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The correspondence between the edge theory and the entanglement spectrum is firmly established
for the chiral topological phases. We study gapped, topologically ordered, non-chiral states with a
conserved U(1) charge and show that the entanglement Hamiltonian contains not only the infor-
mation about topologically distinct edges such phases may admit, but also which of them will be
realized in the presence of symmetry breaking/conserving perturbations. We introduce an exactly
solvable, charge conserving lattice model of a Z2 spin liquid and derive its edge theory and the
entanglement Hamiltonian, also in the presence of perturbations. We construct a field theory of
the edge and study its RG flow. We show the precise extent of the correspondence between the
information contained in the entanglement Hamiltonian and the edge theory.

I. INTRODUCTION

One of the remarkable properties of topological states
of matter is the intimate relationship between the physics
of the bulk and of the surface. Customarily referred to as
the bulk-edge correspondence, this relationship severely
restricts the possible edge theories to those compatible
with the bulk order. Conversely, the bulk topological
properties, such as the charge of the elementary excita-
tions, can be revealed in measurements on the surface [1–
4].

First introduced in the seminal work of X.-G. Wen [5]
in the context of fractional Quantum Hall (FQHE) states,
the correspondence directly linked the K-matrix specify-
ing the Chern-Simons field theory of the gapped bulk
with a corresponding matrix describing the structure of
gapless chiral Luttinger liquids on the edge. The corre-
spondence is not, however, restricted to chiral topological
states: it also applies to symmetry-protected topological
states (SPTs) [6, 7] and even, in a weaker form, to fully
gapped topological orders. It is well known, for instance,
that a Z2 spin liquid admits exactly two topologically
distinct kinds of gapped edges, whose nature is related
to properties of bulk spectrum [8]. The latter example
demonstrates that the correspondence is in fact one-to-
many: a single topologically ordered bulk can, in general,
support several distinct phases of the edge [9–11].

If symmetry is present, it can constrain the allowed
edge phases [12, 13]. Thus, the edges of a topologically
ordered phase with a given transformation law of the ele-
mentary quasi-particles under the symmetry (also known
as a “symmetry-enriched topological phase” [14–19]) is
expected to have a generic phase diagram, with several
different phases separated by sharp transitions. These
considerations have been used to predict dramatic physi-
cal effects at the gapped edges of a Z2 quantum spin liq-
uid with fractionalized spinon and holon excitations [13].
Arguments for the generic phase diagram of the edge and
the effects of symmetry breaking perturbations have been
put forth; however, a concrete model that can flesh out
the edge effective Hamiltonian and phase diagram has

been lacking.
More recently a new avenue for research of topologi-

cal states has been opened involving the study of their
entanglement properties [20–29]. In particular, the en-

tanglement spectrum of topological phases, obtained by
bi-partitioning the system and diagonalizing the density
matrix of a one of the subsystems, has been shown to
contain analogous information to that of the physical
edge[30]. This striking observation was proven in general
for chiral topological states using the methods of bound-
ary conformal field theory[31]. The relation between the
entanglement spectrum and the physical edge extends to
SPT phases, as well [32, 33]. Many works investigating
the entanglement spectra of topological phases have fol-
lowed [34–39]. The precise amount of information about
the edges contained in the entanglement spectrum – and
its relation to the properties of the physical edge – have
been subject of some investigations recently [40, 41].
In this paper we study the edge and the entanglement

properties of an exactly solvable model for a symmetry-
enriched Z2 quantum spin liquid with a conserved U(1)
charge, introduced in Ref. [42]. In this model, the exci-
tations that carry a non-trivial gauge charge (“spinons”)
also carry a fractional physical charge. We study the
phase diagram of the edge, as a function of both charge-
conserving and non-conserving perturbations. At the ex-
actly solvable point of the model, the edge spectrum is
macroscopically degenerate. When small, generic per-
turbations are introduced at the edge, the low energy
effective edge Hamiltonian is found to be of the form of
a Bose-Hubbard model. Breaking the U(1) symmetry
on the edge causes the appearance of additional “pair-
ing” terms in the edge Hamiltonian. The phase dia-
gram of the edge includes a gapped, symmetry-preserving
phase with condensed visons (m phase), a gapped phase
with condensed spinons (e phase) which requires an ex-
plicit breaking of the U(1) symmetry [43], and a gapless,
symmetry-preserving phase.
Next, we study the entanglement properties of a cut

through the system. The entanglement Hamiltonian,
Ĥent, is shown to be described in terms of the same set of
degrees of freedom as the edge Hamiltonian, Ĥe, and is

ar
X

iv
:1

61
2.

02
83

1v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  8

 D
ec

 2
01

6



2

massively degenerate at the exactly solvable point of the
bulk. We derive the entanglement Hamiltonian pertur-
batively for generic, integrability-breaking perturbations
in the bulk, using the Schrieffer-Wolff method technique
of Ref. [41]. Ĥent is then of the same Bose-Hubbard
form as the edge Hamiltonian, although its parameters
are different. Thus, as parameters of the bulk Hamilto-
nian are varied, the entanglement Hamiltonian has the
same global phase diagram as a physical edge.
This case study supports the notion (as was already

noted in Ref. [44]) that the bulk topological order, in
conjunction with the symmetry properties of the quasi-
particles, dictate the allowed types of phases that can
appear on the boundary, although it does not uniquely
determine which one is realized at a particular edge. In
this sense, the bulk-edge correspondence is a relation be-
tween the bulk topological order and the class of possible
edge phases (or the global edge phase diagram). This is
true for both a physical edge and an entanglement edge;
i.e., the class of possible phases realized by the entan-
glement Hamiltonian is the same as that of a physical
edge.
The paper is organised as follows: in section II we in-

troduce the lattice model, in section III we derive the
edge Hamiltonian for the perturbed and unperturbed
model; we write down a field theory for the edge and
analyse its phase diagram. In section IV we calculate
the entanglement Hamiltonian of the perturbed model
and show its relation to the edge Hamiltonian. Finally
in section V we recapitulate our results and speculate on
their general validity beyond solvable models considered
thus far in the literature.

II. THE LATTICE MODEL

We begin by introducing an exactly solvable, charge-
conserving, lattice model of a Z2 spin liquid. The bosonic
lattice model, a special case of the one we considered
in Ref. 42, is in fact closely related to the family of
toric code-like Hamiltonians, with an additional con-
served U(1) symmetry. It will allow us to exactly com-
pute the properties of both the edge and the entangle-
ment spectrum. It will also be a useful starting point
for analysis of the perturbations away from the solvable
point.
Bulk – The Hilbert space of our model consists of

bosonic degrees of freedom which reside on the sites and
on the links of the lattice. For the site bosons ns we use a
rotor representation with the creation operator b†s = eiθs

and [θs, ns] = i. The site-boson occupation number can
therefore assume any integer (i.e. also negative) value. In
contrast, the link variables nss′ are defined as hard-core
bosons, i.e. nss′ ∈ {0, 1}. Mapping the link occupation
number nss′ = 0 to (0, 1)T and nss′ = 1 to (1, 0)T the
creation operator can be written explicitly as:

b†ss′ =

(

0 1
0 0

)

(1)

Figure 1. Illustration of the lattice model Eq. (2). The bosons
live on both sites s and links 〈ss′〉 of the lattice. The bulk
Hamiltonian Hb is a sum of squares of Qs terms, which act
on a site and adjacent links and the BP terms, which act on
links and sites belonging to the plaquette P .

