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Energy Minimization for Multi-core Platforms through DVFS and VR Phase Scaling

With Comprehensive Convex Model

Zuomin Zhu, Wei Zhang, Vivek Chaturvedi, and Amit Kumar Singh

Abstract—Energy management is a critical challenge in multi-
core processors due to continuous technology scaling. Previous
methods have mostly focused on the energy minimization of the
processor cores. However, energy overhead of the off-chip voltage
regulator (VR) has recently shown to be a non-trivial part of the
total energy consumption and has been previously overlooked.
In this paper, we propose an overall energy optimization method
for the system that minimizes both per-core energy consumption
and VR energy consumption using dynamic voltage frequency
scaling (DVFS) and VR phase scaling by solving a comprehensive
convex model. In order to improve the accuracy of the task
latency model, a new task model considering both computation
and memory access of the task is also developed. Furthermore,
for better scalability and lower on-line overhead, we decompose
our proposed convex method into two stages: an off-line stage
and an on-line stage. During the off-line stage, we explore
the convex model by assuming different numbers of active
phases of the VR, various workload pressures and workload
characteristics to collect the optimal frequency assignments under
different scenarios. During the online stage, the specific frequency
assignment for cores and optimal active phase number of the VR
are selected and applied based on the actual workload pressure
and its characteristics running on the cores . Experiments on
real benchmarks show that when compared with state-of-the-art
approaches, which are oblivious to VR overheads and exploit
slack time to achieve energy minimization, our method can
achieve a significant energy saving of up to 22.4% with negligible
on-line overhead.

Index Terms—Energy Minimization, DVFS, Voltage Regulator,
Phase Scaling

I. INTRODUCTION

A
S the energy consumption of modern computing systems

increases every year, power and energy management

have become a critical challenge [1]. Many works have pro-

posed reducing the power or energy consumption of the pro-

cessor cores in the multi-core platforms [2][3][4][5][6][7][8].

Among the available methods, dynamic voltage and frequency

scaling (DVFS) is the most pervasive. Unfortunately, most

of the previous DVFS schemes only consider the power

consumption of on-chip cores and overlook the overhead of

power delivery system. Moreover, most works target only

compute-intensive applications while neglecting the memory-

bound characteristics of applications [2][6][11].

In most existing energy minimization works using DVFS,

the overhead of the power delivery system of the multi-core

platform has been largely overlooked. The power delivery
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system delivers sufficient and stable power from the off-

chip source to on-chip cores. Meanwhile, it also incurs a

high energy overhead, especially for the multi-phase switching

voltage regulators. A multi-phase voltage VR is comprised of

multiple small VRs working in parallel, each of which is called

a VR phase, and all VR phases operate in an interleaving

mode to share the total burden of delivering output current.

Recent studies suggest that a typical multi-phase off-chip VR

can consume an overhead power of up to 20%-50% of its

input power [13][14]. Hence, it is critical to optimize the

power consumption of a VR considering its salient power

overhead. Previous works have shown that disconnecting some

phases at light load, denoted as phase scaling, can improve

the conversion efficiency and reduce the power overhead of

a VR [13][14][15]. Nevertheless, these works only focus on

the power losses of a VR itself and determine the number of

active phases according to the flow-in current at circuit level

instead of considering the whole system power consumption.

Few works have explored VR’s phase scaling from a system

perspective [16][17][18]. However, none of the methods con-

sider the impact of phase scaling of a multi-phase VR on

DVFS selection for energy optimization of the whole platform.

All these works determine the DVFS level of the cores first,

and then select the active phase of VR based on the flow-

in current. The shortcoming of these methods is that during

the decision of DVFS setting, the phase scaling of multi-phase

VR is overlooked, which will lead to an inefficient DVFS level

for the whole platform. In return, the phase scaling of VR is

also affected by the inefficient DVFS level. The challenges to

optimize energy consumption of the whole system lie in the

interaction between DVFS levels and VR phase scaling.

