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There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possess-

ing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks.

Such states can become useful for quantum protocols when the temperature of the system is increased, and when

the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolu-

tion driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional

anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of

the thermal states, corresponding to the factorization points in the space of the system parameters, revives once

or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain

driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entangle-

ment is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find

that creation of entanglement for a pair of spins is possible when the system is made open to an external heat

bath, interacting through that spin-pair having a repetitive quantum interaction.

I. INTRODUCTION

Quantum phase transitions – the qualitative change of the

zero-temperature state driven by the system parameters – of

interacting quantum spin models is one of the most striking

quantum mechanical features, which cannot be seen in classi-

cal spin systems [1]. Over the years, several physical quanti-

ties and experimental methods have been developed for detec-

tion and classification of these transitions [2]. For example, in

the last decade, the trends of quantum correlation measures, in

the form of entanglement [3], of the zero-temperature states of

a given quantum spin model are found to be an effective tool

for identifying its quantum phase transitions [4, 5]. It is also

observed that these quantum many-body systems often pos-

sess highly entangled quantum states, which can be used to

implement quantum information processing tasks like quan-

tum circuits [6], quantum state transmission [7]. Moreover, a

number of available solid state materials [8], along with cold-

atomic substrates [9–12], nuclear magnetic resonance [13]

and superconducting qubits [14] mimic these quantum spin

models. Consequently, it has been possible to engineer these

models in a controlled way with currently available technol-

ogy.

Up to now, most of the studies in the direction of char-

acterizing the quantum many-body systems using entangle-

ment are restricted to analyze either (i) the entanglement of

the zero-temperature states to obtain the indication of quan-

tum phases, or (ii) the behavior of thermal entanglement at a

finite temperature, or (iii) the dynamics of entanglement start-

ing with an entangled state to find out its sustainability in large

time. In this paper, we investigate the thermalization and dy-

namics of entanglement in a quantum spin model, with unen-

tangled zero-temperature states as initial states. Such zero-

temperature states, called the factorized states are product

states across all bipartitions, having vanishing bipartite as well

as multipartite entanglement for specific values of the system

parameters, also known as the factorization points [15–17],

and are considered to be unprofitable for quantum informa-

tion protocols that use entanglement as resource [3]. Given

a many-body system, it is therefore important to identify fac-

torization points in the system parameter-space, which may

also form lines, surfaces, or volumes. At the same time, find-

ing a recipe for creating entanglement in these regions, and its

neighboring regions, is crucial where tuning to other values

of system parameters is not possible. In particular, if the zero

temperature state is separable or possess a very low value of

entanglement for the system parameters lying in the neighbor-

hood of the factorization points, it is not guaranteed that the

canonical equilibrium state (CES), after interacting with the

global heat bath, can also have vanishing entanglement for all

values of temperature (cf. [17–19]). Furthermore, in the case

of closed as well as open system dynamics, it is not a priori

clear whether generation of entanglement in the evolved state

from an initial unentangled state is possible. In this paper,

we address both of these questions, and answer them affirma-

tively.

Paradigmatic one-dimensional quantum spin systems that

encounter such product states at zero-temperature are (i) the

anisotropic XY model with a transverse magnetic field that

is uniform on all the spins (UXY model) [20–23], and (ii)

the same with an additional transverse magnetic field hav-

ing an alternating direction depending on the lattice sites

(ATXY model) [17, 23–25]. Note here that the UXY model

(model (i)) is a special case of ATXY model (model (ii))

and in this paper, we concentrate on both of the models, for

which the thermal and time-evolved states can be analyti-

cally obtained by successive applications of Jordan-Wigner

and Fourier transformations [17, 23]. For specific values of

the anisotropy parameter and the relative strengths of the uni-

form and alternating transverse magnetic fields, the ground

state of this model is known to be doubly degenerate and fac-

torizable along two hyperbolic lines, known as the factoriza-

tion lines (FL) [17].

Starting from a zero-temperature factorized state of the

ATXY model, we investigate the thermal as well as dynam-

ical properties of entanglement under two different scenarios.

(a) The first situation is when a CES of a given spin Hamilto-

nian undergoes a closed unitary evolution due to a disturbance
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in the system parameters that drives the system out of equilib-

rium. (b) The second case deals with a system that is exposed

to an external thermal bath acting as an environment. Specif-

ically, fixing system parameters on the factorization surface,

we observe that entanglement of a thermal state undergoes a

double revival and collapse over varying temperature when

the value of the anisotropy parameter of the one-dimensional

ATXY model is chosen in the appropriate range. We comment

on how the zero-entanglement region over the phase plane of

the model develops entanglement with an increase in temper-

ature as well as under a time evolution of the system, and

demonstrate that the results are not modified if one considers

a finite-sized system, achievable by current technology [26]

instead of a quantum spin-chain in the thermodynamic limit.

We show that for lower values of the relative strength of

the uniform transverse field, the entanglement generated in

the evolved states starting from the factorized state may oscil-

late at first, and then saturate at a non-zero value at the long

time limit. In contrast, for high values of the field-strength,

the oscillation of entanglement dies out comparatively quicker

than the former case, and entanglement vanishes as time in-

creases. In the case of higher values of the anisotropy param-

eter, the initial oscillation of the generated entanglement for

higher values of the uniform magnetic field sustains longer.