The bulk Hamiltonian Hb can be written as a sum
of two terms, one associated with sites s, and the other
associated with plaquettes P of a Lieb lattice (see Fig.
1):

Ĥb = v
∑

s

Q2
s −

u

2

∑

P

(BP +B†
P ) (2)

We assume u, v > 0. The first term is the charging Hamil-
tonian, which depends on the number of bosons ns, nss′ :

Qs = 2ns +
∑

s′

nss′ . (3)

Here, s′ are all the neighbors of the site s. The conserved
charge (not to be confused with Qs) is simply given by:

Q =
∑

s

ns +
∑

〈ss′〉

nss′ , (4)

i.e. the unweighted sum of all site and link boson occu-
pation numbers.
The second term is the hopping Hamiltonian, it can be

thought of as a ring exchange term. It is defined as the
product:

BP = U12U23U34U41 (5)

where Uss′ is a boson hopping term between the link 〈ss′〉
and the sites s, s′:

Uss′ = bss′b
†
s′ + bsb

†
ss′ (6)

The form of this term has a very simple interpreta-
tion: it decreases or increases the numbers of bosons on
the link modulo 2 and also makes sure that the charge
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conservation at the endpoints is obeyed, by hopping the
bosons between the links and sites.
The Hamiltonian (2) is exactly solvable. This is be-

cause the operators Qs and Bp all commute with each
other. The first step to prove it is to notice that:

[Qt, Uss′ ] = (δs′t − δst)Uss′ , (7)

i.e. Uss′ decreases Qs by 1, increases Qs′ by 1, and leaves
Qs unchanged at all other sites – this allows us to think of
Uss′ as hopping operator for the Qs charges. It also fol-
lows that Qs commutes with the product of Uss′ around
any closed loop, in particular:

[Qs, BP ] = 0. (8)

Thus, we conclude that {Qs, BP , B
†
P } all commute, and

therefore can be diagonalized simultaneously. The simul-
taneous eigenstates of these operators can be labelled by
their eigenvalues: |qs, bP 〉. The energies are given by:

E = v
∑

s

q2s − u/2
∑

P

(bP + b∗P ). (9)

It is clear from the definition (3) that Qs has integer
eigenvalues, so qs is an integer. We can also show that

B2
P = 1, (10)

so bP must be ±1. We conclude that the ground state of
Ĥb is the unique state with qs = 0, bP = +1 everywhere.
There are two types of elementary excitations: charge
excitations where qs = 1 for some site s, and flux excita-
tions where bP = −1 for some plaquette P . Eq. (7) shows
that the charge excitations are created (and moved) by
a string of Uss′ operators along a path on the lattice.
Analogous operator for the flux excitations is defined by
a path on a dual lattice and application of the elemen-
tary flux string operator (−1)nss′ on every link 〈ss′〉 cut
by the path. The spectrum of the hopping Hamiltonian,
and hence of the whole Ĥb is discrete. In particular, as
long as u, v > 0, the ground state is gapped.

The qs charge excitations carry a fractional U(1)
charge of 1

2 . This is easily seen by computing the differ-
ence between expectation values of ns at site s for states
with qs = 1 and qs = 0. The total number of charge exci-
tations must be even, so that the total charge is integer.
This can also be verified explicitly: Q = 1

2

∑

s Qs. The
model is in fact topologically ordered: the charges and
fluxes exhibit mutual fractional statistics and the ground
state is four-fold degenerate on the torus – for the details
we refer to [42]. The topological order is the same as for
a Z2 gauge theory.
Assuming the system is defined on a cylinder we

have also topological operators, which commute with Ĥb.
Their support is any non-contractible loop around the
cylinder. Since in this case all non-contractible loops are
equivalent to each other modulo contractible ones, there
are two such topological operators:

T =
∏

〈ss′〉∈C

Uss′ (11)

P =
∏

〈ss′〉∈C′

(−1)nss′ , (12)

where C is a non-contractible loop on the lattice and C ′ a
non-contractible loop on the dual lattice. The links 〈ss′〉
in Eq. (12) are the ones crossed by C ′. The T operator
can be thought of as creating a pair of Qs quasiparticles,
taking one of them around the cylinder, and annihilating
them, while the P operator does the same for a BP vor-
tex. Note that [T, P ] = 0 (on the cylinder). Since both
of them have eigenvalues ±1 there are altogether 4 topo-
logical sectors. This can be generalized to any nontrivial
topology where non-contractible loops exist [45]

Edge – We consider a system with a “zigzag” edge,
as depicted in Fig. 1 and we define the edge operators to
be all the operators commuting with the bulk Hamilto-
nian, which are not the bulk or the topological operators
considered above.

Figure 2. The edge operators commuting with the bulk
Hamiltonian. The charging terms Ns are restrictions of the
bulk operators Qs. Rss′ are the hopping operators for the Ns

charges, they are a restriction of the bulk operator BP , i.e. a
product of two U operators along the edge. Also the bs and b†s
operators, which do not conserve the Ns (and the electrical)
charge can be thought of as restricted plaquette operator BP .

There are three types of such edge operators: the Ns

charging operators, depicted in Figs. 1 and 2 in red, are
restrictions of the Qs operators imposed by the truncated
Hilbert space (i.e. Ns is defined exactly like Qs, without
the “missing” links). The Rss′ , denoted in Fig. 2 with
a green arrow, can be thought of as half of a BP opera-
tor, i.e. Rss′ = UsxUxs′ with s, s′ adjacent sites on the
edge, and x their common neighbour in the bulk (the
sites acted upon by Rss′ have been marked green in Fig.
2). It also acts as a hopping operator for the Ns charges,
exactly as Uss′ does for Qs:

[Nt, Rss′ ] = (δs′t − δst)Rss′ , (13)

with t, s, s′ belonging to the edge. Finally, there is the bs
operator, with s belonging to edge, denoted by a purple
arrow in Fig. 2. It is a restriction of a plaquette operator,
of which only the corner site belongs to the system. Note
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that bs and its hermitian conjugate do not conserve the
Ns charge (it creates/annihilates two units of Ns charge),
and hence also the electric charge:

[Nt, bs] = −2δstbs. (14)

Thus, the operator bs can only appear in the Hamiltonian
if charge conservation is broken in the system (at least at
the edge). Physically, if the U(1) symmetry of the model
is due to conservation of the z component of the total
spin in a magnetic system, breaking of the symmetry at
the edge can arise at an interface between the spin liquid
and an in-plane ferromagnet (in which the symmetry is
spontaneously broken).
The edge operators Ns, Rss′ and bs do not commute

with each other, even though they do commute with the
bulk operators (and thus with Ĥb). We may define a com-
plete set of commuting observables describing the system
with an edge to be the Qs, BP bulk operators, the Ns

operators on the edge, and the topological operator T .
Note that for non-contractible loops C,C ′ on lattice/dual
lattice defined by the zigzag edge ∂, we have:

T =
∏

〈ss′〉∈C

Rss′ (15)

P =
∏

〈ss′〉∈C′

(−1)nss′ =
∏

s∈∂

(−1)Ns = (−1)
∑

s∈∂ Ns (16)

Eq. (16) shows the P operator is in fact a total parity

operator for the Ns bosons. Also, since P is not inde-
pendent from the full set of Ns, we did not include it in
the complete set of commuting observables. As we will
show below,

∑

s Ns corresponds to the total number of
“spinon” excitations on the edge. Each such excitation
carries a U(1) charge of 1/2, and is also charged under
the emergent gauge field with an “electric” charge of −1.

