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We explore a small quantum refrigerator in which the working substance is made of paradigmatic nearest-

neighbor quantum spin models, the XY Z and the XY model with Dzyaloshinskii-Moriya interactions, con-

sisting of two and three spins, each of which is in contact with a bosonic bath. We identify a specific range

of interaction strengths which can be tuned appropriately to ensure a cooling of the selected spin in terms of

its local temperature in the weak- coupling limit. Moreover, we report that in this domain, when one of the

interaction strengths is disordered, the performance of the thermal machine operating as a refrigerator remains

almost unchanged instead of degradation, thereby establishing the flexibility of this device. However, to obtain

a significant amount of cooling via ordered as well as disordered spin models, we observe that one has to go

beyond the weak-coupling limit and compute the figures of merits by using global master equations.

I. INTRODUCTION

The quest for small quantum thermal machines [1] that can

supersede their classical counterparts in performance [2] has

been an important and vibrant component in the field of quan-

tum thermodynamics [3, 4]. These machines are expected

to not only provide a better understanding of the interplay

between the concepts from quantum information theory and

thermodynamics [4–6], but also lead to build efficient quan-

tum technologies [7]. Moreover, the interdisciplinary nature

of the designs and working principles of these machines has

also attracted attention from researchers in statistical [8] and

quantum many-body physics [9, 10]. To verify the theoret-

ical proposals on these machines, several experiments have

been performed by using trapped ions [11], mesoscopic sys-

tems [12], nuclear magnetic resonance [13], and supercon-

ducting materials [14].

Among the wide variety of small quantum thermal ma-

chines, quantum refrigerators made of quantum systems with

Hilbert spaces of small dimension have gained a lot of inter-

est [15–21]. Special attention has recently been given to the

three-spin quantum refrigerators, where a local cooling of one

of the spins is achieved by connecting each of the spins in

the system with a local Markovian thermal bath. Depend-

ing on the choice of the system parameters, the refrigerator

may operate in either the absorption region where energy is

conserved, or in an external energy-driven region, where a

channel exists between the refrigerator and an external energy

source or sink. The performance of the refrigerator and its

type are assessed in terms of the heat currents between the

spins and their respective baths, and a lowering of tempera-

ture either in the steady state or during the transient dynamics

can be observed via an increase in the ground-state popula-

tion of the spin undergoing local cooling [15–19]. Along with

theoretical proposals to implement these machines in various

substrates such as quantum dots [22], circuit QED architec-

tures [23], and atom-cavity systems [24], three-spin quantum

refrigerators have recently been implemented in laboratories

using trapped ions [25].

While the original model for the three-spin refrigerator ex-

ploits a three-body interaction among the spins constituting

the working substance [15], it has been shown that one can

construct a three-spin refrigerator with two-body interactions

also [21], where the spin-spin interactions constitute the well-

known XXZ model [26], thereby highlighting the possibility

of building small quantum thermal machines using paradig-

matic low-dimensional quantum spin models [27–31] of few

spins. On one hand, it allows one to control the performance

of these machines by appropriately tuning the parameters of

the quantum spin Hamiltonian, which is now possible in ex-

periments using the same substrates used for realizing thermal

machines [32–39]. On the other hand, existing studies on the

interface of the quantum information theory and quantum spin

models [40–42] may prove useful in establishing the connec-

tion between quantum thermodynamics and quantum infor-

mation theory. However, identifying appropriate spin Hamil-

tonian among numerous low-dimensional quantum spin mod-

els available in literature [30, 31, 43, 44] to implement a quan-

tum refrigerator remains a demanding task.

Another challenge in implementing a working quantum re-

frigerator using a quantum spin model in the laboratory would

be disorder, since imperfections are inevitably present in the

system [45–49]. A disordered system has two fundamental

time-scales – the observation time, τ , over which the system

undergoes a dynamics and subsequent observation via a mea-

surement, and the time τ ′ taken by the disordered parameter

to attain its equilibrium. When τ ′ ≫ τ , an effectively frozen

disorder configuration during the observation time happens

which can be incorporated by performing average over con-

figurations after computing the physical quantity of interest,

known as quenched disordered averaging [50–53]. The re-

alization of quantum spin models with disordered parameters

being now possible in laboratories [54–57], it is natural to ask

how the performance of quantum refrigerators, built out of

quantum spin models, can alter in presence of disorder in the

system which is one of the focus of the current paper.

In the present paper, we construct quantum refrigerators

using an one-dimensional quantum spin chain consisting of

two or three spin- 12 particles, each of which is connected

to a local Markovian bosonic thermal bath. We consider

nearest-neighbour interactions among the spins, and examine

a number of paradigmatic quantum spin Hamiltonian, namely

quantum XY Z [31, 43, 44] and quantum XY models with
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Dzyaloshinskii-Moriya (DM) interaction [58–61] as possible

system Hamiltonian for the machine to operate as a refriger-

ator where the latter model is chosen to introduce asymmetry

in the system. More specifically, we focus on two main ques-

tions as to (1) whether a small quantum refrigerator built out

of quantum spin systems always provide a significant cooling

to a selected spin in terms of the population-dependent defini-

tion of local temperature, and if the answer is positive, we fo-

cus on the identification of the parameter regimes to be tuned;

and (2) whether the performance of the quantum thermal ma-

chine as a refrigerator remains unaffected in the presence of

quenched disorder.

We answer both questions affirmatively in terms of heat cur-

rent and local temperature of the selected spins, by consider-

ing the local as well as the global master equation. For the

local master equation, we first notice that since the magnetic

fields of the initial states are aligned to the z directions, the

interaction strength in the z-plane of the XY Z model have

negligible effect on the refrigeration. We observe that when

the couplings are weaker than the strengths of the magnetic

fields, the refrigerator based on the XY model with DM in-

teractions perform better than that of the XY Z model. More-

over, numerical simulations reveal a small subspace of the en-

tire parameter space in which cooling of a selected spin can

take place. Such a hierarchy remains unaltered when either

the interaction strengths in the xy-plane or the DM ones is

chosen randomly from the Gaussian distribution. Notice that

although they are demonstrated by fixing the strengths of the

magnetic fields, the results remains true even for the large

range of parameters. However, in this domain, the refrigera-

tor described by a quantum spin Hamiltonian, ordered as well

as disordered, does not ensure a significant cooling for a se-

lected spin in terms of the local temperature of the spin. To

overcome this, we go beyond the local master equation and by

employing global master equation, we illustrate that the local

cooling provided by the ordered as well as disordered spin

models, can substantially be improved.