It turns out that in closed evolution, entanglement can only be

preserved for a long time when the system is close to the UXY

model. We also consider the open system dynamics of the

model by studying the evolution of the system in contact with

external heat-baths at a different temperature, which interact

with the system through a set of chosen spins via a repetitive

quantum interaction [27, 28]. Interestingly, the open system

dynamics is found to distinguish between the spin in the sys-

tem that is directly connected to the external heat-bath and the

spin having no interaction with the bath. In particular, thermal

and temporal entanglement generation over factorized states

favors those spin-pairs in the spin-chain which is in contact

with the thermal bath, having moderate temperature. More-

over, we show that in the case of open system dynamics, for

all values of the uniform field, lower values of anisotropy pa-

rameters are profitable in terms of longer sustenance of the

generated entanglement. The advantages of our results be-

come prominent in a situation where one is forced to prepare

a physical system in a parameter regime that corresponds to a

state having almost vanishing entanglement.

The paper is organized as follows. A brief overview of the

quantum spin model under consideration, its phase diagram,

and the specifications of the factorized states at zero temper-

ature is provided in Sec. II. The emergence of thermal en-

tanglement in quantum states corresponding to factorization

points in the parameter space of the system is discussed in Sec.

III. Sec. IV reports the dynamical properties of the thermally

emergent entanglement at factorization points, under closed

unitary evolution as well as open system dynamics. Finally,

Sec. V has concluding remarks.

II. THE MODEL

To investigate the thermal and dynamical behavior of en-

tanglement emerging over factorized states, we choose a one-

dimensional (1D) quantum spin model consisting of N spin-
1
2 particles. The Hamiltonian of the model is given by

[17, 23, 24]

ĤS(t) =
1

4

N
∑

i=1

J
{

(1 + γ)σ̂x
i σ̂

x
i+1 + (1− γ)σ̂y

i σ̂
y
i+1

}

+
1

2

N
∑

i=1

hi(t)σ̂
z
i , (1)

where J is the strength of the exchange interaction, γ( 6= 0)
is the x − y anisotropy, and {σ̂α

i ; α = x, y, z} are the Pauli

spin matrices corresponding to the spin located at the site i.
Here, hi(t) = h1(t)+ (−1)ih2(t) is the site-dependent exter-

nal magnetic field, having two components, h1(t) and h2(t),
which are respectively the strength of a transverse magnetic

field in the +z direction, and that of a transverse magnetic

field in the direction +z or −z, depending on whether the site

is even, or odd. We consider periodic boundary condition,

i.e., σ̂N+1 ≡ σ̂1 throughout this paper, and choose the time-

dependent magnetic field to be of the form

h1(t) =

{

h1, t ≤ 0
0, t > 0

, h2(t) =

{

h2, t ≤ 0
0, t > 0

. (2)

The implications of the specific form of the magnetic field will

be clear in subsequent discussions.

In the thermodynamic limit (N → ∞), by successively ap-

plying Jordan-Wigner and Fourier transformations [17], the

Hamiltonian in Eq. (1) can be rewritten in the momentum

space as ĤS(t) =
∑N/4

p=1 Ĥp(t), where

Ĥp(t) = J cosφp(â
†
pb̂p + a†−pb̂−p + b̂†pâp + b̂†−pâ−p)

−iJγ sinφp(â
†
pb̂

†
−p + âpb−p − â†−pb̂

†
p − â−pap)

+(h1(t) + h2(t))(b̂
†
pb̂p + b̂†−pb̂−p)

+(h1(t)− h2(t))(â
†
pâp + â†−pâ−p)− 2h1(t), (3)

with â†p and b̂†p given by

â†2j+1 =

√

2

N

N/4
∑

p=−N/4

exp
(

i(2j + 1)φp

)

â†p,

b̂†2j =

√

2

N

N/4
∑

p=−N/4

exp
(

i(2j)φp

)

b̂†p. (4)

Here, â†2j+1 and b̂†2j are the spinless fermionic operators cor-

responding to the odd and even sublattices, and φp = 2πp/N .

Therefore, the diagonalization of ĤS(t) can be achieved by

the diagonalization of Ĥp with a proper choice of the basis.

Diagonalization of ĤS(t) allows one to compute the CES

and the time-evolved state (TES) while considering the dy-

namics of the model in the form of a closed system. The
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CES of the ATXY model at time t, is given by ρ̂eq(t) =