III. THE EDGE HAMILTONIAN

Here we write the edge Hamiltonian and map out its
phase diagram. We begin with the exactly solvable sys-
tem and then consider the effect of the perturbations. A
field theory for the edge is constructed.
The solvable edge – Consider the system on a semi-

infinite cylinder, such that its boundary is the “zigzag”
edge we described (see Fig. 2). In the absence of any

perturbations, the bulk Hamiltonian Ĥb does not con-
tain any of the edge operators, hence the groundstate
subspace H0 in each topological sector consists of an ex-
tensive (in the length of the boundary) number of degen-
erate states, labelled by different eigenvalues of all the Ns

operators. Thus the edge spectrum is flat and the edge
Hamiltonian Ĥe is identically zero:

Ĥe = 0. (17)

Under the action of Hamiltonian Ĥb, the total Hilbert
space splits into massively degenerate subspaces, sepa-
rated by finite gaps:

H =
⊕

α≥0

Hα. (18)

The subspace energy is a function of the number of bulk
quasiparticles. Its degeneracy comes from the edge oper-
ators, which do not appear in Ĥb, and from the presence
of topological sectors. In particular, as we have seen,
the degenerate ground state subspace (assuming for con-
creteness u = v = 1) is separated by a gap of 1 from the
first excited state with a single quasiparticle.
The perturbed system – Let us now consider adding

small perturbations ǫV̂ to the system; V̂ is a sum of local
edge and bulk terms. By small we mean perturbations
which do not qualitatively change this picture of (nearly)
degenerate subspaces separated by finite gaps. We do
allow that they impart dispersion on the levels within
the subspace, but we assume that the new eigenstates
are adiabatically connected to the original, perfectly de-
generate, non-perturbed ones. The edge Hamiltonian Ĥe

is then defined as an effective Hamiltonian acting only
within lowest-energy subspace of the perturbed Hamil-
tonian and generating the dispersion within this space.
This picture is formalized below.
The edge Hamiltonian can be derived using the

“effective Hamiltonian” or Schrieffer-Wolff method[41],
such that it is still block-diagonal in the unperturbed
eigenspaces Hα at the cost of introducing nontrivial ma-
trix elements between the states within Hα (recall, the

unperturbed Ĥe was trivial). The matrix elements of the
effective Hamiltonian, are given (to second order) by:

〈i, α|Ĥe|j, α〉 = Eα
i + ǫ〈iα|V̂ |j, α〉+ (19)

+
ǫ2

2

∑

k,β 6=α

〈i, α|V̂ |k, β〉〈k, β|V̂ |j, α〉
(

1

Eα
i − Eβ

k

+
1

Eα
j − Eβ

k

)

,

where Greek indices label different energy eigenspaces
(with α = 0 the ground state subspace), the Latin ones
states within subspaces and Eα

i are the unperturbed en-
ergies.
Since the effective Hamiltonian acts (by definition)

wholly within a given subspace Hα, and the perturbation
V̂ generically may couple different such subspaces, then
the matrix elements receive contributions from “virtual”
processes coupling Hα to some Hβ 6=α space and back,
see Eq. (19). Since for the solvable model we can de-
scribe every excited state within a topological sector as
arising from an application of a string operator creating
quasiparticles to one of the states of H0, then such “vir-
tual” processes correspond to closed contractible loops of
string operators which do not take the system out of Hα,
and application of boundary operators, which act within.
In particular, in the ground state subspace H0 all closed
contractible loops are trivial (equivalent to identity oper-
ators), since they can be shown to factor into a product of
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either BP or exp (iπQs) operators enclosed by the loop.
Hence the effective edge Hamiltonian is a generic func-
tion (dependent on the form of perturbation V̂ ) of all the
edge operators only:

Ĥe = fV̂ (Ns, Rss′ , bs). (20)

In general, the Ĥe can contain terms which couple any
number of sites. Since the bulk is gapped, we expect it to
be short-ranged (i.e. the amplitude of terms in Ĥe decays

exponentially in their range). In addition, Ĥe reflects the
symmetry of the problem: if the U(1) symmetry of the
bulk is preserved on the edge, it is invariant under the
transformation bs 7→ bse

iχ, where χ is an arbitrary phase.
As a concrete example, we consider the following bulk

perturbation:

ǫV̂ = U
∑

s

n2
s − J

∑

s,s′

(Uss′ +H.c.)− h
∑

s

(

b†s +H.c.
)

,

(21)
with coupling constants U , J , h. The first two terms de-
scribe hopping and interactions between particles on the
lattice sites. These terms spoil the exact solvability of the
bulk Hamiltonian (2); however, since the bulk spectrum
is gapped, it remains in the same phase for sufficiently
small ǫ. The third term breaks the global U(1) symmetry,
Eq. (4); in an easy-axis quantum spin liquid, where the
U(1) symmetry corresponds to the z component of the
total spin, such a term can describe an in-plane applied
magnetic field.
Using Eq. (19), we can derive the effective Hamilto-

nian of the edge in the presence of the bulk perturbation
ǫV̂ . To first order in ǫ, the U term in Eq. (21) generates
an N2

s terms at the edge. This follows from express-
ing ns using Eq. (3): ns = [Qs −

∑

s′ nss′ ]/2 (with Qs

replaced by Ns for sites on the edge). We then write
nss′ = [1 − (−1)nss′ ]/2 . The (−1)nss′ operators create
flux excitations, since {(−1)nss′ , BP } = 0 [see discussion
below Eq. (10)]. An explicit calculation shows that, pro-
jected to the low energy subspace, we can replace n2

s by
(Qs − 2)2/2 in the bulk, and by (Ns − 1)2/2 at the edge
(up to unimportant constants).
Acting with a hopping (J) term creates a pair of exci-

tations in the bulk with energy 2v, as can be seen from
Eq. (7). If this term is applied at one of the bonds at the
edge, it creates a single excitation with energy v. Acting
with this term on the neighboring edge bond annihilates
the excitation, and generates the operator Rss′ at the
edge. Finally, the b†s operators in the h term create exci-
tations with an energy v in the bulk, but can act within
the ground state subspace at the edge.
We therefore obtain the following form of the effective

edge Hamiltonian, Ĥe:

Ĥe =
U

2

∑

s

(Ns − 1)2 − t
∑

〈ss′〉

(

Rss′ +R†
ss′

)

(22)

− h
∑

s

(

bs + b†s
)

,

where t = 2J2/v. Note that the h term is present only if

the perturbation V̂ breaks the U(1) symmetry.
Using the fact that Ns are (Z-valued) bosonic degrees

of freedom for which Rss′ act like hopping operators, we
can map the above Hamiltonian to the well-studied Bose-
Hubbard (BH) model with an additional U(1)-breaking
term. Let us denote by as, a

†
s the anihilation/creation

operators for the BH model and let Ns still denote
the number operator for the bosons (i.e. Ns = a†sas).

We can then identify Rss′ = asa
†
s′ for all 〈ss′〉 in the

T = 1 topological sector (in the T = −1 sector we map

Rss′ = −asa
†
s′ for one link 〈ss′〉 and as before for others).

Furthermore, bs = a2s, since bs annihilates a site-boson ns

which contributes to Ns with a factor 2 [see Eq. (3)]. The
effective Hamiltonian can be mapped to:

ĤBH∆ = −t
∑

〈ss′〉

a†sas′ +
U

2

∑

s

(Ns − 1)2 (23)

−h
∑

s

[

(as)
2 + (a†s)

2
]

.

The phases of the edge correspond then to the phases
of the above Hamiltonian ĤBH∆. For the special case of
U(1)-conserving perturbation V̂ we have h = 0, and the
Hamiltonian reduces to the familiar Bose-Hubbard model
with superfluid (SF) and Mott-insulating (MI) phases on
the edge.
We emphasize that in the presence of a nonvanishing

h, the original U(1) symmetry of the solvable model is

broken down to Z2 symmetry of ĤBH∆. We thus ex-
pect ĤBH∆ to exhibit two phases: Z2-symmetric and
Z2-broken. In order to obtain the global phase diagram
of the edge, we now analyze an effective field theory that
corresponds to the model (23).

Field theory of the edge – We follow the standard
procedure [46] of going to the continuum limit of bose-
Hubbard model, Eq. (23). This is done by introduc-
ing bosonized dual bosonized fields φ(x), θ(x), that are
related to the physical operators by as ∼ exp(iθ) and
a†sas ∼ 1

π∇φ+ 1
ae

2iφ+2πiρx + h.c., where ρ is the average
density of the as bosons per unit cell. From Eq. (23),
we see that ρ = 1. The short distance cutoff of the the-
ory, of the order of the lattice constant, is denoted by a.
The expansion for the physical operators contain extra
terms with higher harmonics of φ, which are less relevant
than the terms displayed above. The fields φ(x) and θ(x)
satisfy the commutation relation

[φ(x), θ(x′)] = iπΘ(x′ − x), (24)

where Θ(x) is a Heaviside step function.
The continuum effective Hamiltonian has the following

form:

Ĥ =

∫

dx
v

2π

[

K(∇θ)2 +
1

K
(∇φ)2

]

(25)

− vλ

a2
cos (2φ)− v∆

a2
cos (2θ) ,
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where v is the sound velocity in the superfluid phase, K
is the Luttinger parameter, λ is a dimensionless coupling
constant that characterizes the locking of the bosons
to the lattice, and ∆ ∝ h. Eq. (25) has the usual
Sine-Gordon form that arises when bosonizing the bose-
Hubbard Hamiltonian at integer filling, and contains also
the ∆ term that can be understood by inserting the bo-
son operator as ∼ exp(iθ) into the h term in Eq. (23).