The rest of the paper is organized as follows. In Sec. II, we

briefly introduce the construction of the three-spin quantum

refrigerator by discussing the system Hamiltonians, the evo-

lution of the system due to the interaction between the spins

and the local Markovian bosonic baths, and the idea of lo-

cal refrigeration of a selected spin during the dynamics of the

system. In Sec. III, we present our results on the two-spin re-

frigerator using ordered as well as disordered systems while

we demonstrate the results for the three-spin refrigerator in

Sec. IV. Sec. V bears the concluding remarks.

II. QUANTUM REFRIGERATOR: MODEL AND

DYNAMICS

In this section, we briefly describe the quantum spin Hamil-

tonians used to implement a two-spin and a three-spin quan-

tum refrigerator. The setup of the local thermal baths in con-

tact with the individual spins, and the quantities that we have

used for assessing the performance of the machine are also

discussed.
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FIG. 1. A three-spin refrigerator in the presence of disorder.

Three spin-1/2 particles are interacting with each other via spin-

exchange interactions, while individually interacting with a local

thermal heat bath. The spin exchange interactions can be disordered,

where the values of their strengths can be chosen from a Gaussian

distributions of fixed mean and standard deviations.

A. Interacting Quantum Spin Models

We model the refrigerator as an one-dimensional quantum

spin chain with N spin-1/2 particles, governed by a Hamilto-

nian, HS = HF +HI . Here HF and HI = Hxy+Hz+Hdm

correspond to the components of the system Hamiltonian HS

due to the local external magnetic fields acting on each spin,

and the spin-exchange interactions between the spins, respec-

tively. They are given by

HF =

N
∑

i=1

hiσ
i
z, (1)

Hxy =

N
∑

i=1

Jxy
i,i+1

[

(1 + γ)σi
xσ

i+1
x + (1− γ)σi

yσ
i+1
y

]

, (2)

Hz =

N
∑

i=1

Jz
i,i+1σ

i
zσ

i+1
z , (3)

Hdm =
N
∑

i=1

Jdm
i,i+1

(

σi
xσ

i+1
y − σi

yσ
i+1
x

)

. (4)

Here γ is the xy anisotropy parameter, hi is the strength of

the local magnetic field acting on the spin i, σi
p (p = x, y, z)

are Pauli matrices, Jxy
i,i+1 and Jz

i,i+1 respectively represent

the xy and the zz nearest- neighbor antiferromagnetic in-

teraction strengths, and Jdm
i,i+1 denotes the strength of the

Dzyaloshinskii-Moriya interaction [58–61]. Moreover, we

consider interaction strengths to be site-independent as well

as site-dependent, leading to the ordered and disordered spin

systems respectively. A number of paradigmatic quantum spin

Hamiltonian emerged from HS for different values of these

system parameters are as follows.

1. Jxy
i,i+1, J

dm
i,i+1 = 0- Classical Ising model in a parallel

magnetic field,
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FIG. 2. (Color online) Temperature dynamics for spin 1 of a two-

spin refrigerator in weak-coupling limit. Variation of T1 (ordinate)

vs. t (abscissa). The initial temperatures of the two spins are T1(0) =
1, T2(0) = 1.1 (solid lines) and T1(0) = T2(0) = 1 (dashed line).

Dark (red) lines represent XX model with Jxx = 0.02 while light

(orange) lines are for the XX model with DM interactions where

Jxx = Jdm = 0.02. In both cases, we fix h1 = 1.1, h2 = 1.3,

Γ = 0.05, and γ = 0. Both the axes are dimensionless.

2. γ = 1, Jz
i,i+1 = 0, Jdm

i,i+1 = 0- Transverse-field Ising

model,

3. 0 < γ < 1, Jz
i,i+1 = 0, Jdm

i,i+1 = 0- Anisotropic XY
model in a transverse field,

4. γ = 0, Jz
i,i+1 = 0, Jdm

i,i+1 = 0- XX model in a trans-

verse magnetic field,

5. γ = 0, Jdm
i,i+1 = 0- XXZ model with magnetic field,

and

6. γ = 0, Jz
i,i+1 = 0- XX model in a transverse magnetic

field with DM interaction.

In this paper, we focus on small quantum refrigerators, where

the size is justified by the low dimension of the Hilbert space

of the system. More specifically, we consider a two- and a

three-spin refrigerator (N = 2, 3) for demonstrating the re-

sults in the subsequent sections.

B. Local Environments and the Open Quantum Dynamics

We now describe the system-environment setup for imple-

menting the quantum refrigerator. We consider N local heat

baths, B1, B2, · · · , BN , each of which is connected to a spin

in the N -spin system (see Fig. 1 for the N = 3 case), such that

any spin is completely insulated from the effect of the N − 1
baths, except the one connected to it. We assume that at t = 0,

the spin-exchange interactions are absent, i.e., HS = HF , and

each of the spins is at thermal equilibrium with its respective

environment, so that the temperature Ti(0) of the spin i at t =
0 is T 0

i , with T 0
i being the absolute temperature of the bath

i. The initial state of the system, therefore, is given by ρ0s =
⊗N

i=1 ρ
0
i , where ρ0i = exp

(

−β0
i hiσ

i
z

)

/Tr
[

exp
(

−β0
i hiσ

i
z

)]

,

with β0
i = (kBT

0
i )

−1, kB is the Boltzmann constant. At

t > 0, all of the spin-exchange interactions, or a subset of

them are turned on, so that the system is taken out of the equi-

librium, and it undergoes an open system dynamics. The evo-

lution of the state of the system, ρs, during this dynamics is

described by a quantum master equation (QME) of the form

ρ̇s = −
i

~
[HS , ρ] +D(ρ), (5)

where D(.) represents the dissipator, emerging due to the spin-

bath interaction. The state of the system, ρs(t), as a function

of t is obtained as the solution of the QME.

