criteria, and Dc is the critical damage value at which the meso-crack initiations

occur, which is a material parameter. The damage threshold, pD which is the accumulated

plastic strain at which damage starts, is defined as

pD = εpD for monotonic loading

pD = εpD

(

σu − σ∞
f

σeq max+σeq min

2
− σ∞

f

)m

for cyclic loading, (16)

where εpD is the damage threshold in pure tension, m is the correction parameter, σu is the

ultimate stress and σ∞
f is the asymptotic fatigue stress.

In the present study an initial damage is assumed to present in the material and so a realistic

assumption that damage will start to grow once the hardening starts is considered. However

damage closure effect is not considered in this study.

3. Elasto-plastic EFGM formulation for damage mechanics

3.1 Variational formulation and discretization

For small displacements in two-dimensional problems with isotropic damage, the equilibrium

equations and boundary conditions can be written in terms of effective stress as

∇∇∇ · ((111 − D)σ̃̃σ̃σ ) + bbb = 0 in , (17)

((111 − D)σ̃̃σ̃σ ) · nnn = t̄̄t̄t on Ŵt (natural boundary conditions), (18)

uuu = ū̄ūu on Ŵu (essential boundary conditions), (19)
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where, σ̃̃σ̃σ is the effective stress vector, bbb is the body force vector, t̄̄t̄t and ū̄ūu are the vectors of

prescribed surface tractions and displacements, respectively, nnn is a unit normal to domain

, Ŵt and Ŵu are the portions of boundary, Ŵ where tractions and displacements are prescribed,

respectively, and ∇∇∇T === {∂/∂x1, ∂/∂x2} is the vector of gradient operators. The variational

form of the equation (17) can be written as
∫



(1 − D)δεεεT σ̃̃σ̃σd −

∫



δuuuTbbbd −

∫

Ŵf

δuuuT t̄̄t̄tdŴ = 0, (20)

where δuuu and δεεε are virtual displacement increment and strain increment respectively. Using

meshless discretization of the domain, the MLS (Lancaster & Salkauskas 1981) approximation

of displacement vector uuu, is given by (Belytschko et al 1994; Rao & Rahman 2000)

uh(x) =
n

∑

I=1

�I (xxx)dI = ���T (xxx)ddd, (21)

where n is the number of nodes influencing xxx, ���T (xxx) = {�1(xxx), �2(xxx), . . . , �n(xxx)}, with

�I (xxx) representing the shape function of MLS approximation corresponding to node I , and

dddT = {d1, d2, . . . , dn} with dI representing the nodal parameter (not the nodal values of

uh(xxx)) for node I . Substituting of equation (21) into equation (20) results in
∫



(1 − D)BBBT σ̃̃σ̃σd = RRR, (22)

where BBB is the strain displacement matrix. For node I , BBB is given by

BBBI =

⎡

⎣

�I,1 0

0 �I,2

�I,2 �I,1

⎤

⎦ , (23)

and RRR is the external equivalent force vector, defined by

RRRI =

∫



�Ibbbd −

∫

Ŵf

�I t̄̄t̄tdŴ ∈ ℜ2. (24)

For analysis which includes material nonlinearity, equation (22) becomes a nonlinear function

of the displacement and so a nonlinear function of the nodal parameter vector, ddd . Hence

iterative methods are needed for solving the equation (22). Since an elasto-plastic constitutive

relation depends on deformation history, an incremental analysis following an actual variation

of external forces should be used to trace the variation of displacement, strain, and stress

along with external forces. Newton–Raphson method (Chen & Han 1988), is used to solve

the global equilibrium equations where as a simple implicit scheme (Sivakumar & Voyiadjis

1997) is used to solve the constrained elasto-plastic damage evolution equations and for

updating variables.