In order to address aforementioned challenges, in this pa-

per we propose a comprehensive convex-optimization-based

approach for optimizing the per-core DVFS and phase scaling

of the off-chip VR, such that the total energy consumption

of a platform, including the on-chip cores and an off-chip

multi-phase VR, can be minimized for independent execution

of tasks with deadlines. In our proposed method, the DVFS

setting is determined with an awareness of phase scaling of

the off-chip VR. Meanwhile, phase scaling is set from a

system level for energy minimization of the whole platform.

In addition, our approach takes the CPU-bound and memory-

bound characteristics of tasks into consideration to identify

appropriate DVFS setting and VR phase number. Static power

is also included in the power model of the cores. Based

on the characteristics of tasks and the power models of the

cores and VRs, we formulate a convex optimization problem

that is able to provide an optimal setting of both DVFS

and the off-chip VR within polynomial complexity [19][20].

Furthermore, to achieve better scalability and lower on-line
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overhead, the proposed convex method is decomposed into

two stages: an off-line stage and an on-line stage. During

the off-line stage, we explore the convex model by assuming

different numbers of active phases of the VR, and various

workload pressures and workload characteristics to collect

the optimal frequency assignments under different scenarios,

and store them in a look-up table. During the on-line stage,

based on actual workload pressure and its characteristics

processed by the cores, the specific frequencies for cores and

active phase number of the VR are selected from the table

and applied to the system. To validate the efficiency and

scalability of the two-step comprehensive convex optimization

approach, we evaluate our algorithm on three different targeted

platforms consisting of four cores, eight cores and sixteen

cores, respectively. Experiments on real benchmarks show that

comparing with previous approaches, our method can achieve

significant energy savings of up to 22.4%.

In summary, the main contributions of this work include:

• To achieve the system level energy optimization, we

consider the interaction between per-core DVFS and

phase scaling of VR and develop a comprehensive convex

optimization model.

• To reduce the on-line overhead and improve scalability,

we decompose the proposed convex-optimization model

into two stages, an off-line stage and an on-line stage,

which significantly reduces the optimization time without

incurring energy overhead.

• We investigate our proposed model on four-core, eight-

core and sixteen-core platforms, respectively. The exper-

imental results show that our method has reduced the

system energy consumption by up to 22.4% with good

scalability.

The rest of this paper is organized as follows. Section II dis-

cusses existing methods for energy consumption minimization

on multi-core systems. Section III explains backgrounds and

preliminaries for a multi-phase VR, and also introduces our

task latency model as well as power model. A motivational

example and the proposed convex formulation are presented

in section IV, followed by the two-stage decomposition of

the convex optimization approach. Section V describes the

experimental results and analysis. Section VI concludes the

paper.

II. RELATED WORK

The energy minimization of multi-core processors using

DVFS policies has been widely used, and many related ap-

proaches have been proposed [5][6][7][8][21][2]. Slack mini-

mization, which selects the lowest possible frequency to extend

the execution of a task to minimize energy consumption while

catching the deadline, is most commonly adopted [5][9][10].

In [5], energy minimization is achieved by exploiting the

execution slacks where static energy is not taken into consider-

ation. Convex models have been formulated to achieve energy

optimization in [8][6][21]. In [8], several DVFS strategies

under bounded execution times are proposed. However, only

dynamic power consumption is considered. In [6][21], the

energy consumption of a core is modeled at cycle level,

which cannot take the influence of task characteristics; for

example, the memory access latency, into consideration. In

[7], energy efficiency is formulated as a machine learning

problem and much system data at runtime are collected for

DVFS classification. This method incurs huge training over-

head offline and high computational complexity at run-time.

Marco et al. [22] introduces a memory-boundedness aware

DVFS algorithm to exploit memory-bounded tasks for slack

claim, yet it neglects the influence of static power on total

energy. In [2], an analytical energy model is proposed to give

the DVFS level for energy minimization through computing

the first derivation. However, it only works for the compute-

intensive workload, while applications with memory-bound

characteristics are not considered. Moreover, all the above

works do not consider the overhead of the off-chip VR, and

their models cannot be directly extended to include the impact

of the VR.