We consider each of the local thermal baths Bi to be a

collection of harmonic modes with a Hamiltonian Hb =
∫ ωm

0
dωa†ωaω , where aω (a†ω) is the annihilation (creation)

operator corresponding to the harmonic mode of energy ω,

obeying
[

aω, a
†
ω′

]

= δ(ω − ω′), and ωm is the maximum

ω. The total interaction between the spins and their cor-

responding baths is represented by the Hamiltonian Hsb =
∑N

i=1

∑

ω

(

σ+
i ⊗ aω + σ−

i ⊗ a†ω
)

, where σ+
i and σ−

i are the

raising and lowering operators of the i-th spin respectively.

The dynamical term in the QME (Eq. (5)) takes the form [62]

D(ρ) =
∑N

i=1 Di(ρ), with

Di(ρ) = Γi

[

(ni
ω + 1)

(

σ−
i ρσ

+
i −

1

2
{σ+

i σ
−
i , ρ}

)

+ni
ω

(

σ+
i ρσ

−
i −

1

2
{σ−

i σ
+
i , ρ}

)

]

, (6)

in the case of the Markovian spin-bath interactions

at the strict weak-coupling limit given by hi,Γi ≫
max{Jxy

i,i+1, J
z
i,i+1, J

dm
i,i+1}. In Eq. (6), ni

ω being the occupa-

tion number of the Bose-Einstein distribution corresponding

to bath Bi given by ni
ω = (e~ω/kBT 0

i − 1)−1, with ω = 2~hi,

and Γi being a constant. Note that the Lindblad operators

represented by σ±
i here signifies local transitions among the

eigenstates of the subsystem i, and the QME in such situa-

tions belongs to the class of local master equations. It is also

important to note that in such scenarios, a violation of the sec-

ond law of thermodynamics may take place, implying that a

local quantum master equation may not always be appropriate

to describe the stationary non-equilibrium properties of the

system (see Refs. [63–65]). Therefore, in the case of the lo-

cal quantum master equation, the results should be interpreted

carefully, and there have been proposals for rectifying this is-

sue by constructing the master equation in a different fash-

ion [66].

On the other hand, in the strong-coupling limit, the spin-

interaction strengths are comparable to the strengths of the

local magnetic fields, and the dynamical term corresponding

to spin i in Eq. (5) takes the form as [20]

Di(ρ) =
∑

ω>0

γω
i

[

(

Ai
ωρA

i†
ω −

1

2
{Ai†

ωA
i
ω, ρ}

)

+
(

Ai†
ω ρA

i
ω −

1

2
{Ai

ωA
i†
ω , ρ}

)

]

, (7)
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FIG. 3. (Color online) Variation of heat current and steady-state temperature (vertical axis) as functions of the strength of the spin-

exchange interactions (horizontal axis). In figure (a) and (b), we plot heat current and temperature of spin 1 with increasing XX-interactions

(squares) where Jdm = 0 and with the increase of DM interactions, Jdm (circles) having Jxy = 0.02 6= 0. Hollow and solid symbols (squares

as well as circles) represent ordered and disordered spin models respectively. Other parameter of the systems, namely magnetic field strengths

and the spin-bath interactions are chosen as h1 = 1.1, h2 = 1.3 and Γ = 0.05, and the initial temperature of each spin is T1(0) = 1 and

T2(0) = 1.1 respectively. Here γ = 0. All the axes are dimensionless.

where the operator Ai
ω , given by

eiHSt(σ+
i + σ−

i )e
−iHSt = 2

∑

ω

Ai
ωe−iωt (8)

are the Lindblad operators on the spin i corresponding to the

transition of energy ω among the energy levels of the system,

and is derived by decomposing the spin-part of Hsb in the

eigenbasis of HS . Note that in contrast to the previous case of

local master equation, the Lindblad operators here correspond

to the transitions among the eigenstates of the entire system,

and the QME in this situation is a global one. The coefficient

γω
i is the transition rate corresponding to the energy gap ω for

the spin i, where

γω
i = fi(ω)[1 + κi(ω)], for ω ≥ 0,

γω
i = fi(|ω|)κi(|ω|), for ω < 0, (9)

with fi(ω) = αiωe−
ω
Ω , with Ω being the cut-off frequency

and κi(ω) =
(

e~βiω − 1
)−1

representing the Ohmic spec-

tral function and the Bose-Einstein distribution, respectively.

Here, αi is a constant for the bath, i, quantifying the strength

of the spin-bath interaction strength. In order for the Marko-

vian approximation to be valid, we restrict the values of αi

such that max{αi} ≪ 1. Here, the second law of thermody-

namics is always valid. However, care must be taken while

constructing quantities that are local to a subsystem of the

quantum spin model. We shall elaborate on this in Sec. IV A.

C. Local Refrigeration

If the N -spin system operates as a refrigerator for the spin

i, then the heat current,

Q̇i = Tr[HSDi(ρs)], (10)

corresponding to the spin i in the steady state is positive [1,

20, 21]. This represents a situation where heat flows from the

bath Bi to the spin i, which is at a lower temperature than T 0
i

in the steady state. This can also be visualized by defining a

local temperature for the spin i [15] as follows. At t = 0, the

initial state of the i-th spin is a diagonal state, which can be

written in the eigenbasis of σz , {|0〉, |1〉}, having eigenvalues

1 and −1 respectively, as ρ0i = τ0i |0〉〈0| + (1 − τ0i ) |1〉〈1|,
where τ0i = exp

(

−2β0
i hi

)

/[1 + exp
(

−2β0
i hi

)

]. During the

dynamics, the forms of the Lindblad operators (see Sec. II B)

ensure that the single-spin density matrix

ρi(t) = Tr j,k( 6=i)
j,k=1,2,3

[ρs(t))] , (11)

at every time instant t, remains diagonal, i.e., ρi(t) =
τi(t) |0〉〈0| + (1 − τi(t)) |1〉〈1|, while τi(t) varies with time

starting from τi(0) = τ0i . It allows us to define a local tem-

perature of the spin i as

Ti(t) =
2hi

ln
[

τi(t)
−1

− 1
] (12)

at every time t, which is in agreement with the initial temper-

ature Ti(0) of the spin i to be equal to T 0
i .