The load RRR, is applied incrementally to the mechanical/structural system. Let, load at the

(r + 1)th step is r+1RRR, which can be expressed as

r+1RRR = rRRR + r+1�RRR. (25)

Corresponding to the load increment, equation (22) can be written as

r+1FFF = r+1RRR, (26)
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where r+1FFF is the internal force vector, which is a function of the nodal displacement parameter
r+1ddd and can be written as

r+1FFF(r+1ddd) =

∫



(1 − r+1D(r+1ddd))BBBT r+1σ̃̃σ̃σ (r+1ddd)d, (27)

where

r+1ddd = rddd + �ddd. (28)

Equation (26) can be rewritten as

�(r+1ddd) = r+1FFF(r+1ddd) − r+1RRR. (29)

First order Taylor series expansion of � at r+1ddd
i
, where r+1ddd

i
is the ith approximation of

r+1ddd, results in

∂FFF

∂ddd

∣

∣

∣

∣

r+1ddd ′

�ddd i+1 + r+1FFF i − r+1RRR = 0. (30)

Using equation (27)

∂FFF

∂ddd

∣

∣

∣

∣

r+1ddd ′

=

∫



BBBT

(

(1 − D)
∂σ̃̃σ̃σ

∂ddd
− σ̃̃σ̃σ

∂D

∂ddd

) ∣

∣

∣

∣

r+1dddi

d

=

∫



BBBT ((1 − D)CCCep)|r+1dddi
BBBd −

∫



BBBT

(

σ̃̃σ̃σ
∂D

∂εεε

) ∣

∣

∣

∣

r+1ddd′

BBBd, (31)

where CCCep is elasto-plastic matrix. Using equation (31), the equation (30) can be rewritten in

the form

r+1KKK i�ddd i+1 = r+1RRR − r+1FFF i, (32)

where

r+1KKK i =

∫



BBBT ((1 − D)CCCep)|r+1dddi
BBBd −

∫



BBBT

(

σ̃̃σ̃σ
∂D

∂εεε

) ∣

∣

∣

∣

r+1dddi

BBBd. (33)

The second term in equation (33) may lead to numerical instabilities, when it dominates over

the first term, while solving equation (32). But Newton–Raphson method gives the freedom to

modify the stiffness matrix by neglecting the second term at the cost of number of iterations.

In the present work equation (33) is modified as

r+1KKK i =

∫



BBBT ((1 − D)CCCep)|r+1dddi
BBBd. (34)

3.2 Imposition of essential boundary conditions

EFGM shape function �I (xxx) does not satisfy the Kronecker delta property i.e. �I (xxxJ ) �= δIJ .

Therefore uh
i (xxxJ ) �= d i

J and �uh
i (xxxJ ) �= �d i

J , which complicates the imposition of EBCs. For

enforcement of the essential boundary conditions, in this study a simple method is adopted.
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Figure 2. Meshless discretiza-
tion of domain .

In this method, unlike the general EFGM formulation, MLS approximation is scaled along

the essential boundaries by a scaling matrix. For the domain discretized using meshless nodes

as shown in figure 2, the condition uh
i (xxxJ ) = d i

J is satisfied along the essential boundary Ŵu

through a scaled transformation which modifies equation (21) as

uh
i (xxxJ ) =

N
∑

I1=1

N
∑

I2=1

�I1
(xxxJ )�′−1

I1I2
d i

I2
= ���iT

J ���′−1
ddd, (35)

and so

�uh
i (xxxJ ) = ���iT

J ���′−1
ddd, (36)

where N is the total number of nodal points in the domain ,ddd is the nodal parameters not

the nodal values and

���′ = [���1
1 ���2

1 δ3J δ4J . . .���1
K−2 ���2

K−2 ���1
K−1 ���2

K−1 ���1
K ���2

K δ(2(K+1)−1)J

δ(2(K+1))J . . . δ(2N−1)J δ(2N)J ]T ∈ L(ℜ2N × ℜ2N ), (37)

is the scaled transformation matrix which includes shape function values associated with the

nodes along the essential boundary, where δIJ = 1, when I = J , and δIJ = 0 when I �= J .

Using equations (35) and (36), equation (32) can be modified as

r+1K̄̄K̄K i �ddd i+1 = F̄̄F̄F , (38)

with

r+1K̄̄K̄K i = ���′−T r+1KKK i���′−1
, (39)

and

F̄FF = ���′−T
(r+1RRR − r+1FFF i). (40)

The discretized equation system in equation (38) can be solved for the (i + 1)th increment in

nodal parameter after applying the appropriate essential boundary conditions given in equa-

tion (19) by adopting the procedures similar to that in finite element analysis. The correspond-

ing increment in nodal values can be obtained from equation (36). Once �ddd i+1 is evaluated,
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the corresponding strain, stress and damage increment can be found out using the procedure

described further. During Newton–Raphson iteration, an inaccurate transition to plastic state

may occur especially if the load step is too large. This should result in large imbalance, and

the following iterations should in general be able to correct it. However, any plastic strain

that was accumulated during the iteration will still be there and in later iterations will give an

erroneous yield stress (Bhatti 2006). To avoid this problem, instead of using the displacement

increment from the current iteration, the total displacement increment from the beginning of

the current load step should be used. Thus

�ddd i+1 =
i+1
∑

i=1

�dddj . (41)

Then the total strain increment,

�εεεi+1 = BBBT���′−1
�ddd i+1. (42)

Once the strain increment is calculated, the other state variables like stress, plastic strain and

damage at the end of new load step is to be found. The state determination procedure is briefly

outlined below.