A power delivery system has a significant energy overhead

due to its non-trivial parasitic resistance and capacitance of

the VRs, which has been demonstrated in previous works

[15][9][14][13][23]. However, most previous works on VRs

have only concentrated on the components of the VR to

improve the power efficiency of the VRs alone. In [23],

a convex model is formulated to determine the parameters

(channel width of MOS, phase number, switching frequency,

etc.) of on-chip and off-chip VRs for exploring the tradeoff

between the advantages and costs of employing on-chip VRs.

In [13], hybrid power delivery system with both on-chip and

off-chip VRs is shown to be more effective in maintaining high

efficiency in a large range of output loads than the conventional

paradigm with off-chip VRs.

In order to improve the energy efficiency of a multi-phase

VR, there are also previous works proposed to explore the

phase scaling at light loads [15][14][13][24]. In [24], a simple

technique of dynamically changing the number of phases as a

function of load is proposed for reducing fixed losses at light

load. In [15], a time-optimal digital controller for the phase

scaling, which is implemented in the FPGA, is introduced. In

[14], a look-up table storing the maximum load current value

of the highest efficiency indexed by the P-state value and the

number of active phases, is formed offline and used at run-

time to select the optimal active phase of the VR. Edward et

al. [25] introduces a system control method for fully integrated

voltage regulator on a 4th generation Intel core based on the

current activity level of the domain. In [13], a quantized power

management scheme is used to disconnect active phases based

on the load. As just discussed, all these above works have

only focused on reducing the power loss of VRs itself while

ignoring the interaction between the power consumption of

VRs and the cores.

Despite the few recent papers that have explored VRs from

a system perspective as in [9][17][16], little attention has been

paid to the question of how to maximize the energy saving of

a multi-core platform from both VR and DVFS optimization.

Kim et al. [9] explore the potential system-wide energy savings

of implementing both off-chip and on-chip VRs in a 4-core

CMP system. They apply an integer linear programming (ILP)

to determine the DVFS levels for each core at offline. However,
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Fig. 2: Circuit diagram of a multi-phase VR

the ILP model only includes the power consumption of the

cores while neglecting the power overhead of VRs. Choi et

al. in [16] proposes a DVFS policy that is aware of the

VR overhead characteristics for low-power embedded systems.

They derive the optimal frequency of a core based on a

power model to minimize the total energy consumption in

both the core and the VR. However, the method only targets

a single-phase VR for a single core. In [17] and [18], a VR

consolidation method (VRCon), that combines cores of the

same voltage level as well as relatively small amount of load

current to be powered by a single VR, is proposed to reduce

the VR power loss in the multi-core platform. However, the

VRCon method assumes a VR-to-core distribution network,

which incurs huge area and power overhead. Therefore, from

a system perspective, how to efficiently modulate the phases

of multi-phase VRs and adaptively adjusting DVFS levels of

cores according to the system workload is worth exploring.

In this paper, we propose an energy optimization method that

combines phase scaling of VRs with DVFS to minimize the

total energy consumption of a multi-core platform.

III. SYSTEM DESIGN

A. System Model

Fig.1 shows a targeted system that is composed of an

off-chip multi-phase VR and four one-phase on-chip VRs

supporting per-core DVFS [9]. For a bigger system containing

eight or sixteen on-chip cores, the system model is similar to

Fig.1. The off-chip VR performs the first step of converting

the power supply voltage, assumed to be 12 V [13], to an

intermediate voltage of 2.0 V [13], which is then shared by

the on-chip components. The intermediate voltage, denoted as

Vint, drives four on-chip regulators that further step down the

voltage to different levels supplied to on-chip cores.

The off-chip VR is usually implemented as a multi-phase

VR to deliver a high load current as increased number of

phases help to reduce conduction losses and improve transient

response [14][13][23]. On the other hand, the conversion

efficiency for a multi-phase VR is usually quite low at a light

load if all phases remain on-state, due to its fixed switching

losses and control logic losses [13]. We consider phase scaling

for off-chip VR as a control knob for energy minimization

for the whole platform. For an on-chip VR supporting per-

core DVFS, the load current is usually relatively smaller. The

sizes of MOS transistors and inductors are smaller, while

the switching frequency is usually much higher than that of

an off-chip VR [9][13], which incurs a nonnegligible power

overhead. Therefore, it is important to take the power overhead

of an on-chip regulator into consideration when determining

the DVFS level of its associated core for energy minimization.