A local steady-state cooling of the spin i is achieved if

T s
i = Ti(t → ∞) < T 0

i (13)

at any t > 0. Note, however, that as of now, no specific corre-

lation between the values of Q̇i and T s
i exists as we will also

show here. In the subsequent sections, we demonstrate the sta-

tus of the local refrigeration of a spin in the (two-) three-spin

system via the heat current as well as the local temperature

corresponding to the chosen spin, by appropriately tuning the

system as well as the spin-bath interaction parameters.
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FIG. 4. (Color online) Three-spin refrigerator: (a) Q̇1 and (b) T s
1 as functions of different spin-exchange interaction strengths where

gi,i+1 = g ∀i ∈ [1, 2, 3]. The other relevant parameters, which are kept constant, are chosen as follows. For g̃ ≡ Jxy , Jz = 0.019 and

Jdm = 0 (circles). When g̃ ≡ Jz , Jxy = 0.073, and Jdm = 0 (crosses) while for g̃ ≡ Jdm, Jxy = 0.073, and Jz = 0 (squares). In all

these cases, the local magnetic fields corresponding to the individual spins are fixed to h1 = 1.11, h2 = 2.82 and h3 = 3.65, and the values

of the spin-bath interaction parameters are Γ1 = 0.0639, Γ2 = 0.0984, and Γ3 = 0.0673. All the axes are dimensionless.

III. A TWO-SPIN QUANTUM REFRIGERATOR: ORDER

VS. DISORDER

We begin our discussion with a two-spin refrigerator model

(see Fig. 1 where the third spin and its corresponding bath,

B3, are absent), where we focus on the local refrigeration of a

chosen spin in the system. For the purpose of demonstration,

we choose spin 1 to be cooled, although the system as well

as the environment parameters can be chosen appropriately

to locally cool any one of the spins. To ensure that the two-

spin thermal machine operates as a refrigerator for the spin 1,

we exhibit Q̇1 > 0 as well as T s
1 < T 0

1 by properly tuning

the parameter values. Note that maintaining Q̇1 > 0 alone

describes a situation that includes all the operating regimes

(see Ref. [21] for three-spin refrigerator) corresponding to the

two-spin thermal machine that refrigerates spin 1.

A. Ordered Spin models as Refrigerator

Transverse XY model. Let us first consider XY type

spin-exchange interaction between the spins so that HS =
HF +Hxy for N = 2 (see Eqs. (1)-(2)), where we set γ = 0
for demonstration. Solving Eq. (5) for the two-spin refriger-

ator model via local master equation, followed by the calcu-

lation of the local density matrix for spin 1, leads to the local

temperature of spin 1 as T1(t) = 2h1/ ln[σ11(t)
−1 − 1] (see

Appendix A). Notice that when HS represents a classical Ising

model in a parallel magnetic field and the initial state of the

system is a diagonal one, the system does not evolve under the

local master equation, implying that a local refrigeration of the

spin 1 is absent. Note also that under the strict weak-coupling

limit (see Sec. II B) where the spin-interactions are negligible

compared to both the local magnetic fields and the dissipa-

tion rates, our numerical analysis does not find any point in

the parameter space for which a local cooling for spin 1 can

take place. This motivates us to relax the weak-coupling con-

dition as hi > Jxy ∼ Γi (see Ref. [18]), where significant

subspace in the parameter space of the system is found where

the designed refrigerator demonstrates cooling in spin 1. This

is a feature valid for both two- and three-spin refrigerators,

and from now onward, unless otherwise mentioned, we use

the relaxed weak-coupling condition in terms of appropriate

spin-interaction strengths (i.e, a subset of {Jz, Jxy, Jdm}) to

investigate the performance of refrigerators.

The observations obtained for the two-spin refrigerator

modeled via a spin system other than the classical Ising model

are the following:

1. A non-zero XY interaction strength, Jxy , results in an

evolution of the system, leading to a local cooling of

spin 1, irrespective of the value of Jz . In Fig. 2, the

dynamics of the local temperature of the spin 1 in a two-

spin refrigerator is depicted, thereby demonstrating a

local steady-state cooling.

2. Interestingly, we find that even when ∆T = T 0
2 −T 0

1 =
0, a steady state cooling occurs where an energy bias is

given to the system in terms of two unequal strengths

of the magnetic field to the individual spins. More im-

portantly, we report that vanishing ∆T proves to be ad-

vantageous with respect to cooling than that of a non-

vanishing ∆T (see Ref. [67]) if we suitably adjust the

parameters of Hs and the spin-bath interaction strength

(comparing solid and dashed lines of Fig. 2).

3. The heat current (the steady-state temperature) remains

almost constant when the strength of the spin-exchange

interaction is ≤ 10−2, and increases with an increase

in the value of Jxy within the weak-coupling limit

(≤ 10−1), irrespective of the presence of the interac-
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FIG. 5. (Color online) Scattered plot of Q̇1 (ordinate) against

T 0
1 − T s

1 (abscissa) of the three-spin XXZ refrigerator. The val-

ues of the local magnetic fields, {h1, h2, h3}, corresponding to the

individual spins are chosen uniformly from [1.1, 5] while the val-

ues of the spin-bath interaction parameters {Γ1,Γ2,Γ3} as well as

the spin-exchange interaction strengths {Jxy, Jz} are chosen from a

uniform distribution of range [0, 10−1]. Here T 0
1 = 1, T 0

2 = 2 and

T 0
3 = 3. Among 104 choices of parameters, only 4.11% points are

displayed for which local temperature of the first spin is lower than

unity. Results indicate that there is no monotonic relation between

them. Both the axes are dimensionless.

tions in the z-plane, i.e., independent of the values of

Jz . The variation of the heat current and the steady-

state temperature of the spin 1 against the strength of the

spin-exchange interaction Jxy is depicted in Figs. 3(a)-

(b).

Remark 1. The amount of steady-state cooling achieved

in the two-spin refrigerator is very small in magnitude, and it

possibly indicates that one has to go beyond the local master

equation to achieve a significant steady-state cooling of the

spin 1.

Remark 2. The trend remains unchanged for γ ≈ 0, with

negligible effect on the amount of steady-state cooling at-

tained during the refrigeration of spin 1. On the other hand,

when γ → 1, the performance of the refrigerator diminishes.