Z−1 exp(−βSĤS(t)), with Z = Tr[exp(−βSĤS(t))] being

the partition function, and βS = (kBTS)
−1, TS being the ab-

solute temperature of the system, and kB , the Boltzmann con-

stant. We consider a situation where the system is brought to a

canonical thermal equilibrium with a heat-bath at temperature

TS before the beginning of the dynamics, which we label as

t = 0. At t > 0, the system starts evolving due to the distur-

bance caused by switching off the magnetic fields, as given in

Eq. (2). The evolution is governed by the Schrödinger equa-

tion corresponding to the Hamiltonian in Eq. (1), providing

the TES, ρ̂(t), at any intermediate time t, given by

ρ̂(t) = e−iĤS(t>0)t/~ρ̂eq(t = 0)eiĤS(t>0)t/~, (5)

which can be used to compute time-variation of different

physical quantities. From ρ̂(t), one can obtain any reduced

TES, ρ̂Ω(t), corresponding to a subsystem, Ω, of the system

by tracing out the rest of the parts, denoted by Ω, so that

ρ̂Ω(t) = TrΩ[ρ̂(t)]. Using ρ̂Ω(t), dynamics of relevant physi-

cal quantities corresponding to the subsystem Ω can be deter-

mined. Throughout this paper, we consider a nearest-neighbor

(NN) even-odd spin-pair as the subsystem Ω, and the rest of

the spins in the spin-chain as Ω. Dimensional analysis sug-

gests that for the Hamiltonian ĤS , time t in Eq. (5) is in the

unit of ~/J , and βS is in the unit of 1/J . We therefore rede-

fine the dimensionless quantities βS and t as βS → JβS and

t → tJ/~ respectively, and use them throughout the paper.

The ATXY model has a rich phase diagram, consisting of

antiferromagnetic (AFM) and two paramagnetic (PM) (PM-

I and PM-II) phases [29], as depicted in Fig. 1(a) using

λk = hk/J , k = 1, 2 as the system parameters in the range

λk ∈ [−3, 3] [17, 23, 24]. In the thermodynamic limit, the

boundaries between different phases in the ATXY model are

given by

λ2
1 = λ2

2 + 1 (PM-I ↔ AFM), (6)

and

λ2
2 = λ2

1 + γ2 (PM-II ↔ AFM), (7)

which are also depicted in Fig. 1(a). Note that the phase di-

agram is considered in a static picture at t = 0, where the

system has not started evolving in time. With h2(t) = 0, Eq.

(1) reduces to the UXY model, and the PM-II phase is absent

in this model.

Apart from the phase boundaries, the variation of bipartite

as well as multipartite entanglement suggests the existence of

doubly degenerate fully separable ground states, called the

factorized ground states, in the AFM phase for specific val-

ues of λ1,2 and γ. For the ATXY model, irrespective of the

system-size, the factorized ground states correspond to a fac-

torization surface (FS), given by [17]

λ2
1 = λ2

2 + (1− γ2). (8)

In Fig. 1(a), a cross-section of the FS is exhibited on the

(λ1, λ2)-plane by the FLs denoted by continuous lines, in the

AFM phase for γ = 0.8, while in Fig. 1(b), different FLs

corresponding to different values of λ2 are depicted on the
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λ2 = 0.0
λ2 = 0.5
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FIG. 1. (Color online.) Phase boundaries and factorization lines

on the phase plane of the ATXY model. (a) Phase boundaries corre-

sponding to PM-I ↔ AFM (Eq. (6)) and PM-II ↔ AFM (Eq. (7)), for

γ = 0.8, are represented by dashed and dotted lines on the (λ1, λ2)
plane. The factorization line (Eq. (8)) is represented by the continu-

ous line on the (λ1, λ2) plane. (b) Factorization lines corresponding

to different values of λ2 are marked on (λ1, γ) plane. The dashed

and the short-dashed lines represent ATXY model, while the contin-

uous line corresponds to the UXY model (λ2 = 0). All the axes in

both figures are dimensionless.

(λ1, γ)-plane. Besides indicating the phase boundaries, the

NN entanglement can also efficiently indicate the FL on the

(λ1, λ2)-plane [17]. We will show that entanglement emerges

over the FS with increasing temperature, and under time evo-

lution in the succeeding section.

III. THERMAL EMERGENCE OF ENTANGLEMENT

FROM THE FACTORIZATION SURFACE

In this section, we study the static behavior of entangle-

ment in the CES over the FS (Eq. (8)) in the ATXY model.

Assuming the system to be a closed one, there are two extreme

situations – (i) the zero-temperature state (i.e., at βS = ∞),

which is fully separable on the FS, and (ii) the state at infinite

temperature (βS = 0), which is maximally mixed, and hence

with vanishing entanglement, irrespective of the values of the

system parameters. For very low (βS ≈ ∞) or very high

(βS ≈ 0) temperature, entanglement in the CES may still be

vanishingly small due to the continuity of entanglement with

the system temperature βS . However, finding the exact region

where states possess a finite amount of entanglement with in-

creasing temperature requires careful and rigorous analysis,

which will be presented here.

Apart from these two extreme cases, thermal mixing of the

entangled eigenstates of higher energy with the fully sepa-

rable zero-temperature state of the Hamiltonian takes place

at a moderate value of βS . We demonstrate here that such

mixing may lead to generation of entanglement over the FS

at finite system temperature. In order to do so, we note

that the density matrix corresponding to the NN spin-pair in

CES in the case of the ATXY model can be obtained an-

alytically in terms of single-site magnetizations, mα
e(o) =

Tr(σ̂α
e(o)ρ̂eq(t)), α = x, y, z, and two-spin correlation func-

tions, Tαβ
eo = Tr(σ̂α

e ⊗ σ̂β
o ρ̂eq(t)), α, β = x, y, z. Here, the

subscripts “e” and “o” represent the even and odd sites re-

spectively. However, it can be shown that the single-site mag-
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FIG. 2. (Color online.) Emergence of entanglement in thermal state corresponding to Hamiltonian parameters on the factorization surface. (a)

Variation of LN as a function of βS for different values of γ, with λ2 = 1 and λ1 being fixed by the condition of the factorization line given in

Eq. (8). The variation shows two successive revivals of entanglement, separated by a complete collapse, on the βS axes. The second revival of

entanglement at βS = β
R2

S is separated from the complete collapse of LN at βS = β
C1

S by a finite difference, which increases with the values

of γ in the range γ ≤ 0.45. For γ = 0.35, β
R1,2

S and β
C1,2

S are marked with vertical lines. Moreover, for γ = 0.25, we find L
(2)
m > L

(1)
m .