3.3 Procedure for state determination

For a given Gauss point, with known increment in strain (�εεε), and the previous state

(σ̃̃σ̃σ , εεε,χχχ, κ , and εεεp) the basic steps in computing a new state are as follows:

1. Compute the elastic predictor, and trial stress increment using,

�σ̃̃σ̃σ e = CCC�εεε

s̃̃s̃s = σ̃̃σ̃σ + �σ̃̃σ̃σ e. (43)

2. Evaluate the yield function value f (s̃̃s̃s,χχχ, κ). For a previously elastic Gauss point continue

with step 3, otherwise go to step 4.

3. For a previously elastic Gauss point, there are two possibilities,

(a) Gauss point remains to be elastic i.e. f (s̃̃s̃s,χχχ, κ) ≤ 0 and r+1σ̃̃σ̃σ i+1 = s̃̃s̃s and other state

variables, related to plastic part remains same as in the previous load step. Go to step 7.

(b) f (s̃̃s̃s,χχχ, κ) > 0 with a transition from elastic to plastic state. Locate stress at yield

point by solving f (σ̃̃σ̃σ +ρ�σρ�σρ�σ e,χχχ, κ) = 0 where ρ is the fraction of strain increment

that takes the stress to yield stress level. ρ�εεε is the strain increment that takes stress

to yield level and (1 − ρ)�εεε is called as elasto-plastic strain increment. Continue to

step 5.

4. For a previous yielded Gauss point there are three possibilities;

(a) It continues to yield plastically. Then ρ = 0 and continue to step 5.

(b) It unloads elastically, with f (s̃̃s̃s,χχχ, κ) ≤ 0. Then r+1σ̃̃σ̃σ i+1 = s̃̃s̃s and go to step 7.

(c) It unloads by moving inside the yield surface and eventually ends up with a stress out

side the yield surface, which requires to find ρ and then continue to step 5.
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5. In this step the stresses corresponding to (1 − ρ)�εεε are to be found out. The available

literature on damage mechanics uses the integration scheme proposed by Benallal et al

1988, which requires an iteration for yield surface drift correction, to minimize the errors

that arise due the replacement of differential quantities to finite difference quantities. In

the present work a simple implicit scheme (Sivakumar & Voyiadjis 1997), which uses

single point integration without any iteration, is used. The final state for which the yield

condition to be satisfied is used to obtain the discrete consistency condition,

f (σ̃̃σ̃σ + ρ�σσσ e + �σ̃̃σ̃σ ,χχχ + �χχχ, κ + �κ) = 0. (44)

For an associated flow rule, the evolution equations given in equations (11)–(14) can be

rewritten in incremental form as

�εεεp = �λ
∂f

∂σ̃̃σ̃σ
, (45)

�χχχ = −h�λ
∂F

∂χχχ
, (46)

�κ = −H�λ
∂F

∂κ
, (47)

�D = �λ
∂FD

∂Y
, (48)

where h and H are kinematic and isotropic hardening modulus respectively. The elasto-

plastic constitutive equation can be written as

�σ̃̃σ̃σ = CCC(�ε̄̄ε̄ε − �εεεp), (49)

where �ε̄̄ε̄ε = (1 − ρ)�εεε. Substituting equations (45)–(49) into equation (44), will lead to

a polynomial in �λ. For the von Mises yield criteria, which is used in the present study,

the polynomial will be a quadratic equation in �λ with coefficients in terms of initial

quantities (Sivakumar & Voyiadjis 1997). To solve the equation (44) for �λ and using

equations (45)–(49) update all the variables as

r+1σ̃̃σ̃σ i+1 = σ̃̃σ̃σ + ρ�σσσ e + �σ̃̃σ̃σ

r+1εεεi+1 = εεε + �εεε

r+1εεεpi+1 = εεεp + �εεεp

r+1χχχ i+1 = χχχ + �χχχ

r+1κ i+1 = κ + �κ

r+1Di+1 = D + �D. (50)

6. For an associated flow rule, the elasto-plastic stiffness matrix CCCep is evaluated at each

iteration using the method described by Chen & Han (1988).