Hence the entire analysis in the rest of the paper is performed

for the spin model with γ = 0.

Transverse XY model with DM interaction. To answer

the question as to whether a change in the type of the spin-

exchange interaction between the two spins affect the per-

formance of the two-spin refrigerator, we add an asymmetric

spin-spin interaction, specifically, the DM interaction in the

system Hamiltonian, i.e., Hs = Hxy +Hdm. We explore the

behaviors of Q̇1 and T s
1 as functions of Jdm, where Jxy is

kept fixed.

Our analysis clearly indicates that the qualitative behaviors

of both the quantities, heat current as well as the steady-state

temperature observed in the XX model, remain the same even

in the presence of DM interactions although the slight im-

provement in terms of cooling can be seen in presence of

asymmetric DM interactions, especially when the coupling

constant is weak (of the order of 10−2) (see Fig. 3) . The local

temperature dynamics of spin 1 is shown in Fig. 2, while the

variation of the heat current and the steady-state temperature

of spin 1 with increasing Jdm is plotted in Fig. 3.

B. Robustness in Disordered Two-spin Refrigerator

Let us now determine the response of the performance

of the machine against disorder in the two-spin refrigerator

model. As mentioned in Sec. II A, impurities are introduced

in this model by choosing random spin-exchange interaction

strengths, g, from a Gaussian distribution with a mean 〈g〉 and

standard deviation σg , keeping the values of the local mag-

netic fields fixed. In this paper, either Jxy or Jdm is chosen to

be random, by keeping the other coupling constants ordered.

Notice that a vanishing standard deviation reduces to a per-

fectly ordered system discussed above.

For each random parameter configuration constituted of a

random value of the spin-exchange interaction strength cor-

responding to a random realization of the system, one can

compute the quantities of interest, and subsequently take an

average of the quantity over a statistically large number of pa-

rameter configurations, known as quenched averaging of the

physical quantity. Mathematically, the quenched averaging of

a physical quantity, Q, can be represented as

〈Q (〈g〉, σg)〉 =

∫

P(g)Q(g)d(g), (14)

where g is the parameter values of which are chosen from a

Gaussian distribution (P(g)) of mean 〈g〉 and standard devia-

tion σg quantifying the strength of the disorder. Note that no

restrictions on the possible values of the exchange interactions

are imposed in order to keep the two-spin thermal machine op-

erating in a specific working region, and a change in the values

of the system parameters may, in principle, shift the two-spin

thermal machine from one working region like absorption re-

frigerator to another such as external source driven thermal

machine.

We investigate the patterns of quenched averaged heat cur-

rent, 〈Q̇1〉 and steady-state temperature, 〈T s
1 〉 with the in-

crease of 〈Jxy〉 or 〈Jdm〉 where the averaging is performed

over 2× 103 realizations by keeping the value of the strength

of disorder fixed at 2× 10−2. As shown in Fig. 3, we demon-

strate that for small 〈Jxy〉 (〈Jdm〉), the quenched steady-state

temperature (the quenched heat current) is smaller (higher)

than that obtained via ordered spin model as refrigerator. It is

also clear from the figure that the overall performance of the

refrigerator remains qualitatively as well quantitatively simi-

lar in presence of any amount of disorder in exchange inter-

actions, thereby establishing a robustness of the refrigerator

model against impurities.

These results provide certain insight of how a small quan-

tum refrigerator may behave when designed using low-

dimensional quantum spin Hamiltonian, and when disorder

is present in the system. However, it is not clear whether

these trends remain the same when one considers the tradi-
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FIG. 6. (Color online) Ordered vs. disordered spin models as refrigerator (a)-(b): For g̃ ≡ 〈Jxy〉, Jz = 0.019 and Jdm = 0 with

σJxy = 5× 10−2 (dashed line with solid squares). When g̃ ≡
〈

Jdm
〉

, Jxy = 0.073, and Jz = 0 while σJdm = 5× 10−2 (dashed line with

solid circles). The quenched averaging is performed over 2× 103 random configurations, chosen from Gaussian distribution with mean g̃ and

standard deviation, σg̃ . The similar set of parameters are also used for the ordered system (hollow circles and squares). All other specifications

are same as in Fig. 4. (c)-(d) 〈Q̇1〉 and 〈T s
1 〉 with varying the strength of disorder, σg̃ and Jdm = 0.02. Other specifications are similar to

(a)-(b). All the axes are dimensionless.

tional three-spin refrigerator. We explore this in the next sec-

tion.

IV. THREE-SPIN REFRIGERATOR BASED ON

QUANTUM SPIN MODEL

In order to check whether the results of the two-spin refrig-

erator remains qualitatively valid also for the widely studied

three-spin refrigerator, we first explore the case of identical

spin-exchange interactions between all spins, i.e, gi,i+1 = g
∀i ∈ [1, 2, 3], where g stands for different types of spin-

exchange interactions (see Secs. II A and III B). For brevity,

we denote Jxy
i,i+1 = Jxy , Jz

i,i+1 = Jz , and Jdm
i,i+1 = Jdm for

all i.
Unless otherwise stated, we assume the constraint T 0

1 ≤
T 0
2 ≤ T 0

3 for the bath temperatures, and always choose their

values as T 0
1 = 1, T 0

2 = 2, T 0
3 = 3 for demonstration. By fix-

ing the strengths of the magnetic fields, we study the response

of the machine on the local cooling phenomena, specifically

in terms of Q̇1 as well as T s
1 , when interaction strengths, Jxy ,

Jz , and Jdm are varied in the range [10−3, 10−1] (see Fig. 4).

Notice that a stark difference between the two- and the three-

spin refrigerators is that for the latter, there are possibilities

to choose different interaction strengths between spins, i and

i + 1, i = 1, 2, 3. In this work, we take them to be site-

independent although site-dependence does not substantially

effect the cooling procedure as we will see in the succeeding

subsection.