(b) Variation of L as a function of βS and γ, for λ2 = 1, with λ1 being fixed by Eq. (8). Different shades in the figure represents different

values of LN. (c) Map of the L = 0 region (shaded region) on the (λ1, βS) plane, with γ = 0.6, and λ2 = 1.0. (Inset) Variation of LN as a

function of λ1 for specimen values of βS . Note that for βS = 100, i.e., for sufficiently low temperature, the zero-entanglement region on the

λ1 axes is effectively a point, corresponding to the factorization point for fixed values of γ and λ2, satisfying Eq. (8). All quantities plotted

are dimensionless.

netizations, mx
e(o) and my

e(o) both vanish, and the two-spin

correlation functions, Tαβ
eo = 0 for α 6= β in the case of CES.

Therefore, the two-spin density matrix corresponding to a NN

spin-pair “eo” corresponding to the CES is given by [17]

ρ̂eoeq =
1

4

[

Ie ⊗ Io +mz
eσ̂

z
e ⊗ Io +mz

oIe ⊗ σ̂z
o

+
∑

α=x,y,z

Tαα
eo σ̂α

e ⊗ σ̂α
o

]

, (9)

where Ie(o) is the identity matrix in the Hilbert space of the

qubit “e” (“o”). At a specific t, determining the values of

mz
e,o and Tαα

eo , α = x, y, z at a finite system temperature βS ,

ρ̂eoeq can be computed.

We now choose logarithmic negativity (LN) [32, 33] as the

measure of bipartite entanglement present in an even-odd pair

of NN spins. For a bipartite state ρAB shared between the

parties A and B is defined as L(ρAB) = log2(2N + 1),
where the negativity, N , is the sum of the absolute values

of the negative eigenvalues of the partially transposed state,

ρTA

AB (or ρTB

AB), of ρAB with partial transposition being taken

with respect to A (or B). We use ρ̂eoeq at t = 0 to compute

the LN in a NN even-odd spin pair as a function of the sys-

tem temperature as well as the system parameters. In Fig. 2,

the generation of entanglement over the factorization points is

demonstrated by studying the pattern of LN with respect to βS

(0 ≤ βS ≤ 250) for different values of λ2 and γ, where λ1 is

fixed by Eq. (8). The choice of the range of βS is made from

the observation that entanglement of the CES with βS = 250
faithfully mimics that of the zero-temperature state. Further-

more, we observe that Fig. 2 reveals some interesting physics

related to the theory of entanglement with the variation of the

anisotropy parameter, γ, apart from establishing the primary

goal of generating entanglement over the factorization points.

Careful examination of Figs. 2(a) and 2(b) leads to the fol-

lowing observations.

1. We first consider small values of γ, i.e., when 0 < γ ≤
0.45.

a. Starting from a state having vanishing entangle-

ment at βS & 250, LN revives at βR1

S and reaches

a local maximum, denoted by L
(1)
m . It then decreases

and finally collapses with the increase of temperature at

βS = βC1

S . Interestingly, LN again revives at a higher

temperature (βS = βR2

S < βR1

S ), and reaches another

local maximum value, L
(2)
m . Finally LN collapses at

βC2

S for high values of the temperature as expected.

Apart from reestablishing non-monotonicity of entan-

glement with variation of system temperature, it shows

a double-humped nature of entanglement with the vari-

ation of βS , which is rare. Note here that it is indepen-

dent of the values of λ1 and λ2, satisfying Eq. (8). Such

trait of LN is depicted in Fig. 2(a) for λ2 = 1.

b. Moreover, we find that for certain values of (λ2, γ),

L
(2)
m > L

(1)
m (see Fig. 2(a)) even when βS correspond-

ing to L
(2)
m is lower compared to the case of L

(1)
m .

2. For higher values of γ, with the increase of the value of

γ, the difference between βR2

S and βC2

S decreases, and

eventually the double-humped feature of the variation

of LN with βS changes into one with a single maxi-

mum, as illustrated in Fig. 2(b). Further, we observe by

using numerical simulations of the Heisenberg, XXZ

and XYZ models that double revivals of entanglement

with temperature do not occur although single revival

of the same can be obtained (see e.g. [18]).