7. Check for convergence with new state values. Force equilibrium and internal energy

criteria can be used (Chen & Han 1988; Bhatti 2006). If the prescribed tolerance is

achieved, Newton–Raphson iterations can be stopped and can be proceeded to the next

load step.
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Figure 3. Domains of influence
for nodes and nearest neighbours:
(a) Inhomogeneous materials;
and (b) Homogeneous materials.

Using the algorithm described above it can be seen that it is easy to follow the damage growth,

as well as the stresses and strains in the body.

4. Treatment of material discontinuities

The method explained above can be easily extended for solving problems with material

discontinuities to study the how the presence of initial damage and damage growth upon

loading will affect the interface stresses and strains. For an inhomogeneous body consisting

of two different materials in domain , bounded by sub-domains 1 and 2 as shown in

figure 3a, equation (20) can be rewritten as

∫

1

(1 − D)δεεεT σ̃̃σ̃σd +

∫

2

(1 − D)δεεεT σ̃̃σ̃σd −

∫

1

δuuuTbbbd −

∫

2

δuuuTbbbd

−

∫

Ŵt1

δuuuT t̄̄t̄tdŴ −

∫

Ŵt2

δuuuT t̄̄t̄tdŴ = 0 (51)

with Ŵt1 and Ŵt2 being the portions of traction boundary Ŵt belonging to sub-domains 1 and

2. Similarly, Ŵu1
and Ŵu2

are the portions of displacement boundary Ŵu belonging to sub-

domains 1 and 2. Note that even though for simplicity of explanation an inhomogeneous

body is considered to be made up of two sub-domains 1 and 2, the concepts developed

here can be extended even if domain  is made up of more than two sub-domains.
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The stiffness equation system is assembled in each of sub-domains separately, noting that

all points contained in material 1 can only be influenced by nodes in material 1 plus interface

nodes; and, all points contained in material 2 can only be influenced by nodes contained

in material 2 plus interface nodes. Figures 3a and 3b, respectively illustrate the difference

in selection of the neighbours to a point in domain , when sub-domains 1 and 2 are

considered to be of different materials (inhomogeneous materials) and when sub-domains 1

and 2are considered to be of same materials (homogeneous materials). When sub-domains

1 and 2 are considered to be of different materials, the domains of influence for nodes

completely inside sub-domains 1 and 2 are truncated at the interface, leaving the domains

of influence for an interface node belonging to both sub-domains 1 and 2 unaffected.

From equation (35), the MLS approximation of ui(xxxJ ) is

uh
i (xxxJ ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M
∑

I1=1

M
∑

I2=1

�I1
(xxxJ )�′(1)−1

I1I2
d i

I2
= ���iT

J ���′(1)−1

ddd(1) if xxxJ ∈ 1

N
∑

I1=M−2

N
∑

I2=M−2

�I1
(xxxJ )�′(2)−1

I1I2
d i

I2
= ���iT

J ���′(2)−1

ddd(2) if xxxJ ∈ 2

, (52)

where

���′(1)
= [���1

1 ���2
1 δJ3 δJ4 . . .���1

K ���2
K δJ (2(K+1)−1) δJ (2(K+1)) . . .���1

(M−2) ���2
(M−2)

���1
(M−1) ���2

(M−1) ���1
M ���2

M ]T ∈ L(ℜ2M × ℜ2M), (53)

and

���′(2)
= [���1

(M−2) ���2
(M−2) ���1

(M−1) ���2
(M−1) . . . δJ (2(L−1)−1) δJ (2(L−1)) ���1

L ���2
L

δJ (2(L+1)−1) δJ (2(L+1)) . . .���1
(N−1) ���2

(N−1) ���1
N ���2

N ]T

∈ L(ℜ2(N−M) × ℜ2(N−M)), (54)

are the scaled transformation matrices for the domains 1 and 2 respectively. Using equa-

tion (52), by following the similar procedures as explained in section 4·1, stiffness equation

system similar to equation (38) can be formulated for each of the sub-domains and can be

assembled along the interface nodes to get the global stiffness equation system (Arun et al

2009) and can solve for the increment in nodal parameters and strain increment in each of the

sub-domains. The state determination procedure is similar to the one explained in section 4·2,

except that for each of the sub-domains it has to be evaluated separately.