Role of interaction strength on refrigeration. The observa-

tions for the three-spin refrigerators are quite similar to the

two-spin ones and can be divided into three categories – (1)

increase of Jz while Jxy 6= 0, Jdm = 0; (2) variations of Jxy

with fixed Jz and Jdm = 0, leading to the XY Z-refrigerator;

(3) change of Jdm by fixing Jxy with Jz = 0 which can

be referred as the XYDM -refrigerator. In the first case, the

presence of a non-zero xy interaction in the system results

in a slow variation of Q̇1 with Jz , while the corresponding

change in the steady state temperature T s
1 of spin 1 is van-

ishing (see Fig. 4(b) for the behavior of T s
1 corresponding to

the data presented in Fig. 4(a)). The increase (decrease) of

Q̇1 (T s
1 ) becomes more prominent in the second and the third

scenarios. As pointed out in the case of two-spin refrigera-

tor, the refrigeration can be improved by varying DM interac-

tion strength compared to the XXZ-refrigerator as depicted

in Fig. 4. In all these calculations, we fix γ = 0 in Hxy (i.e.,

XX model) since our data suggests that a non-zero value of

γ in the neighborhood of XX model has no significant ef-

fect on the refrigeration of spin 1 and the performance of the

refrigerator degrades with the increase of γ.

As it is clear from Figs. 4(a) and (b), there is little or no

variation of Q̇1 and T s
1 as a function of the spin exchange in-

teractions, when the interaction strength is ≤ 10−2. Beyond

10−2, the variations of Q̇1 and T s
1 increase with increasing

the spin-exchange interaction strength. Also, it is important

to note that in the strictly weak-coupling regime, the local re-
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frigeration obtained in spin 1 is negligible, although the three-

spin machine operates in the refrigerator region for spin 1.

These findings suggest that in order to obtain a significant

cooling in terms of the temperature of spin 1, one needs to

explore beyond the local master equation, as was also indi-

cated by the results on the two-spin refrigerator. To inves-

tigate whether significant cooling can be found beyond this

local master equation domain, we relax the weak-coupling

condition to hi > max{Jxy, Jz, Jdm}, and find that a con-

siderable steady state cooling may indeed be present in such

situations. See Fig. 7 for a typical example, where we have

set Jxy, Jz 6= 0 and Jdm = 0.

Connecting heat current with local temperature in three-

spin model based refrigerator. Let us here address the ques-

tion – whether a high positive value of Q̇1 always implies a

low value of steady-state temperature in a specific spin.. To

demonstrate it, we choose 104 random parameter configura-

tions of the three-spin refrigerator, where the system Hamil-

tonian is represented by HS = HF + Hxy + Hz , and we

assume gi,i+1 = g ∀i ∈ [1, 2, 3], where g ≡ Jxy, Jz . The

random values of the spin-exchange interaction strengths, and

the spin-bath coupling strengths Γi, ∀i ∈ [1, 2, 3], are cho-

sen from a uniform distribution within [0, 10−1]. In the scat-

ter diagram presented in Fig. 5, each point represents a three-

spin thermal machine performing local refrigeration for spin

1, which is indicated by T 0
1 − T s

1 > 0 and Q̇1 > 0. It is clear

from the corresponding amounts of the steady-state cooling

that no specific correlation exists between T 0
1 − T s

1 and Q̇1.

Specifically, a very low value of heat current can lead to a sub-

stantially low steady-state temperature and vice-versa. Note

also that only about 4.11% of the 104 randomly chosen points

result in Q̇1 > 0, which remains almost unchanged even in

the presence of an additional DM term in HS (in this case,

the percentage is 3.25%). It again indicates the scarcity of a

working three-spin refrigerator providing a significant amount

of cooling by considering local master equation, which indi-

cates the importance of identifying the subspace in the entire

parameter space for designing a small quantum refrigerator

using the chosen quantum spin models.

A. Disorder-enhanced Refrigeration in Three-spin Systems

We will now examine how impurities arising naturally in

the spin model affect the refrigeration. To incorporate impuri-

ties in this three-spin refrigerator model, interaction strengths,

i.e., Jxy
i,i+1 and Jdm

i,i+1 are taken to be site-dependent and are

chosen randomly from the Gaussian distribution with mean,

〈Jxy〉, and 〈Jdm〉) having standard deviation, σJxy and σJdm

respectively. The magnetic fields are fixed to the same value

mentioned in the ordered case (see Fig. 4). Finally we com-

pute the quenched averaged heat current, 〈Q̇1〉 and quenched

steady-state temperature, 〈T s
1 〉 of spin 1 by averaging over

2× 103 random configurations for a given strength of the dis-

order. Both with the random XY as well as DM interaction

strength, i.e., for a given 〈Jxy〉 or 〈Jdm〉 and their correspond-

ing σJxy (σJdm ), we report that

〈Q̇1〉 > Q̇1 and 〈T s
1 〉 < T s

1 , (15)

which establishes the disorder-induced thermal device al-

though the increase (decrease) of heat current (temperature

of the first spin) is small. It should be noted that although

in Figs. 6(a)-(b), we depict the enhancement of cooling fea-

ture by using disordered three-spin refrigerator over its or-

dered counterparts by choosing exemplary values of magnetic

fields and other interaction strengths, the characteristics re-

main same even for other range of parameters in the local

master equation. Therefore, as argued in case of two-spin re-

frigerator, our analysis clearly indicates that the spin model as

thermal machine is robust against impurities.

A comment on the significance of the enhancement of the

cooling phenomena in the disordered refrigerator is in order

here. For brevity of the notation, let us again denote the dis-

ordered spin-interaction strength by g, where in the present

work, we choose g to be either Jz , or Jxy (see also Sec. III B,

and Figs. 3,4,6, and 7). Let us denote by g0 the value of g for

which

Q̇1(g0) = max Q̇(g),

T s
1 (g0) = minT s

1 (g),

where the maximization and minimization is performed over

the entire range of g satisfying the weak-coupling constraint,

and by definition, 〈Q̇1〉 ≤ Q̇1(g0) and 〈T s
1 〉 ≥ T s

1 (g0). This

can interpret the results reported in Figs. 6(c)-(d) as being far

from the optimal value g0 of g. Note, however, that under

local master equation, Q̇1 (T s
1 ) increases (decreases) mono-

tonically with g, and g0 is the point g0 = 10−1 in the chosen

range of g. While finding 〈Q̇1〉 ≤ Q̇1(〈g〉) (〈T s
1 〉 ≥ T s

1 (〈g〉))
is likely for such monotonically increasing (decreasing) be-

haviour of Q̇1 (T s
1 ) when 〈g〉 is far from g0, such straight-

forward predictions can not be made for quantities that vary

non-monotonically with g. This highlights the importance of

investigating the possibility of enhancement (decrease) in the

value of Q̇1 (T s
1 ).