Upto now, we have discussed how creation of NN entan-

glement is possible by varying temperature in the CES. Next,
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we study how the zero-entanglement region spreads over the

phase-plane of the ATXY model with the increase in tempera-

ture. In order to investigate this, we consider the L = 0 region

on the (λ1, βS)-plane with a fixed value of γ, where the value

of λ2 can be fixed, for example, at λ2 = 1. For a high value

of βS , the L = 0 region on the (λ1, βS)-plane corresponds

to a specific point on the FS, which is a function of (λ1, λ2),
and γ. However, with decreasing βS , the L = 0 point trans-

forms into a river on the (λ1, βS) plane, each point in which

corresponds to a thermal state of vanishing entanglement (see

Fig. 2(c)). The river widens and flows deeper into the AFM

region with decreasing βS before meeting a sea of points on

the (λ1, βS)-plane corresponding to L = 0 at βS → 0. This

analysis indicates that the zero-entanglement region always

remains in the AFM region on the (λ1, λ2)-plane and shifts

deep inside the AFM region with the increase of temperature,

making entanglement generation possible over the FL and its

neighborhoods. The inset in Fig. 2(c) shows the magnified

view of the variation of LN with λ1 for different values of

βS , when LN approaches to zero. It is evident from the fig-

ure that with decreasing βS , the zero-entanglement region on

the λ1 axes widens, as also pointed out in the above discus-

sion. Such a spreading of vanishing entanglement region in

the AFM phase can also be illustrated by other values of γ
and (λ1, λ2).

IV. DYNAMICS OF EMERGENT ENTANGLEMENT

We now discuss the dynamical behavior of entanglement,

under closed as well as open system dynamics, where in the

latter case, the initial state of the system is prepared to be a

separable one, obtained by choosing parameters from the FS

with a very low system temperature.

A. Closed evolution

Similar to the CES, the density matrix corresponding to an

even-odd NN spin-pair of the time-evolved state of the ATXY

model with arbitrary N , in the case of closed system evolu-

tion, can be obtained analytically using the single-site mag-

netizations and two-site spin correlation functions. However,

unlike the CES, T xy
eo and T yx

eo do not vanish in the present case,

and the density matrix corresponding to the NN even-odd spin

pair is given by [17]

ρ̂eo(t) =
1

4

[

Ie ⊗ Io +mz
e(σ̂

z
e ⊗ Io) +mz

o(Ie ⊗ σ̂z
o)

+
∑

α=x,y,z

Tαα
eo (σ̂α

e ⊗ σ̂α
o ) + T xy

eo (σ̂
x
e ⊗ σ̂y

o )

+T yx
eo (σ̂

y
e ⊗ σ̂x

o )
]

, (10)

where mz
e(o) = Tr(σ̂z

e(o)ρ̂(t)), Tαβ
eo = Tr(σ̂α

e ⊗ σ̂β
o ρ̂(t)),

α, β = x, y, z can be computed analytically using the

fermionic operators [17]. In our calculations, the initial state

is chosen to be the CES with high βS and with other parame-

ters satisfying Eq. (8), having vanishing entanglement.
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FIG. 3. (Color online.) Propagation of thermal entanglement after

starting off from the factorization line under closed unitary evolution.

The variation of LN as a function of t and λ1 with (a) γ = 0.6, and

(b) γ = 0.8, where λ2 is fixed by Eq. (8). (Insets) Variation of LN as

a function of t for different values of λ1. The axes in all the figures

are dimensionless.

With initial states that are not factorized, it was shown

that NN entanglement under time-dependent magnetic field

as given in Eq. (2) oscillates and saturates to a positive value

[17]. However, this is not the case if the dynamics starts from

the separable state. Specifically, for t > 0, in the NN spin-

pair, entanglement is created for high values of γ, irrespective

of λ1. It then oscillates between zero and non-zero values dur-

ing the initial phase of the dynamics. However, the oscillation

quickly dies out and the LN vanishes for relatively high val-

ues of λ1, while for lower values of λ1, the oscillation sustains

longer, and the value of LN even saturates to a non-zero value

at large t. Such an analysis on (λ1, λ2, γ)-space reveals that

LN, surviving for a large time, can only be obtained when the

model is close to the UXY model, i.e., λ2 = 0, λ1 6= 0, γ > 0.

It is also visible from the insets of Figs. 3(a)-(b), where the

variations of LN are plotted as a function of t only, for differ-

ent values of λ1 and a fixed value of γ. Also, for higher values

of γ, initial oscillation of entanglement for higher values of λ1

sustains longer, as depicted in Figs. 3(a)-(b).

We now investigate how the landscape of thermally emer-
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FIG. 4. (Color online.) Frozen-time snapshots of the L 6= 0 regions

on the (βS , γ)-plane. The shaded regions in the figures represent the

regions on the (βS , γ)-plane where L = 0 while the white regions

represent L 6= 0. The left column of figures correspond to the UXY

model (λ2 = 0), while the right column is for the ATXY model

(λ2 = 1). The snapshots are taken at t = 0, 2, 10 and 40. The value

of λ1 is fixed by Eq. (8) for all the points on the (βS , γ)-plane. All

quantities plotted are dimensionless.