5. Numerical examples

To demonstrate the performance of EFGM described above, three numerical examples are

presented. In all the numerical examples material is treated as linear elastic, linear kinematic

hardening. The linear basis with the student’s t-distribution weight function (Rao & Rahman

2000) is adopted in EFGM analysis. The scaling parameter, zmax (Rao & Rahman 2000)

and the student’s t-distribution weight function (Rao & Rahman 2000) parameter, β are

taken as 2·01. For numerical integration, one point and 8 × 8 Gauss quadrature is adopted

respectively for one and two-dimensional numerical examples presented below. Numerical

examples involving both with and without material discontinuities are solved.
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Figure 4. Bar subjected to sinusoidal load at the free end: (a) Geometry and loads; and (b) Meshless
discretization (11 nodes).

5.1 Example 1. One-dimensional bar

Consider a bar with length, L = 10 mm and cross sectional areas, A1 and A2 respectively

at x = 0 mm and x = 10 mm as shown in figure 4a. Bar is fixed at x = 0 mm and is free

at x = 10 mm. Sinusoidal load, p(t) = p sin(πt/2)0 ≤ t ≤ 2 is applied at the free end

of the bar, with p = 320 N. Material properties used in the numerical study are as follows:

E0 = 200 GPa, h = 10 GPa, ν = 0·3, σy = 250 MPa, S = 0·06, s = 1, Dc = 0·3 and

damage threshold value, εpD is taken as zero. In the numerical analysis both the cases of

uniform cross sectional area (with A1 = A2 = 1 mm2), and linearly varying cross sectional

area (with A1 = 2 mm2 and A2 = 1 mm2), are studied assuming the following two cases of

initial damage: (i) uniform initial damage, D0 = 0·12 and (ii) varying initial damage, D0(x) =
0·12 sin(πx/L), which results in the following four cases: (a) uniform cross sectional area

(UA) and uniform initial damage (UD); (b) uniform cross sectional area (UA) and varying

initial damage (VD); (c) linearly varying cross sectional area (VA) and uniform initial damage

(UD); and (d) linearly varying cross sectional area (VA) and varying initial damage (VD).

A typical meshless discretization involving 11 uniformly spaced nodes is shown in figure 4b.

In addition, to validate the proposed method finite element analysis has been carried out for

all the four cases with same number of nodes (11 nodes) using 10, two-node linear elements.

Figure 5 shows the predicted axial displacement at the free end as a function of number of

nodes N . The results of all the four cases are shown. Indeed, the proposed meshless method

generates convergent solutions of the axial displacement at the free end.

Figure 5. Convergence of axial
displacement at the free end of
bar.
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Figure 6. Displacement at the free end of bar during loading and unloading.

Figure 6 shows displacement at the free end of the bar during loading and unloading, for

all the four cases. It can be observed from figure 6 that the proposed EFGM is able to produce

results which are matching well with the results obtained using FEM. As expected for the case

of UA & UD the bar is less stiff than the other three cases. In the cases of (b), (c) and (d) non-

uniform yielding occurs along the length of the bar, which leads to the higher stiffness. It can

be observed for figure 6 that the smoothness of displacement variation in shifting from elastic

to plastic part increases as the amount of non-uniformity (in geometry and initial damage)

increases.

Figure 7 shows stress at x = 10 mm as a function strain during loading and unloading, for

all the four cases. For both the cases of (UA and UD) and (UA and VD), the stress is same at

any section for same loading, however the corresponding strain is less in non-uniform initial

damage case. Similarly, for both the cases of (VA and UD) and (VA and VD), the stress is

same at any section for same loading, however the corresponding strain is less in non-uniform

initial damage case. It can be observed from figure 7 that for the same initial damage the slope

of stress versus strain for UA and VA is same. The yield stress for the case with UD is less than

that with VD. Also, it can be observed that even though elastic and hardening modulus are

Figure 7. Stress versus strain at x = 10 mm during loading and unloading.
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Figure 8. Effective stress versus strain at x = 10 mm during loading and unloading.

same, the residual strain is different for each of the four cases due to non-uniform yielding,

plastic strain and damage growth.