Effects of strength of disorder on refrigeration. To probe

further, let us check the role of the magnitude of the dis-

order on the observed robustness. We systematically in-

crease the value of the disorder-strength up to 10−1, and ob-

serve that with increasing strength of the disorder, the average

value of the heat current of the first spin attains a more posi-

tive value, while the steady-state temperature becomes lower

(see Figs. 6(c)-(d)) than that of the model with low disorder-

strength. It clearly exhibits an advantage to attain a lower

steady-state temperature of the refrigerated spin in the pres-

ence of disorder where one is forced to operate a small quan-

tum thermal machine made of three spins as a refrigerator.

Beyond weak-coupling limit. All the results obtained till

now strongly pinpoints that spin-exchange interaction strength

beyond the weak-coupling limit aids in attaining a lower

steady-state temperature of the refrigerated spin. This poses

the natural question as to whether a quantum refrigerator in

the strong-coupling domain performs advantageously to ob-

tain an even lower steady-state temperature. It is also logi-

cal to ask whether the robustness of the three-spin refrigera-

tor against disorder remains unaltered in the strong coupling

regime. Our numerical study of the three-spin refrigerator in

the strong coupling limit using the global master equation, as
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FIG. 7. (Color online) Study of refrigeration with global master equation. (a) Q̇1 for the ordered spin model and 〈Q̇1〉 for the disordered

ones vs. g̃. (b) Steady-state temperature and its quenched averaged one with varying interaction strengths. Both for disordered and ordered

situations, when g̃ ≡ Jxy or ≡ 〈Jxy〉, Jz = −0.55 and Jdm = 0 (solid squares for disordered and hollow squares for ordered) while g̃ ≡ Jz ,

or ≡ 〈Jz〉, Jxy = −0.4, and Jdm = 0 (solid circles and hollow circles for disordered and ordered respectively). Initial temperatures are same

as in other three-spin refrigerators. Here h1 = 0.1, h2 = 1.5, h3 = 1.4, and α1 = 10−4, α2 = 10−3, and α3 = 10−2. In the disordered-case,

averaging is performed over 5× 102 configurations. All the axes are dimensionless.

described in Sec. II B, answers both the questions positively.

Both in ordered as well as disordered scenarios, we find that

the steady-state temperature and the corresponding quenched

averaged temperature of the first spin can substantially be de-

creased in the strong-coupling domain compared to that ob-

tained in the weak-coupling limit. In Fig. 7, the patterns of the

steady state temperature, T s
1 as well as 〈T s

1 〉 by varying the

corresponding interaction strengths, Jxy or Jz , are depicted

by fixing local magnetic fields of all the spins comparable to

the coupling constants. Note here that due to numerical lim-

itations, we perform here quenched averaging over 5 × 102

configurations. In this regime also, we exhibit that effects of

randomness in interaction strengths on the physical quantities

quantifying the performance of the thermal machine is not sig-

nificant, thereby supporting our claim of the robustness of the

quantum refrigerator against quenched disorder.

While the robustness of local cooling in the disordered re-

frigerator is a common feature in both local and global master

equations, an interesting difference between these two situa-

tions emerge from Fig. 7. Note that in the ordered case, a

lower steady-state temperature for spin 1 can be obtained by

varying Jz for a fixed value of Jxy , compared to the situation

when Jxy is varied keeping Jz fixed. The situation alters after

a certain threshold value of the varying parameter. A higher

enhancement of cooling, in terms of both heat current as well

as local temperature of spin 1, is also obtained when disorder

is present in Jz , compared to when Jxy is disordered. These

observations indicate that Jz occasionally outperforms Jxy in

enhancing the performance of the refrigerator. In the same

context, note that the results reported on the weak-coupling

range of the spin-interaction strengths remain invariant under

changing the value of Jz from a zero to a non-zero value.

However, under global master equation, the performance of

the refrigerator depends qualitatively (i.e., in terms of pres-

ence or absence of cooling) as well as quantitatively (i.e., in

terms of the amount of cooling obtained) on the value of Jz .

This is justified by the result that for a fixed non-zero value

of Jxy (for instance, when −0.65 ≤ Jxy ≤ −0.45), the

system may also exhibit a steady-state heating of spin 1 at

Jz = 0, and a local cooling of spin 1 starts to appear only

when Jz ≤ Jz
c , where Jz

c is a critical value of Jz that de-

pends on the chosen value of Jxy .

Before concluding, let us point out that the heat current for

spin 1 in the strong-coupling scenario is negative, which is in

contrast to a positive heat current expected for a spin, under-

going a local cooling. Note that the strong-coupling scenario

corresponds to a global approach of constructing the quantum

master equation (see Sec. II B). In view of this, one needs to be

careful in defining the heat current, since a definition in terms

of the local Hamiltonian, given by Q̇i = Tr(Hi
FLi(ρ)), where

Hi
F and Li(ρ) are respectively the local Hamiltonian and the

dissipating term corresponding to the subsystem i, may not be

appropriate for the validity of the balance equation given by

∆ =
dS

dt
−

∑

i

Qi

kBTi
, (16)

which, in turn, ensures the validity of the second law of ther-

modynamics [63–65, 67]. Here, ∆ and S respectively are the

entropy production rate and the entropy of the system, Qi is

the heat-flow from the system to the ith bath, kB is the Boltz-

mann constant, and Ti is the absolute temperature of the bath

i. This implies that the determination of Q̇i requires a careful

analysis (see, for example, Ref. [68]), and in an effort to avoid

the inconsistency arising from defining the heat currents using

the local Hamiltonian, we have used the full system Hamilto-

nian HS , including both the local and the interaction parts, to

define the heat current as Q̇i = Tr(HSLi(ρ)). It is impor-

tant to stress here that although one is interested in the local

properties of the refrigerator, in a global approach, the dy-

namics of the system is determined as a whole, and extracting

information about a specific subsystem is non-trivial due to
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the strong interactions between individual subsystems. How-

ever, this does not affect the main thesis of this paper, since

local cooling of spin 1 is seen in both cases of the local and

global master equation approach.