gent entanglement on the (βS , γ)-plane evolves with time un-

der closed evolution. In order to do so, in Fig. 4, we map the

regions of L 6= 0 (white region) on the (βS , γ)-plane at differ-

ent instances of time, where the values of λ2 are fixed, and the

values of λ1 are determined from Eq. (8). The double-humped

entanglement-pattern for γ ≤ 0.45, as discussed in Sec. III,

sustains only during the short-time dynamics. With increas-

ing t, this feature disappears rather quickly (during t ≤ 2),

while regions of L 6= 0 may emerge on the (βS , γ)-plane

(for example, t = 2, 10) at specific time instances. More-

over, Fig. 4 reveals a clear distinction between the UXY and

ATXY model provided the initial state is chosen from the

factorization-surface. Specifically, we observe that for suf-

ficiently high t (such as t = 10, 40), there exists substantial

regions with L 6= 0 on the (βS , γ)-plane for the UXY model,

while in case of the ATXY model, such L 6= 0 region al-
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FIG. 5. (Color online.) Snapshots of the L 6= 0 regions on

the (βS , γ)-plane at t = 0 for finite size system, specifically for

N = 10. The shaded regions in the figures represent the regions

on the (βS , γ)-plane where L = 0. The left figure corresponds

to the UXY model (λ2 = 0), while the right one is for the ATXY

model (λ2 = 1). The value of λ1 is fixed by Eq. (8) on the (βS , γ)-
plane. The horizontal lines in the figures represent the model with

γ = 0.5, where a double revival of LN takes place with varying βS

(compare with Fig. 2(a)), mimicking the behavior of entanglement

of the model in the thermodynamic limit. All quantities plotted are

dimensionless.

most does not exist, i.e., L vanishes almost everywhere, ex-

cept small regions at very high (≥ 0.95), or very low (≤ 0.02)
values of γ and low value of the initial system temperature βS .

We point out here that all the results discussed above cor-

respond to the system described by the Hamiltonian ĤS in

the thermodynamic limit. However, in the succeeding sec-

tion, when we consider the system to be exposed to an en-

vironment, we can only address this question for finite sys-

tem size. Before proceeding towards this, it is important to

consider how the features of the closed dynamics changes,

when the system consists of finite number of spins, N . In the

finite-sized system, FS remains unchanged, while the phase-

boundaries change only slightly. Since the change is small-

enough, Eqs. (6) and (7) can be considered as the effective

phase-boundaries in the finite-size scenario. However, the

double revival of entanglement with varying βS over the FL

at t = 0 is absent for small system sizes, and there is a single

L 6= 0 region on the (βS , γ)-plane. However, for N ≥ 10, a

second region of non-zero LN at lower values of βS , and con-

sequently the double revival appears. The region of L 6= 0 at

low values of βS starts growing with the increase of the sys-

tem size. An example of double-revival in the case of N = 10
is depicted in Fig. 5. However, we observe that at large-

time (t ≥ 10), the regions of non-vanishing entanglement on

the (βS , γ)-plane, and the oscillatory behavior of LN on the

(t, λ1)-plane for different values of γ qualitatively match with

those in the case of N → ∞.

B. Open system dynamics

We now focus on the dynamics of the quantum spin model,

described by the Hamiltonian ĤS , in contact with a thermal

bath acting as an environment to the system. As the bath, we

consider a collection of identical and decoupled spins [27, 28],

each at a inverse temperature βE = 1/(kBTE) and described

by the Hamiltonian ĤE = Bσ̂z
E , with B being the energy
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of one qubit. The interaction of the reservoir with the sys-

tem is such that during a very small time interval δt, only one

spin from the collection interacts with a “chosen” spin in the

system, labeled as the “door”, via the interaction Hamiltonian

given by

Ĥint = k1/2δt−1/2(σ̂x
d σ̂

x
E + σ̂y

d σ̂
y
E), (11)

where k has the dimension of (energy2× time) , and the sub-

script “d” indicates the door spin. In each such small time

intervals of duration δt, one spin from the collection inter-

acts with one spin from a system via the door, thereby giving

rise to a repetitive interaction between the bath and the system

[27, 28]. In a more general “multidoor” scenario, a number of

independent environments may interact with a number of cho-

sen spins in the system. In such a case, the interaction Hamil-

tonian is of the form Ĥint = k1/2δt−1/2
∑Nd

l=1(σ̂
x
dl
σ̂x
E +

σ̂y
dl
σ̂y
E), where Nd is the number of doors. The quantum mas-

ter equation that dictates the dynamics of the system for single

door is given by

˙̂ρS = −
i

~
[ĤS , ρ̂S ] +D(ρ̂S), (12)

where

D(ρ̂S) =
2k

~2ZE

Nd∑

l=1

1∑

i=0

e
(−1)iβEB [2η̂i+1

dl
ρ̂S η̂

i
dl

− {η̂i
dl
η̂
i+1
dl

, ρ̂S}],

(13)

with ZE = Tr[exp−βEĤE ], and η̂αdl
= σ̂x

dl
+ (−1)ασ̂y

dl

[28, 34]. Another dimensional analysis suggests that for the

Hamiltonian ĤS and with D(.) given in Eq. (13), time t in

Eq. (12) is in the unit of ~/J , and k is in the unit of ~J .