Figure 8 shows effective stress at x = 10 mm as a function strain during loading and

unloading, for all the four cases. Since effective stress is the actual stress in the body, which

follows the defined material property the slope of elastic and hardening part is same for all

the four cases as that of the virgin material (E0 and (E0h)/(E0 + h) respectively) which is

independent of geometry and initial damage variation. But the stress developed due to the

same applied load varies for each of the four cases, since it depends on the effective resisting

area available which depends on geometry of the bar and also on the amount of damage

evolved at the point of consideration.

It can be observed from both figures 7 and 8 that the proposed elasto-plastic EFGM for

damage analysis is predicting results which are matching well with the corresponding FEM

solutions.

Effect of material discontinuity is studied by assuming elastic modulus to be equal to E1

and E2 respectively for 0 ≤ x ≤ 10 mm and 5 ≤ x ≤ 10 mm. This results in the bimaterial

bar with material discontinuity at x = 5 mm. All other material properties are assumed to be

same for both 0 ≤ x ≤ 5 mm and 5 ≤ x ≤ 10 mm, and are taken as, h1 = h2 = 10 GPa,

ν = 0·3, σy = 250 MPa, S = 0·06, s = 1, Dc = 0·3 and damage threshold value, εpD is

taken as zero. Both the materials are assumed to have same initial damage, D0 = 0·12.

Figure 9 shows the axial displacement as a function of x at the end of unloading, obtained

by the proposed elasto-plastic EFGM, with damage (WD) and without damage (ND) for

different values of E1 and E2. It can be observed from figure 9 that if the damage is neglected

in the analysis, the axial displacement along the length is independent of elastic modulus and

material discontinuities since kinematic hardening modulus is assumed to be same through

out the length. But when damage is included in the analysis, the axial displacement along

the length shows dependency on the elastic modulus even if kinematic hardening modulus is

assumed to be same through out the length. Also presence of discontinuity introduces change

in the slope at x = 5 mm in a damage coupled analysis as shown in figure 9.

Figure 10 shows displacement at the free end of the bar during loading and unloading,

obtained by the proposed elasto-plastic EFGM, with damage (WD) and without damage (ND)
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Figure 9. Displacement along the length of bimaterial bar during loading and unloading.

for different values of E1 and E2. It can be observed from figure 10 that the bimaterial bar

with different E1 and E2 shows mean response of the bimaterial bar with same E1 and E2.

Figure 10 also shows that the analysis performed without considering the effect of damage

leads to an over estimation of stiffness of the bimaterial bar.

5.2 Example 2. Two-dimensional plane stress problem

Two-dimensional plane stress problem with monotonic loading is studied by taking a bima-

terial plate with dimension L = 10 mm and loading with p = 320 N, as shown in figure 11a.

Uniform initial damage D0 = 0·12 is assumed. A typical meshless discretization involving a

total of 49 uniformly spaced nodes is shown in figure 11b.

Figure 12 shows the predicted displacement along the edge x2 = 10 mm as a function of

number of meshless nodes, N(= 25, 49, 81 and 121). Indeed, the proposed meshless method

generates convergent solutions of the displacement.

Figure 10. Displacement at the free end of bimaterial bar during loading and unloading.
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Figure 11. Square plate sub-
jected to uniformly distributed ten-
sion: (a) Geometry and loads; and
(b) Meshless discretization (49 nodes).

Effect of material discontinuity is studied by assuming elastic modulus to be equal to

E1 and E2 respectively for 0 ≤ x2 ≤ 5 mm and 5 ≤ x2 ≤ 10 mm. This results in the

bimaterial plate with material discontinuity at x2 = 5 mm. All other material properties are

assumed to be same for both 0 ≤ x2 ≤ 5 mm and 5 ≤ x2 ≤ 10 mm, and are taken as,

h1 = h2 = 10 GPa, ν = 0·3, σy = 250 MPa, S = 0·06, s = 1, Dc = 0·3.
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Figure 12. Convergence of dis-
placement along the edge x2 =
10 mm.

Figure 13. Average displace-
ment along the edge x2 = 10 mm
at the end of monotonic loading.

Figure 14. Effective stress along
the line x1 = 4·97 mm at the end
of monotonic loading.
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Figure 15. Plate with hole under tension:
(a) Geometry and loads; and (b) Meshless
discretization (153 nodes).