In this work, we derive the parameters of an off-chip and on-

chip VR using PowerSoc considering a six phase off-chip VR

and one-phase on-chip VR [13].

B. Voltage Regulator

A switching voltage regulator commonly consists of MOS

power transistors, inductors and capacitors, as well as the

feedback control circuit, as shown in Fig.2 [9]. The control

circuit switches on/off MOS power transistors at a certain

frequency to generate a pulse wave, which then goes through a

low-pass filter composed of the inductor and capacitor, thereby

providing a steady output voltage for its load. But this does

not come free. The parasitic capacitance and resistance of

the MOS and inductors incur non-negligible power overhead.

Therefore it is important to model power losses of the VR for

better power efficiency of the whole system. There are four

main parts of power losses to discuss. We adopt the simple

yet efficient model in [13]:

Pdriver = CeffV
2

driverfsw (1)

PRon = (DRon,H + (1−D)Ron,L) · (I
2

ind +
∆I2ind
12

) (2)

∆Iind =
D(Vin − Vout)

fswLind

(3)

PRind = Rind · (I
2

ind +
∆I2ind
12

) (4)

Pctrl = IctrlVdriver (5)

Pdriver, PRon, PRind and Pctrl represent the switching loss

of the MOS power bridge, resistive loss of the MOS power

transistors, resistive loss of the inductor and the power loss of

the control circuit, respectively. Ceff is the effective switching

capacitance of the MOS transistors and fsw is the switching

frequency of the transistors. Vdriver denotes the supply voltage

of the drivers and control logic. Ron,H and Ron,L denote the

on-state parasitic resistance of high/low-side MOS transistors

and Rind denotes the parasitic resistance of the inductor. Iind
and ∆Iind are the average and peak-to-peak value of the

inductor current in one phase, respectively. Vin and Vout are

the input and output voltage of the regulator, respectively. D
is the duty ratio of the gate signal and Ictrl stands for the

supply current of the control circuit of each phase. In addition

to the power losses listed above, there are other negligible

power losses, e.g. static power Pstat and short circuit power
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Fig. 4: Execution time of tasks at various frequency

Psc. Note that for an off-chip VR and on-chip VR, the above

parameters are totally different and we use the superscripts off

and on to distinguish them. For an on-chip VR, the overhead

can be expressed as

P on
vr = P on

driver + P on
Ron + P on

Rind + P on
ctrl + P on

stat + P on
sc , (6)

A multi-phase VR is comprised of multiple small VRs working

in parallel, which provides several advantages in terms of

output fluctuation reduction and faster response, but incurs

high power losses. The components in the dashed box in Fig.2

form a phase for the multi-phase regulator. Thus, the total

power loss of an off-chip VR with n active phases is given by

P off
vr =n·(P off

driver+P
off
Ron+P

off
Rind+P

off
ctrl +P

off
stat+P

off
sc ), (7)

As shown in Fig.3, the conversion efficiency of a multi-

phase VR is highly dependent on the active phase number

n and its load. When the load is reduced, some phases can

be disconnected to share the load current among a decreased

number of phases to improve the power efficiency of the VR.

In this paper, the number of active phases is one of the control

knobs for energy optimization.

C. Characterization of Task Latency

A task is a sequence of instructions to be executed. Different

kinds of instructions can incur different on-chip and off-chip

latency, due to data dependency, cache miss etc. Based on

the latency type, they can be classified into CPU-bound or

memory-bound instructions [9][12]. Speeding up the processor

helps to reduce the CPU-bound latency but it will not affect the

time taken by memory-bound instructions. Thus, the execution

time of a task j, tj can be modeled as in [12]:

tj = uj +
wj

f
, (8)

where the first term uj represents the memory-bound latency,

which does not change with varying operating frequency, and

the second term wj/f represents the CPU-bound latency,

which can be reduced by increasing the core’s operating

frequency. The parameters uj , wj are constants and depend

on the characteristics of a task. 〈tj , f〉 pairs can be collected

by running a task with different operating frequencies on gem5

simulator [26] at offline stage, and then the parameters uj , wj

can be derived from the linear regression model.