Figure 3. The phase diagram of the edge effective low-energy
Hamiltonian, Eq. (25)

The leading-order RG equations for λ and ∆ are given
by:

dλ

dt
= (2−K)λ,

d∆

dt
=

(

2− 1

K

)

∆,

dK

dt
= −π2K2λ2

2
+

π2∆2

2
. (26)

If the U(1) symmetry is preserved at the edge, i.e.
for ∆ = 0 the λ-term is relevant for K < KKT = 2,
marginal for K = 2 and irrelevant otherwise: those
are the (gapped) Mott-insulating and (gappless) super-
fluid phases of the theory with unbroken U(1) symme-
try. The two phases are separated by a Berezinskii-
Kosterlitz-Thouless (BKT) transition. Near the transi-
tion in the Mott insulator state the gap is of the form
EMI ∝ exp(−C/

√
2−K), where C is a non-universal

constant.
In the vicinity of the BKT transition, K ≈ 2, the U(1)-

breaking perturbation is relevant (see Eq. 26) and imme-
diately opens a gap. We may establish the phase diagram
by comparing the magnitudes of the gaps induced by the
λ and ∆ perturbations. This way we obtain a critical
line given by:

∆critical ∼ e
−(2− 1

K ) C√
2−K (27)

The critical line separates two gapped phases: the Z2-
symmetric, smoothly connected to Mott-insulator (char-
acterized by 〈exp(iθ)〉 = 0), and the Z2-broken. The

transition between the two phases is of the Ising univer-
sality class [47]. The schematic phase diagram is shown
in Fig. 3.
The identification of the gapped edge phases with the

“e” and “m” topological edges predicted for the Z2 spin
liquid by the Lagrangian subgroup classification [9] fol-
lows from the fact that in the MI phase the charge degree
of freedom is gapped. Therefore there is an energy gap to
bringing the spinon excitation of the Z2 spin liquid (the
“e” particle) to the edge. There is no energy penalty
for introducing a twist in the boundary conditions, i.e.
brining a vison (“m” particle) to the edge, precisely be-
cause the charge degrees of freedom are immobile. Those
statements taken together are exactly a definition of an
“m”-type edge. Conversely, for the Z2-ordered phase it
can be shown there is a gap to bringing visons to the
edge and there is none for bringing spinons, thus it is an
“e”-type edge.
Note that existence of only one gapped edge (the “m”-

type) for ∆ = 0 and two for non-zero ∆ is fully consistent
with the findings of Ref. [13]: though in principle the
Z2 spin liquid can have two topologically distinct edges,
only the “m” type can be realized when the U(1) sym-
metry is unbroken. Realizing the “e”-type edge requires,
for instance, placing the system edge in proximity to a
ferromagnet or a superconductor.

IV. THE ENTANGLEMENT HAMILTONIAN

In this section we derive the entanglement Hamiltonian
from reduced density matrix ρR obtained by tracing out
half of degrees of freedom from the groundstate wave-
function and writing it in a thermal form:

ρR ≡ TrL|gs〉〈gs| ≡ e−Ĥent , (28)

where the trace is over the left part of the system. This
defines the entanglement Hamiltonian operator Ĥent. We
first compute Ĥent for the solvable model and show it has
a macroscopically degenerate spectrum, thus equivalent
to the unperturbed edge Hamiltonian. Subsequently, we
consider the effect of generic perturbations on Ĥent and
the correspondence between Ĥent and Ĥe derived above.
The crucial, if a bit technical, step is to introduce a new
set of operators which act on the entanglement degrees of
freedom at the spatial cut and rewrite the model in their
terms, allowing us to carry out the tracing procedure.
We refer to the appendices for some of the details.

A. The solvable model

Consider the system on an infinite cylinder and con-
sider a bipartition of the total Hilbert space into the left
and right parts: H = HL ⊗ HR. The cut defining the
bipartition is depicted in Fig. 4 by a dashed line. Note
that the left and right edges created by the cut are not
related by symmetry.
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The entanglement Hamiltonian Ĥent is obtained from
the reduced density matrix constructed from the ground-
state. In order to obtain a description of the groundstate
in a form which will allow for a convenient “integrat-
ing out” of half of the degrees of freedom (without loss
of generality: the left part) we write the total system
Hamiltonian as follows:

Ĥ = Ĥb,L + Ĥb,R + ĤLR, (29)

where Ĥb,L/R are the bulk Hamiltonians of the left/right

part, defined as in Eq. (2). The support of Ĥb,L/R are
all the sites to the left/right of the entanglement cut,
denoted by a dashed red line in Fig. 4. The Hamiltonian
ĤLR contains all the terms whose support includes both
“left” and “right” sites.
The ground state |gs〉 of Ĥ is a simultaneous ground

state of Ĥb,L,Ĥb,R and ĤLR, since they all commute. The

ground states of the bulk Hamiltonians Ĥb,L/R in each
topological sector, i.e. the subspaces H0,L/R, are defined
by Qs = 0 and BP = 1 for all s,P . The condition of |gs〉
being a ground state of ĤLR is more complicated, since
ĤLR acts on degrees of freedom on both sides of the cut.
In other words ĤLR splits the degeneracy of H0,L⊗H0,R.

Let us first use the “bulk” description of ĤLR as a sum
of the BP and Qs operators which include at least one
site from either side of the cut in Fig. 4. Even though a
priori we could have defined topological operators TL/R

and PL/R of Eqs. (11,12) independently for the L/R sub-
systems, for the groundstate |gs〉 the left and right part
have to be in the same topological sector. This follows
from the fact that the product of topological operators
TLTR =

∏

P∈supp(HLR) BP = 1 since the ground state

of ĤLR has BP = 1 for all plaquettes in its support.
Analogous argument shows PL = PR. There are thus
four topological sectors also for the overall ground state
|gs〉 and without loss of generality we can label them by
eigenvalues of TR, PR: |gs; t, p〉. In what follows we shall
implicitly assume TR = 1. The other sector, as men-
tioned before, corresponds to a change of sign of hopping
amplitude of the Ns bosons along the edge on a single

link.
Since some of the degrees of freedom which the BP and

Qs operators of ĤLR act on will be integrated out, it is
now convenient to write ĤLR explicitly using operators
which do respect the partition – the edge operators we
defined earlier will come in handy. Note, however, that
the edges on both sides of the cut are not equivalent
and our description of the edge operators in Section II
applied to the R-subsystem only. We thus introduce the
edge operators for the L-subsystem: to this end we first
split the Qs operator (see also Fig. 4):

Qs = m1
s +m2

s +Ns, (30)

where Ns is the R-edge operator we defined before, and
m1,2

s are by definition the two remaining parts of Qs on
the L-side (which are just the original Z2-boson variables
nss′).

Figure 4. A bipartition of a system on infinite cylinder (pe-
riodic vertical direction), the red line denotes the cut. The
sites in the purple/red regions to the left/right of the entan-
glement cut are supports of bulk Hamiltonians Hb,L/R. The
Hamiltonian HLR contains operators whose support includes
both “left” and “right” sites.. Four types of operators cou-
pling the L/R parts in HLR appearing in last four lines of Eq.
(31) are schematically depicted using the blue, green, yellow
and red arrows. Further explanations in the text.