We therefore redefine the dimensionless quantities k and t as

k → k/~J and t → tJ/~ respectively, and use them through-

out the paper. For the purpose of our calculation, we set the

dimensionless quantity k = 1. Note here that the i = 0
terms in Eq. (13) represent the dissipation process with rate

Z−1
E exp(βEB), while the terms with i = 1 are for absorp-

tion process with rate Z−1
E exp(−βEB). In the case of high

values of βEB(βEB ≥ 5), the rate of the absorption process

becomes negligible, and the dynamical term in Eq. (13) rep-

resents that of an amplitude-damping channel under Marko-

vian approximation [35]. Unless otherwise stated, we keep

βEB = 10 for all our calculations throughout this paper, and

hence neglected the i = 1 term.

We determine ρ̂S as a function of t by numerically solv-

ing Eq. (12) for specific values of N , and then trace out all

the spins except a NN even-odd pair to obtain the reduced

state corresponding to the chosen pair. This reduced state can,

in turn, be used to compute the NN LN as a function of t.
We assume that the system is initially prepared in a thermal

equilibrium state, ρ̂eq(t = 0), with a heat bath at a very low

temperature at t = 0, at which point the repetitive quantum in-

teraction is turned on. Evidently, the initial state, and thereby

the dynamics depends on the choice of the parameters of HS

at t = 0, given by {γ, λ1, λ2, βS}. Choice of the values of

system parameters from different phases of the model gives

rise to a rich variety of dynamics.
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FIG. 6. (Color online.) Open system dynamics of entanglement un-

der repetitive quantum interaction after starting off from the factor-

ization line. The variation of LN as a function of t and λ1 with (a)

γ = 0.6, and (b) γ = 0.8. The variations of LN as a function of

t for different values of λ1 are given in (c) for γ = 0.6 and (d) for

γ = 0.8. Entanglement generation under closed vs. open dynam-

ics can be made by comparing insets of Figs. 3 (a)-(b) and (c)-(d)

in above figures. Although in a closed unitary evolution, entangle-

ment can be preserved for a long time while it is not possible in an

open dynamics considered in this paper. All quantities plotted are

dimensionless.

We demonstrate the results considering the single-door sce-

nario (Nd = 1) and a spin-chain of size N under periodic

boundary condition. Without loss of generality, let us label

the spins of the system as {1, 2, . . . , N}, where we assume

that the first spin interacts with the bath via door. For ease

of discussion, let us divide set of spins in the system into two

mutually disjoint sets. The first set, S1, consists of all the NN

spin-pairs each of which contains at least one door spin, while

the second set, S2, is constituted of all the NN spin-pairs none

of which contains a door spin. Clearly, S1 consists of two

NN spin-pairs, i.e., S1 ≡ {(1, 2), (N, 1)}, while S2 is consti-

tuted of the rest of the NN spin-pairs, S2 ≡ {(i, i + 1); 2 ≤
i ≤ N − 1}. We begin our discussion with the latter set,

and take the NN spin-pair, say, (2, 3) as an example in the

case of a spin-chain with N = 10. In the same spirit as

in the case of the closed dynamics, we choose the values of

the system parameters according to the FS. The environment

temperature, βE(= 10) is moderately high compared to the

value of βS , set at βS = 80, which can faithfully mimic

the low-temperature (βS → ∞) properties of the model at

N = 10. Interestingly, for a fixed value of γ, LN is found

to be generated over a very small region on the (t, λ1)-plane

(0.75 ≤ λ1 ≤ 0.9; 0 ≤ t ≤ 10), while the values of λ2

are fixed by Eq. (8). Also, the value of the NN LN gener-

ated over the spin-pair (2, 3) is L ≤ 8 × 10−2. This suggests

that the amount and duration of entanglement generation is

very small for the spin-pairs belonging to S2 if the system pa-

rameter values corresponding to the initial state of the open
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system dynamics is chosen according to Eq. (8). Note here

that the FL is encompassed completely in the AFM phase of

the model.

The situation becomes drastically different in the case of

S1. Figs. 6 (a)-(b) depict the variation of the LN for the spin-

pair (1, 2), which is same as (N, 1) due to periodicity, as a

function of time and λ1 with (a) γ = 0.6 and (b) γ = 0.8. The

values of λ2 are fixed by the factorization condition, and the

values of βS and βE are the same as those used in the former

case. It is clear from the figures that considerable entangle-

ment is generated during the dynamics, with the maximum

value of L increasing with increasing γ. LN corresponding to

the spin-pair (1, 2) sustains for a longer time compared to the

former case of S2. The duration in which L 6= 0 decreases

with increasing γ, as can be seen from the figures, indicating

a trade-off between the generation of higher values of entan-

glement and the length of the time interval in which L 6= 0. A

clearer picture can be obtained from Figs. 6(c)-(d), where the

variation of LN as a function of time, corresponding to two

specific values of λ1 for each values of γ is shown. Also, note

that with a fixed value of γ, entanglement oscillates at first,

and then decays to zero irrespective of the values of λ1. This

behavior is in contrast with the same in the case of closed dy-

namics, where entanglement is found to saturate at a non-zero

value for lower values of λ1. Moreover, we observe that with

the increase of N , the decay rate of entanglement becomes

slower although the qualitative behavior of entanglement with

time remains unaltered.