V. CONCLUSION

A potential method to build a small scale quantum ther-

mal machines is via quantum spin models which can be im-

plemented by using physical substrates like trapped ions and

neutral atoms in optical lattices. We chose this avenue to de-

sign quantum refrigerators consisting of two and three spins

based on nearest-neighbour quantum XY Z model as well as

quantum XY model with DM interactions. The initial state

of the device is prepared in the thermal equilibrium states of

the individual spins which are attached with their respective

local baths, and their interactions are turned on during the dy-

namics which is the refrigeration process. In this paper, the

interaction strength is considered to be both ordered as well

as disordered. Our aim is to show the reduction of local tem-

perature in one of spins at the steady state, thereby exhibiting

the refrigeration. We call this device to be a refrigerator when

the temperature of that spin is lower than the minimum of the

initial temperatures of all the spins.

By considering the local master equation, we found that the

cooling of one of the spins occurs when the parameters of the

ordered spin models are appropriately tuned. Specifically, we

observed that DM interactions help to reach lower tempera-

ture than that of the XY Z model while interactions in the

z-plane of the XY Z model does not help at all. During the

preparation procedure of the spin model, it is quite natural to

have impurities in the system and hence refrigeration should

be effected by the disorder. We observed that both in two-

and three-spin refrigerator models, instead of decreasing the

performance, disorder in the interaction strength can help to

increase the figures of merits for refrigeration, although the

advantage is not significant. It clearly illustrates that the spin

model-based quantum thermal machines are robust against

impurities. We finally showed that the robustness against dis-

order can also be confirmed beyond the weak-coupling limit

which is by investigating the global master equation. In fu-

ture, it will be interesting to study whether the robustness ob-

served against disorder on quantum spin model-based thermal

devices remains valid for other spin models having different

intricacies.
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Appendix A: Quantum master equation for the two-spin model

For a two-spin model, let us consider the general form of

the density matrix at time t, given by

ρ(t) =







ρ11(t) ρ12(t) ρ13(t) ρ14(t)
ρ21(t) ρ22(t) ρ23(t) ρ24(t)
ρ31(t) ρ32(t) ρ33(t) ρ34(t)
ρ41(t) ρ42(t) ρ43(t)) ρ44(t)






, (A1)

where ρij(t) = aij(t) + ibij(t), ∀ i 6= j and ρii(t) = aii(t),
∀ i = j, both aij(t) and bij(t) being real. Consider the initial

state of the system to be ρ0 = ρ01⊗ρ02, where ρ0i = τ0i |0〉〈0|+
(1− τ0i ) |1〉〈1| with τ0i = exp

(

−2β0
i hi

)

/[1+ exp
(

−2β0
i hi

)

],
i = 1, 2. Time-evolution of this state, according to Eqs. (5)-
(6), with HS = HF + Hxy (γ = 0), can be determined by
solving the 16 coupled differential equations, given by

ȧ11 = Γ[a33n
1
2h1

− a11(2 + n1
2h1

+ n2
2h2

) + a22n
2
2h2

]; ȧ12 = Γ[−a12(1.5 + n1
2h1

+ n2
2h2

) + a34n
1
2h1

]− 2b13J + 2b12h2;

ḃ12 = Γ[−b12(1.5 + n1
2h1

+ n2
2h2

) + b34n
1
2h1

] + 2a13J − 2a12h2; ȧ13 = Γ[−a13(1.5 + n1
2h1

+ n2
2h2

) + a24n
2
2h2

]− 2b12J + 2b13h1;

ḃ13 = Γ[−b13(1.5 + n1
2h1

+ n2
2h2

) + b24n
2
2h2

] + 2a12J − 2a13h1; ȧ14 = −Γa14(1 + n1
2h1

+ n2
2h2

) + 2b14(h1 + h2);

ḃ14 = −Γb14(1 + n1
2h1

+ n2
2h2

) + 2a14(h1 + h2); ȧ22 = Γ[a11(1 + n2
2h2

)− a22(1 + n1
2h1

− n2
2h2

) + a44n
1
2h1

]− 4b23J ;

ȧ23 = −Γa23(1 + n1
2h1

+ n2
2h2

) + 2b23(h1 − h2); ḃ23 = −Γb23(1 + n1
2h1

+ n2
2h2

) + 2J(a22 − a33)− 2a23(h1 − h2);

ȧ24 = Γ[a13(1 + n2
2h2

)− a24(0.5 + n1
2h1

+ n2
2h2

)] + 2b34J + 2b24h1; ḃ24 = Γ[b13(1 + n2
2h2

)− b24(0.5 + n1
2h1

+ n2
2h2

)]− 2a34J − 2a24h1;

ȧ33 = Γ[a11(1 + n1
2h1

)− a33(1 + n1
2h1

+ n2
2h2

)a44n
2
2h2

] + 4b23J ; ȧ34 = Γ[a12(1 + n1
2h1

)− a34(0.5 + n1
2h1

+ n2
2h2

)] + 2b24J + 2b34h2;

ḃ34 = Γ[b12(1 + n1
2h1

)− b34(0.5 + n1
2h1

+ n2
2h2

)]− 2a24J − 2a34h2; ȧ44 = Γ[a22(1 + n1
2h1

) + a33(1 + n2
2h2

)− a44(n
1
2h1

+ n2
2h2

)].

with n1
2h1

= 1/(exp
(

2β0
1h1

)

− 1) and n2
2h2

=

1/(exp
(

2β0
2h2

)

− 1) (see Eq. (6) and the following discus-

sion.). Notice that the above coupled differential equations

will be changed when Hs = HF + Hxy + Hdm. The time-
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dependent density matrix ρ(t) of the two-spin system reads as

ρs(t) =







ρ11(t) 0 0 0
0 ρ22(t) ρ23(t) 0
0 ρ32(t) ρ33(t) 0
0 0 0 ρ44(t)






. (A2)

Tracing out spin 2, the local density matrix of spin 1 takes the

form,

ρ1(t) =

[

σ11(t) 0
0 σ22(t)

]

, (A3)

where σ11(t) = ρ11(t)+ρ22(t) and σ22(t) = ρ33(t)+ρ44(t).
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