In exact analogy with the R-edge we can also construct
edge operators commuting with the left bulk Hamiltonian
Hb,L from restrictions of the plaquette operators BP to
the left side of the cut. Those restrictions are defined in
Appendix A, it is however more convenient to introduce
the bosonic creation/anihilation operators as,1/2,L and

a†s,1/2,L for the m1,2
s (which again are equivalent to the

original bss′ , b
†
ss′ operators on appropriate links) and to

write the ĤLR Hamiltonian directly in their terms.
As shown in Appendix B, the ĤLR Hamiltonian writ-

ten in the Hilbert space of edge degrees of freedom using
the bosonic variables as,L/R on both sides is given by:

ĤLR = v
∑

s∈∂

(

Ns +m1
s +m2

s

)2
+

− u

2

∑

〈s,s+1〉∈∂

(

as,2,La
†
s+1,1,L

)(

a†s,Ras+1,R

)

− u

2

∑

〈s,s+1〉∈∂

(as,2,Las+1,1,L)
(

a†s,Ra
†
s+1,R

)

− u

2

∑

s∈∂

(as,1,Las,2,L)
(

a†s,R

)2

− u

2

∑

s∈∂

as,1,La
†
s,2,L +H.c. (31)

The action of terms in the last four lines of Eq. (31)
is depicted in Fig. 4 using red, yellow, blue and green
arrows, respectively.
Though this Hamiltonian looks rather daunting, it is

in fact not difficult to write down the ground state ex-
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plicitly. We use the fact that the variables (m1
s,m

2
s) are

allowed to take values in {(0, 0), (0, 1), (1, 0), (1, 1)} only,

and that none of the terms in ĤLR changes the parity of
the total sum of m1,2

s (or, equivalently, of Ns; This fol-
lows from parity being a topological operator, i.e. from
Eq. 16). Let us denote by |0L〉|0R〉 the state defined by
m1

s = m2
s = Ns = 0 for all s. It is a ground state of

the charging part of HLR and it is parity-even. We can
analogously write down the state |1L〉|1R〉 defined by the
condition m1

s = m2
s = Ns = 0 except at one chosen site t,

where we have m1
t = −Nt = 1. This state is parity-odd.

The ground states of the full ĤLR with definite parity p
can now be written by fully symmetrizing |0L〉|0R〉 and
|1L〉|1R〉 w.r.t. the terms in the last four lines of Eq.
(31):

|gs; t, p〉 = 1

Np
Ŝ|pL〉|pR〉, (32)

where p = 0, 1, the operator Ŝ implements symmetriza-
tion, and Np is a normalization factor. The key observa-
tion is that, by construction, |gs; t, p〉 is a totally symmet-
ric superposition of all the states satisfying m1

s + m2
s =

−Ns for all sites s, and having total parity p.
The reduced density matrix in parity sector p is given

by ρpR = TrL|gs; t, p〉〈gs; t, p|. Since |gs; t, p〉 is an equal
weight superposition of mutually orthogonal states, ρpR is
a projector. This immediately implies that the spectrum
{wα} of the reduced density matrix and hence also the
entanglement spectrum is flat – it is equivalent to the
spectrum of the edge of the unperturbed system Ĥe ≡ 0
modulo a constant shift. For this case, we thus find an
exact correspondence between the edge and entanglement
spectra for the unperturbed system.
The constant 1/N 2

p , equal to the flat reduced density

matrix eigenvalues wα, is 1
N 2

p
=
(

4N

2

)−1

, as shown in

Appendix C. Consequently, the entanglement entropy SE

for this bipartition of the system is given by:

SE = −
∑

α

wα logwα = N log 4− log 2. (33)

The result above displays an area-law part proportional
to N and a topological entanglement entropy of log 2 as
expected for a Z2 spin liquid [24, 25].

B. The perturbed system

In the previous sections, we computed the entangle-
ment Hamiltonian for the unperturbed system and found
that its spectrum is flat. In Section III we also derived
what the structure is for the edge Hamiltonian generated
by perturbations. We now examine the entanglement
Hamiltonian Ĥent in the presence of small perturbations
using the method outlined in Ref. [41]. We show that the
effective entanglement Hamiltonian acting on the “low-
entanglement energy” subspace (i.e., the subspace of en-
tanglement states with a high weight) has an expansion

in terms of the edge operators, and it is short ranged.
I.e., it has the same structure as the effective Hamilto-
nian of a physical edge. The coupling constants of the
two Hamiltonians, however, are generically different.

Let the system be described by the following generic
Hamiltonian:

Ĥ = Ĥb,L + Ĥb,R + ĤLR + ǫ
(

V̂b,L + V̂b,R + V̂LR.
)

(34)

For ǫ = 0 the (flat) spectra of the reduced density matrix
of the right subsystem in the even/odd parity sector con-
tained 22N−1 non-zero eigenvalues for a cylinder of cir-
cumference N . Obviously, for ǫ 6= 0 there will be many
more non-zero eigenvalues, since the perturbations mix
previously decoupled subspaces. However, there are two
distinct classes of such eigenvalues: (i) small deforma-
tions of the unperturbed non-vanishing eigenvalues and
(ii) small deformations of the previously vanishing eigen-
values. The deformations of (ii) appear with a prefactor
of ǫ or higher and hence the corresponding eigenvalues of
the entanglement Hamiltonian go as − ln(ǫ) → ∞. There
is, therefore, a well defined notion of high- and low-energy
part of the entanglement spectrum. We are interested in
the latter.

The unperturbed ground state of the total Hamilto-
nian, Eq. (29), can be written in a different form:

|gs; t, p〉 = 1

Np

∑

~m∈{0,1}2N

P
R
p |~m〉L| − ~m〉R (35)

=
1

NP

∑

~m∈Z
2N
2

∑

~n∈ZN

R〈−~n|PR
p | − ~m〉R · |~m〉L| − ~n〉R,

where in the first line the summation is over all config-
urations ~m ∈ {0, 1}2N = Z2N

2 of the (m1
s,m

2
s) variables

on the left side of the cut, which in the ground state sat-
isfy m1

s + m2
s = −Ns. By a slight abuse of notation we

denote by | − ~m〉R the unique configuration of Ns satis-
fying those constraints for a given state of the left vari-
ables |~m〉L. The states | − ~m〉R, |~m〉L are groundstates
of the right/left bulk Hamiltonians, i.e. they belong to
H0,L/R. The operator PR

p , acting on the right-side vari-
ables only, is a projector onto configurations with a total
parity p. In the second line a resolution of identity was
inserted for the R-side Hilbert space: the additional sum-
mation is over all possible integer configurations of the
Ns variables, i.e. over ZN . We also denote by

(

PR
p

)

nn′

the matrix element R〈−~n|PR
p | − ~n′〉R.

The perturbed ground state |gs∗; t, p〉 of the Hamilto-
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nian in Eq. (34) can be written in an analogous fashion:

|gs∗; t, p〉 = 1

Np

∑

~m,~n

(

P
R
p − P

R
p ΛP

R
p

)

nm
|~m〉L| − ~n〉R

+
∑

~m

∑

α>0,i

A~m;(i,α)|~m〉L|i, α〉R

+
∑

~n

∑

α>0,i

B~n,(i,α)|i, α〉L|~n〉R

+
∑

α>0,i

∑

β>0,j

C(i,α);(j,β)|i, α〉L|j, β〉R, (36)

where (PR
p ΛP

R
p )nm describes the correction to the ground

state in the low-energy subspace (which is in the same
parity sector). The A,B,C coefficients describing the
contributions of higher energy (α > 0) states in the ex-
cited bulk subspaces Hα,L/R are of order at least ǫ. Con-
sequently, their contributions to the reduced density ma-
trix ρR = TrL|gs∗; t, p〉〈gs∗; t, p| come at order at least
ǫ2, or, in other words, to linear order in ǫ we have:

ρR =
1

N 2
p

∑

~n,~n′

(

P
R
p − 2PR

p (Λ + Λ†)PR
p

)

n′n
| − ~n〉R〈−~n′|R

(37)
In the fixed parity p sector the parity projector acts as

an identity; we have then:

ρR ≈ 1

N 2
p

e−2PR
p (Λ+Λ†)PR

p P
R
p , (38)

which allows for the identification of the entanglement
Hamiltonian of the perturbed system:

Ĥ∗
ent = 2PR

p (Λ + Λ†)PR
p . (39)

In order to derive the entanglement Hamiltonian (to low-
est order in perturbations) we thus need to compute the
ground state correction PR

p ΛP
R
p . To this end, following

Ref. [41], we rewrite the perturbed Hamiltonian Eq. (34)
in a form which clearly separates, order-by-order in ǫ,
terms acting within and between the unperturbed en-
ergy eigenspaces Hα,L/R, as well as terms which couple
the two sides. The full Hamiltonian can be then written
as (see Appendix D):

Ĥ ≡ Ĥb,L + Ĥb,R + ĤLR + ǫ
(

V̂b,L + V̂b,R + V̂LR

)

=

= Ĥb,L + Ĥb,R + ĤLR + Ĥedge,L + Ĥedge,R +

+ǫV̂LR + . . . , (40)

where Ĥedge,L and Ĥedge,R are the effective low-energy
Hamiltonians acting on the left and right degrees of free-
dom, obtained by a Schrieffer-Wolff transformation with
respect to ǫV̂b,L and ǫV̂b,R, respectively (see Appendix D
for details).
The omitted terms [shown in Eq. (D1)] do not have

matrix elements within H0,L ⊗H0,R subspace at order ǫ,
as opposed to the edge Hamiltonians which do. Further-
more, V̂LR by definition does not create bulk excitations

to the left or right from the cut, nor, being local, can
it change the topological sector, hence we may consider
only its component V̂0,LR, which acts in H0,L ⊗H0,R.
We now want to identify the correction Λ to the ground

state, which, by definition [Eq. (36)], lives inH0,L⊗H0,R.
To first order in ǫ we have:

|gs∗; t, p〉 = |gs; t, p〉 −
∑

ex

〈ex|ǫV̂ |gs; t, p〉
Eex − Egs

|ex〉, (41)

where |ex〉 is any excited eigenstate of the unperturbed

Hamiltonian Ĥb,L + Ĥb,R + ĤLR, and Eex is its energy,
and Egs is the ground state energy. For the corrections
to Λ, however, |ex〉 ∈ H0,L ⊗H0,R, i.e. |ex〉 must be an
excitation of HLR only [otherwise it creates bulk excita-
tions, which do not contribute to Λ, see Eq. (36)]. By

Eq. (40) the generic perturbation ǫV̂ , to this order, is

either Ĥedge,L/R or ǫV̂0,LR.

In Section III we have shown that Ĥedge,R is a function
of edge operators only. We can write it more explicitly
as a series expansion:

Ĥedge,R({c}) =
∑

~s,~αN ,~αR,~αb

c~αN ,~αR,~αb

~s ·N ~αN

~s R~αR

~s b~αs

~s , (42)

where we used the multi-index notation to denote
a product of the edge operators acting on sites
~s = (si1 , si1+1 . . . , si1+N ). The multi-indices ~α =
(αi1 , . . . , αi1+N ) specify the power of the edge operator
at each site si (or on pair of sites (si, si+1) in the case
of R operators). The spatial dependence of coefficients

c~αN ,~αR,~αb

~s , whose set we denoted by {c}, is such as to en-
sure that the edge Hamiltonian is local; this is because
the edge Hamiltonian is generated by local perturbations;
this also ensures it does not mix topological sectors. An
analogous description holds for Ĥedge,L and V̂0,LR, i.e.
they can be expanded in terms of the left and right edge
operators acting onH0,L/R, since they cannot create bulk
excitations. (Note that the left-edge operators are differ-
ent from the right ones; they are introduced in Appendix
A.)
In Appendix E we consider the matrix element

〈ex|ǫV̂ |gs; t, p〉 for the allowed perturbations in detail and

show first that an edge operator Ê ∈ {Rss′ , bs} creates a

ĤLR eigenstate, and that the resulting correction to the
ground state is given by:

∆|gs;t,p〉 = − 1

EÊ − Egs
Ê|gs; t, p〉, (43)

where EÊ is the energy of the eigenstate created by Ê.

The operator Ns does not create an eigenstate of ĤLR,
but a superposition of flux eigenstates and generates a
correction to the ground state of the form:

∆|gs;t,p〉 = −
∞
∑

k=1

dk (Ns)
k |gs; t, p〉. (44)
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Thus, from Eqs. (43,44) we conclude that the right-
edge Hamiltonian generates a power series in Ns correc-
tion to the ground state |gs; t, p〉 (see Appendix E) of
exactly the same form, albeit with rescaled coupling con-
stants {c} → {c̃}:

∆|gs;t,p〉 = −
∑

~s,~αN ,~αR,~αb

c̃~αN ,~αR,~αb

~s ·N ~αN

~s R~αR

~s b~αs

~s |gs; t, p〉

= Ĥedge,R({c̃}) |gs; t, p〉 (45)

Furthermore, any left-edge operator Ê applied to the
edge degrees of freedom exposed by the entanglement
cut can be expressed exclusively in terms of right-edge
operators acting in the right subspace and creating the
same eigenstate of ĤLR (see Appendix E). Therefore, the

action of V̂0,LR and Ĥedge,L on the ground state |gs; t, p〉
is expressible in terms of the right edge operators only,
i.e. they can be both cast in form of Eq. (42) and the
ground state correction they generate is of the form of
Eq. (45). The total ground state correction generated,

to lowest order, by the perturbation ǫV̂ has thus the form
of Eq. (45).

Comparing the above result with Eq. (36) and Eq.
(39) we conclude that:

Λ = Ĥedge,R({c̃}), (46)

where {c} are the original coupling constants in Eq.(42)
and {c̃} are the rescaled ones (also by inclusion of terms

from Ĥedge,L and V̂0,LR, which are expressible using the
right-edge operators ).
Since the coupling constants {c̃} are rescaled in a non-

uniform fashion the naive expectation of an exact entan-
glement spectrum to edge spectrum correspondence can-
not hold. This result for our model is in agreement with
that of Ref. [41]. What is more important, however,
is that all the terms in the entanglement Hamiltonian
Ĥ∗

ent are in one-to-one correspondence with the terms in

Ĥedge,R, i.e. they have the same symmetry properties.
We thus argue that the phase diagrams of the edge and
the entanglement Hamiltonians are in exact correspon-
dence.

V. CONCLUSIONS AND OUTLOOK

In this work, we have studied the phase diagram of ei-
ther the physical edge or the entanglement Hamiltonian
of a solvable Z2 topologically ordered model with a U(1)
symmetry, where the spinon excitations carry a fractional
U(1) charge, using an exactly solvable model. Within
this model, both the physical spectrum at an edge and
the entanglement spectrum are macroscopically degener-
ate. Upon introducing a small perturbation away from
the solvable point, we demonstrate that both the physi-
cal edge Hamiltonian and the entanglement Hamiltonian
take a generic one-dimensional Bose-Hubbard form, and
support the same set of phases, as dictated by the bulk

topological order and the symmetry of the problem. As
long as the global U(1) symmetry is maintained, the edge
may either be gapless or in a gapped (m-type) phase; if
the U(1) symmetry is broken, either in the bulk or at the
edge, a gapped e-type edge is possible, as well.
We have also analyzed the nature of the phase tran-

sitions between the edge phases. When the U(1) sym-
metry is explicitly broken on the edge, the e−type and
m−type phases are separated by an 1+1 dimensional
Ising transition, as anticipated in Ref. [13] on field the-
oretic grounds. If the U(1) symmetry is maintained,
the gapless phase and the m phase are separated by a
Berezinskii-Kosterlitz-Thouless transition.
These features are expected to be generic to Z2 topo-

logically ordered quantum spin liquids with fractionally
charged spinons. The precise edge Hamiltonian depends
on microscopic details; however, the possible edge phases
and the nature of the phase transitions between them are
determined by the bulk topological order and the global
symmetry.
It is interesting to contrast our results with those of