We point out here that by using CES with non-zero en-

tanglement corresponding to the system parameter values not

belonging to the FL, and chosen from the PM-I, PM-II, and

AFM phases as initial states, NN LN can remain invariant with

time for a finite duration – a phenomenon known as the freez-

ing of entanglement [34]. Interestingly, freezing of entangle-

ment is observed only in the NN spin-pairs belonging to S2,

while the dynamics of NN LN corresponding to the spin-pairs

belonging to S1 is highly oscillatory. Note here that similar to

the freezing of entanglement, generation of entanglement dur-

ing open system dynamics, where the system parameters are

chosen from the FS, clearly distinguishes between the two sets

of spin-pairs, S1 and S2. However, in contrast to the freez-

ing of entanglement, the spin-pairs belonging to S1 provides

a more beneficial situation in terms of emergence of NN en-

tanglement over initially unentangled states by the action of

environmental noise, as discussed above.

All of the results regarding open dynamics of the system

discussed so far correspond to a high value of βS (= 80),
and a relatively low value of βEB(= 10). We conclude the

discussion on open system dynamics by pointing out that for

fixed βEB = 10, the qualitative features of all the above re-

sults remain unchanged even with a varying βS except when

the system temperature is high (βS ≤ 10). In that case, al-

most no entanglement is generated throughout the dynamics,

irrespective of the sets S1 and S2, when the initial state is

factorized. Also, for fixed βS = 80, one can explore lower

values of βEB, where the absorption terms in the quantum

master equation becomes non-vanishing. However, the qual-

itative features of the dynamics of NN LN corresponding to

the spin-pairs belonging to the sets S1 and S2 remains un-

changed. Moreover, similar observations are found when the

system-environment interaction is considered in the multidoor

scenario.

We conclude by mentioning that the noise model used in the

above discussions is a local one of dissipative type. However,

one can also consider a non-dissipative noise, such as the lo-

cal dephasing, instead of a dissipative one using the same for-

malism. We find that generation of entanglement during the

open system dynamics of the model, with the initial state cor-

responding to the system parameters satisfying FS, is possible

for non-dissipative noises like the dephasing noise also.

V. CONCLUSION

In certain quantum many-body systems, system parameters,

chosen in a specific way, leads to a zero-temperature state that

is product across any bipartition, known as a factorized state.

In the entanglement resource theory, where entanglement is

used as resource for different quantum informations process-

ing schemes, such states are useless. At the same time, spin

models are turned out to be appropriate physical systems for

realizing quantum information protocols which can be real-

ized in the laboratory. One possibility to avoid such factor-

ized states is to create the system far from the factorized re-

gion. If such control over the system-preparation is missing,

we can ask whether entanglement can be generated by tuning

the system temperature, or by considering the closed and open

dynamics of the system, in quantum states that correspond to

the factorization points. It is important to note at this point

that reaching absolute zero temperature is hard compared to

the preparation of a system with moderate temperature. Also,

evolution of a system with time, under closed setup, or in con-

tact with an environment, can be a natural choice for quantum

information processing.

For such investigation, we choose an one-dimensional

anisotropic quantum XY model in the presence of a uniform

and an alternating transverse magnetic field. For fixed values

of the anisotropy parameter, the factorization points of this

model are known to form two lines [17] on the plane of rela-

tive strengths of the uniform and transverse magnetic fields

and the zero-temperature states are unentangled over these

lines. We show that by increasing the temperature of the sys-

tem in canonical equilibrium state, double revival of entan-

glement happens when value of the anisotropy parameter is

chosen in an appropriate range. Although the non-monotonic

behavior of entanglement with the equilibrium temperature in

quantum spin-models, and the single revival of thermal en-

tanglement with increasing temperature were known [17, 18],

the existence of a double revival of thermal entanglement is

counter-intuitive, and has not been reported earlier. Interest-

ingly, such double-humped behavior of entanglement occurs

when one starts from the thermal state corresponding to the

factorization line.

We also show that under closed unitary evolution of the

system driven out of equilibrium by a sudden change in the

system parameters, namely, the magnetic fields, considerable
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entanglement is generated during the dynamics. The initial

state is separable, prepared by choosing system parameters

from the FS. The results indicate that a low value of uniform

magnetic field in the ATXY model is favorable for sustain-

ing generated entanglement in the long time limit, while the

entanglement oscillates and dies out rapidly for high value

of the uniform magnetic field. On the other hand, when the

system interacts with an external thermal bath via a repet-

itive quantum interaction, entanglement of certain nearest-

neighbor spin-pair persists for all values of the uniform field

when the value of the anisotropy parameter is low, but dies out

quickly when the anisotropy is increased. The open system

dynamics also distinguishes between the spin-pairs that have

a direct connection with the external bath and the spin-pairs

that have not. Counterintuitively, entanglement in the spin-

pair which is in contact with a thermal bath has high value

and long duration compared to the spin-pairs which do not

interact with the bath. Moreover, we find that duration of non-

vanishing entanglement and the amount of entanglement in

this scenario has complementary relation. Such generation of

entanglement is also possible for other environments like the

ones resulting in local dephasing noise etc. Apart from the

entanglement creation, such study reveals the variation of en-

tanglement due to the interplay between system parameters,

temperatures, environments.
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