Figure 13 shows average displacement along the edge x2 = 10 mm at the end of the

monotonic loading, obtained by the proposed elasto-plastic EFGM, with damage (WD) and

without damage (ND) for different values of E1 and E2. It can be observed from figure 13

that the bimaterial plate with different E1 and E2 shows mean response of the bimate-

rial plate with same E1 and E2. Figure 13 also shows that the analysis performed without

considering the effect of damage leads to an over estimation of stiffness of the bimaterial

plate.

Figure 14 shows effective stress as a function of x2 along the line x1 = 4·97 mm at the

end of the monotonic loading, obtained by the proposed elasto-plastic EFGM, with damage
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(WD) and without damage (ND) for different values of E1 and E2. It can be observed from

figure 14 that material discontinuity results in effective stress jump at the interface. Different

values of E1 and E2 resulted oscillations in predicted effective stress. These oscillations in

predicted effective stress are observed to be reduced with increased refinement of meshless

discretization. From figure 14 it can be observed that in the analysis without considering

damage effective stress is same as stress and that the stress equilibrium across the interface

is satisfied as expected.

5.3 Example 3. Plate with a hole under tension

Square plate with circular hole under far field tensile loading as shown in figure 15a is con-

sidered. Plate with dimensions 2L = 40 mm and 2a = 2 mm is considered. A monotonically

increasing uniformly distributed load with p = 225 N is applied as shown in figure 15a. Due

to symmetry only one quarter of the plate is analysed. As this problem is sensitive to nodal

distribution due to the presence of geometric discontinuity at the hole, pure elastic analysis is

carried out adopting different meshless nodal discretizations, before performing elasto-plastic

EFGM damage evolution analysis. A uniformly distributed load of magnitude, p = 1 N and

an initial damage value D0 = 0 is used for elastic analysis. Figure 16 compares the normal

stress, σ22 along x2 = 0 obtained using different meshless nodal discretizations with the the-

ory of elasticity solution (Timoshenko & Goodier 1970). A typical meshless discretization

with 153 nodes is shown in figure 15b. Discontinuity in the geometry results non-uniform

stress and plastic strain evolution in the plate which in tum leads to localized damage evolu-

tion near the hole. Figure 17 shows the variation of average displacement with load, along the

free end of the plate, x2 = 20 mm for different initial damage values. It can be observed from

figure 17 that there is a smooth variation from elastic to plastic part in stress–strain curves

due to non-uniform plastic evolution. Figure 17 also shows the variation of average displace-

ment with load obtained from EFGM analysis by neglecting damage effect. It is clear from

figure 17 that the presence of damage will produce a considerable change in the material

Figure 16. Normal stress σ22

along x2 = 0 for plate with hole
under tension.
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Figure 17. Variation of average
displacement with load along the
free end of plate, x2 = 20 mm.

behaviour. Figure 18 shows damage level over the entire domain at the end of the loading.

It can be observed from figure 18 that the proposed numerical method is able to capture the

damage concentration near the hole.

Figure 18. Damage distribution over entire domain of plate with hole at the end of loading.
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6. Conclusions

A study has been carried out using the proposed EFGM to understand the effect of initial

damage and its growth on structural response of single and bi-material problems. A simple

method is adopted for enforcing the EBCs in EFGM. Isotropic unified damage law is used to

model the damage growth. Three numerical examples comprising of one-and two-dimensional

problems are solved to illustrate the effectiveness of the proposed method in analysis of uni-

form and non-uniform damage evolution problems. Both the cases of uniform cross sectional

area, and linearly varying cross sectional area assuming uniform and varying initial damage,

are considered in the numerical study. Numerical results shown are given below.

• The study substantiate the fact that it is necessary to consider initial damage and damage

growth in the analysis since the presence of damage reduces the stiffness of the material

leading to unexpected material response and premature yielding.

• Material discontinuity results in effective stress jump at the interface. Also when damage

is included in the analysis, the axial displacement along the length shows dependency on

the elastic modulus even if kinematic hardening modulus is assumed to be same through

out the length. Neglecting these effects certainly can lead to an unsafe design which is

by no means is acceptable for any engineering structures.

• The proposed method is able to capture the damage localizations and its effect on struc-

tural responses, due to non-uniformity in geometry or initial damage variation or both.

• In addition the proposed EFGM is able to capture damage concentration in problems

with stress concentrations.
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