Ref. [48], where the entanglement Hamiltonian corre-
sponding to resonating valence bond (RVB) wavefunc-
tions was studied. These are specific model wavefunc-
tions for lattice spin systems, that can support Z2 topo-
logical order. It was found that the entanglement Hamil-
tonian is naturally written in terms of a spin- 12 hard-core
particles, whose number is conserved mod(2), reflecting
the fact that these particles carry a Z2 gauge charge [as
in Eq. (23) above.] Topologically, the ground state of the
entanglement Hamiltonian found in Ref. [48] is in the m
phase; however, it has an additional ferromagnetic or-
der. (This does not imply that there are ferromagnetic
correlations in the physical ground state, since the entan-
glement Hamiltonian is at a finite temperature; see [40].)
This illustrates the fact that the properties of any par-

ticular phase of the edge, or of the entanglement Hamil-
tonian, is not uniquely determined by the bulk; only the
set of topologically distinct edge phases is.
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Appendix A: the left edge operators

The edge operators for the left subsystem can be con-
structed explicitly using Eqs. (5,6) by simply omitting
the bosonic operators bs, b

†
s from the definitions if s is
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not part of the left subsystem. Let us denote by Ys the
restriction of the plaquette which contained one of the
edge sites s and Yss′ the restriction of a plaquette which
contained two neighbouring edge sites s, s′ (see Fig. 4).
We can write the action of those edge operators on the
m1,2

s degrees of freedom as using the bosonic operators

as,1/2,L, a
†
s,1/2,L:

Ys =
(

as,1,L + a†s,1,L

)(

as,2,L + a†s,2,L

)

, (A1)

Yss′ =
(

as,2,L + a†s,2,L

)(

as′,1,L + a†s′,1,L

)

. (A2)

The two types of operators originate from plaquette op-
erators in ĤLR, i.e. the left and right diagonal rows of
plaquettes comprising the white border region around the
entanglement cut in Fig. 4.

Since Ys, Yss′ do not change the eigenvalue of m1,2
s in a

definite way, it will be also be convenient to change basis
and define auxiliary “hopping” and “pairing” operators
RL

s,c,s′,c′ and ZL
s,c,s′,c′ , which do:

RL
s,c,s′,c′ = as,c,La

†
s′,c′,L, (A3)

ZL
s,c,s′,c′ = as,c,Las′,c′,L, (A4)

with s, s′ sites and c = 1, 2. The Y operators are su-
perpositions of appropriate Z and R operators. We can
also define the pairing operator ZR

ss′ for the right side
analogously.

Appendix B: the ĤLR Hamiltonian in terms of edge

operators

Since the Hamiltonian ĤLR = v
∑

s∈supp(HLR) Q
2
s −

u/2
∑

P∈supp(HLR)

(

BP +B†
P

)

fully commutes with the

left and right bulk, we want to write its nontrivial ac-
tion on the left and right edge degrees of freedom around
the cut. The Qs operator is rewritten using Eq. (30).
Since [BP , Qs] = 0 then the action of any plaquette BP

belonging to ĤLR on m1,2
s and Ns must obey:

∆(m1
s +m2

s) = −∆Ns, (B1)

where ∆ denotes change of m1,2
s and Ns eigenvalue upon

applying BP to a given state. Using the fact the the re-
strictions of BP to the right subsystem yield the right
edge operators Rss′ and bs which change the Ns eigen-
value in a well-defined fashion we can rewrite BP using
R and b operators on the right and Z, R on the left, such
that each term satisfies the constraint Eq. (B1).

Thus the Hamiltonian ĤLR can equally well be written

as:

ĤLR = v
∑

s∈∂

(

Ns +m1
s +m2

s

)2
(B2)

− u

2

∑

〈s,s+1〉∈∂

RL
s,2,s+1,1

(

RR
s,s+1

)†
(B3)

− u

2

∑

〈s,s+1〉∈∂

ZL
s,2,s+1,1

(

ZR
s,s+1

)†
(B4)

− u

2

∑

s∈∂

ZL
s,1,s,2b

†
s (B5)

− u

2

∑

s∈∂

RL
s,1,s,2 +H.c. (B6)

Using explicit definitions of Z and R operators Eqs.
(A3,A4) we obtain the Hamiltonian in Eq. (31).

Appendix C: entanglement spectrum of the

unperturbed system

The value of the constant, 1/N 2
p , can be calculated

explicitly by counting how many terms contribute to
|gs; t, p〉 in Eq. (32) for a system edge of length N sites,
and the counting itself is made easy by the fact that
the variables (m1

s,m
2
s), which fully constrain their part-

ner Ns, only assume values in {(0, 0), (0, 1), (1, 0), (1, 1)},
two of which are of even-parity and two of odd-parity.
Denoting by EN , ON the number of terms in Eq. (32)
for even/odd parity states of length N , and considering
the addition of one site to the chain of length N − 1 we
obtain the following recursion relation:

(

EN

ON

)

=

(

2 2
2 2

)(

EN−1

ON1

)

, (C1)

with the initial condition (E1, O1)
T = (2, 2)T . Solving

the recursion we obtain:

(

EN

ON

)

=

(

4N

2
4N

2

)

. (C2)

Thus the reduced density matrix eigenvalues for both

even/odd parities are given by: wα = 1
N 2

p
=
(

4N

2

)−1

.

Appendix D: Schrieffer-Wolff transformation of the

Hamiltonian

To obtain the groundstate correction PR
p ΛP

R
p in Eq.

39, we make use of the fact that the Schrieffer-Wolff
transformation generating the effective R/L-edge Hamil-
tonians may be written as a unitary rotation with
U = e−Sσ , with σ = R/L and Sσ off-diagonal in the
energy subspaces. Let Pα,σ be the projector to the
left/right bulk Hilbert subspace of energy α, such that
∑

α≥0 αPα,σ = Hb,σ, then:
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Ĥσ = e−SσeSσ

(

Ĥb,σ + V̂bσ

)

e−SσeSσ (D1)

= e−Sσ

(

P1,σ + 2P2,σ + . . .+ Ĥedge,σ + Ĥ1,σ + . . .
)

eSσ

=
∑

α≥0

αPα,σ + Ĥedge,σ +
∑

α≥1

Ĥα,σ

+
∑

α≥1

[−Sσ, αPα,σ]− [Sσ, Ĥedge,σ]−
∑

α≥1

[Sσ, Ĥα,σ]

+
1

2

∑

α≥1

[Sσ, [Sσ, αPα,σ]] + . . . .

The first equality is essentially a definition of the
Schrieffer-Wolff transformation: the rotated Hamiltonian
is written as a sum of projectors to the original sub-
spaces Hα with bulk energy α and effective Hamiltoni-
ans Ĥα,σ generated by perturbations acting within those
subspaces and endowing them with a dispersion. The ef-
fective Hamiltonian acting in the space H0,σ is Ĥedge,σ.
The second equality follows from applying the Campbell-
Baker-Hausdorff formula. Since

∑

α≥0 αPα,σ = Hb,σ we
can rewrite the full system Hamiltonian as:

Ĥ ≡ Ĥb,L + Ĥb,R + ĤLR + ǫ
(

V̂b,L + V̂b,R + V̂LR

)

= Ĥb,L + Ĥb,R + ĤLR + Ĥedge,L + Ĥedge,R

+ǫV̂LR + . . . , (D2)

where the omitted terms (shown in Eq. D1) do not have
matrix elements within H0,L ⊗H0,R subspace at order ǫ,
as opposed to the edge Hamiltonians which do. For more
detailed treatment we refer the reader to Ref. [41].

Appendix E: corrections to ground state

Let us examine the matrix element 〈ex|ǫV̂ |gs; t, p〉 of

Eq. 41 in more detail. We argued in Section IV that ǫV̂
is necessarily a function of the edge operators, we thus
initially assume ǫV̂ is one of the right edge operators and
calculate the correction; the general result follows from
analyticity of fV̂R

. The analysis is simplified for the Rss′

and bs edge operators, as they create exact eigenstates of
ĤLR.
Consider first the term 〈ex|Rss′ |gs; t, p〉: since Rss′ =

UsxUxs′ [see Fig. 2 and Eqs. (7,13)] it creates an exact
eigenstate of HLR with two Qs excitations at sites s and
s′. Hence in the sum over excited states of ĤLR in Eq.
(41) there is exactly one non-vanishing matrix element
for which |ex〉 = Rss′ |gs; t, p〉 – that matrix element is
identically one and the ground state receives a correction:

∆|gs;t,p〉 = − 1

ER − Egs
Rss′ |gs; t, p〉, (E1)

where ER is the energy of the eigenstate created by Rss′ .
Thus the operator Rss′ appearing in Ĥedge,R is repro-
duced as a correction to the ground state, but – crucially
– only up to the energy factor scaling.

The operator bs also creates an exact eigenstate of ĤLR

with two units of Qs charge at site s; by the same reason-
ing it is reproduced as a correction to the ground state
bs|gs; t, p〉, albeit with a different scaling 1/(Eb − Egs).
For the Ns operator the analysis is slightly more in-

volved, since Ns does not create an eigenstate of ĤLR.
Instead the string operator (−1)Ns does: it creates an

eigenstate of ĤLR with two flux excitations on plaquettes
in the support of ĤLR whose link variables nss′ belong to
Ns [see Fig.(2)]. This operator is, however, a power series
in Ns. Furthermore, while Ns does not create an eigen-
state of ĤLR, it is clear that it creates a superposition of
pure flux eigenstates on three plaquettes sharing either
side or corner with Ns; this is a consequence of Ns not
commuting with the three BP operators on those plaque-
ttes (and commuting with every other operator in ĤLR).
Every such flux eigenstate can be created by application
of either A = (−1)Ns (for flux states without flux on

the plaquette sharing corner with Ns) or B = (−1)m
1

s

and the product AB (for the states with excitation on
the corner plaquette ) to the ground state |gs; t, p〉, as
discussed in Section II. More explicitly, we have:

Ns = did · 1 + dAA+ dBB + dABAB, (E2)

where did, dA, dB , dAB are complex coefficients. There-
fore, for the Ns operator the ground state correction
reads:

∆|gs;t,p〉 = −
∑

Ô∈{A,B,AB}

dÔ
EÔ − Egs

Ô|gs; t, p〉. (E3)

As we argued A = (−1)Ns is a power series in Ns. For

B = (−1)m
1

s this is less evident, since it is written as
a function of a left edge operator m1

s. Using Eq. E2,
however, as well as expansion of A, it is possible to find
an expansion of B as a power series in Ns. Using this
expansion in Eq. (E3) we arrive at the expression for the
correction to |gs; t, p〉 due to Ns:

∆|gs;t,p〉 = −
∞
∑

k=1

dk (Ns)
k |gs; t, p〉. (E4)

The coefficients dk are functions of eigenstate energies
EA, EB , EAB . The corrections due to higher powers of
Ns in the perturbation ǫV̂ are obtained analogously and
have a similar form.
The above results can be summed up in the following

fashion: the Rss′ and bs edge operators are reproduced,
exactly up to an energy dependent scaling factor, as cor-
rections to the ground state. The edge operator Ns gen-
erates higher powers ofNs in the correction to the ground
state. Note, however, that no other operators are gen-
erated, nor is there any mixing between different edge
operators. Thus, a generic right edge Hamiltonian of the
form introduced in Eq. (42):

Ĥedge,R({c}) =
∑

~s,~αN ,~αR,~αb

c~αN ,~αR,~αb

~s ·N ~αN

~s R~αR

~s b~αs

~s (E5)
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generates a correction to the ground state |gs; t, p〉 of
exactly the same form, albeit with changed coefficients
{c} → {c̃} [obtainable via Eqs. (E1-E4)]:

∆|gs;t,p〉 = −
∑

~s,~αN ,~αR,~αb

c̃~αN ,~αR,~αb

~s ·N ~αN

~s R~αR

~s b~αs

~s |gs; t, p〉

= Ĥedge,R({c̃}) |gs; t, p〉 (E6)

The correction to the ground state we derived in Eq.
(E6) was due to a right-edge Hamiltonian, expressed in
terms of right-edge operators. However, in the process,
we expressed the effect of action of a left edge operator

B = (−1)m
1

s in terms of right-edge operators Ns. This
can be done methodically for any left-edge operator, as
we now argue.
Consider a left-edge operator as defined in Appendix

A and recall we are interested, via Eq. (41), in perturba-

tions creating excitations of the ĤLR part of the Hamil-
tonian (thus staying within the H0,L ⊗ H0,R subspace).

Since the left and right edge operators are paired up in
the various terms in ĤLR in Eqs. (B2-B6), the action of

any left-edge operator on the ground state of ĤLR may
be expressed in terms of action of the Hermitian conju-
gate of its right-edge partner in ĤLR. For example, from
Eq. (B5) we have ZL

s,1,s,2|gs; t, p〉 = bs|gs; t, p〉. Any left-
edge operator can thus be mapped to a right-edge one,
creating the same eigenstate of ĤLR.
This left-to-right mapping allows to rewrite the left-

edge Hamiltonian Ĥedge,L, as well as V̂0,LR, a priori ex-
pressed also in terms of the left-edge operators, into a
power series in terms of the right-edge operators only,
analogous to Eq. (E5). Therefore, the correction to

|gs; t, p〉 due to the action of Ĥedge,L and V̂0,LR can be
written down in terms of right-edge operators entirely,
and it has the form of Eq. (E6). Consequently the full
correction to the ground state resulting from the action
of Ĥedge,R and Ĥedge,L and V̂0,LR has this form, with
appropriate coefficients {c̃}.
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Läuchli, “Boundary-locality and perturbative structure
of entanglement spectra in gapped systems,” Phys. Rev.
Lett. 108, 227201 (2012).

[39] Brian Swingle and T. Senthil, “Geometric proof of the
equality between entanglement and edge spectra,” Phys.
Rev. B 86, 045117 (2012).

[40] Anushya Chandran, Vedika Khemani, and S. L. Sondhi,
“How universal is the entanglement spectrum?” Phys.
Rev. Lett. 113, 060501 (2014).

[41] Wen Wei Ho, Lukasz Cincio, Heidar Moradi, Davide
Gaiotto, and Guifre Vidal, “Edge-entanglement spec-
trum correspondence in a nonchiral topological phase
and kramers-wannier duality,” Phys. Rev. B 91, 125119
(2015).

[42] Michael Levin, F. J. Burnell, Maciej Koch-Janusz, and
Ady Stern, “Exactly soluble models for fractional topo-
logical insulators in two and three dimensions,” Phys.
Rev. B 84, 235145 (2011).

[43] Physically, the conserved U(1) charge can correspond to
the total spin along the z direction in an easy-axis quan-
tum spin liquid. Then, realizing the e phase requires an
in-plane magnetic field.

[44] W. W. Ho, L. Cincio, H. Moradi, and G. Vidal, “Uni-
versal edge information from wavefunction deformation,”
ArXiv e-prints (2015), arXiv:1510.02982 [cond-mat.str-
el].

[45] On a cylinder, generically only two of the four states
T = ±1, P = ±1 are degenerate. Which two are ground
states depends on the boundary conditions. On the torus,
all four states are degenerate; this can be seen from the
fact that there are similar operators defined on the other
non-contractible cycle of the torus, which commute with
the Hamiltonian and anticommute with P ,T .

[46] T. Giamarchi, Quantum physics in one dimension.

(Clarendon Press, Oxford, 2003).
[47] H. J. Schulz, “Phase diagrams and correlation exponents

for quantum spin chains of arbitrary spin quantum num-
ber,” Phys. Rev. B 34, 6372–6385 (1986).

[48] Didier Poilblanc, Norbert Schuch, David Pérez-Garćıa,
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