Fig.4 shows the normalized execution time of three bench-

marks from SPEC2006 [27] running with different operating

frequencies. We can see that the change of execution time with

increasing frequency differs from task to task. Thus, it is not

sufficient to just use a simple inverse linear model to describe

the task execution time as in [6][5]. We have validated the

model Eq.(8) by comparing the predicted execution time with

the actual execution time collected on gem5, and the result

demonstrates that model Eq.(8) incurs less than 1% error, as

illustrated in Fig.4 where the fitting curves match the scattered

dots very well.

To ease understanding of the paper, we define two necessary

terminologies to indicate the characteristics of tasks as follows:

• Workload Pressure: If there is only one task j mapped

on a core, the workload pressure of the core is defined

as

ψj =
uj + wj/fmax

Tint
, (9)

where fmax and Tint represent the maximum frequency

and deadline, respectively. Higher workload pressure sug-

gests that the core needs to run faster to finish all tasks

before the deadline. ψ > 1 indicates that even when

applying the highest frequency some tasks still can not

catch the deadline.

• CPU-bound Ratio: The CPU-bound ratio of tasks is

defined as

φj =
wj

uj + wj

, (10)

A task with a high CPU-bound ratio means that wj

dominates over uj in Eq.(10), which suggests that the

processing time of the task tj is dominated by the wj/f
part and can be obviously reduced by slightly increasing

the operating frequency. On the contrary, a low CPU-

bound ratio indicates that the processing time of the

task is dominated by uj , and tj does not change visibly

with varying operating frequency. In this paper, the CPU-

bound ratio of task is also referred to as workload char-

acteristics and these two terms are used interchangeably.

D. Power Model

For each on-chip core, the overall power consumption is

composed of dynamic power and static power. Following the

simple yet sufficiently accurate model in [6], we model the

overall power consumption of core i as:

Pi = CV 2

i fi + Vi · Ileak, (11)

where the first term represents the dynamic power and the

second term represents the static power. Vi is the supply

voltage for core i, which is matched with its frequency fi.
Ileak is the leakage current, and C is the circuit effective

capacitance. We adopt the leakage power model in [28][29] for
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its simplicity and enough accuracy, where Ileak in this model

is assumed to be a fixed parameter that accounts for 30%

of the total current at the nominal frequency. For DVFS, the

relationship between voltage and its corresponding frequency

can be modeled as a linear function [9] as:

Vi = k · fi + V0, (12)

where k and V0 are constants depending on the manufacturing

technology and can be derived from the linear regression

model based on the given available 〈V, f〉 pairs.

IV. CONVEX MODEL BASED ENERGY MINIMIZATION

Different from the existing approaches for energy mini-

mization, our convex formulation incorporates the impact of

multi-phase VR overheads and the interaction between VRs

and cores. Besides this, application characteristics are also

considered. Our proposed methodology selects the optimal

number of active phases of the off-chip VR and per-core

DVFS setting based on convex optimization. The optimization

objective is to minimize system level energy consumption

comprising of energy consumed by the on-chip cores and

off-chip multi-phase VR. As a result, we develop a com-

prehensive power management methodology for minimizing

the total energy consumption of the complete system. In this

section, we first present a motivational example to illustrate the

necessity of the system level optimization with VR scaling.

Then, a comprehensive convex model to achieve the energy

minimization of the whole system is derived in detail. Finally,

in order to achieve better scalability, we decompose the

comprehensive convex model into a two-stage algorithm to

significantly reduce the online running time.

A. Motivational Case Study

In this subsection, we explain why the comprehensive

modeling of system energy consumption is important through

a simple example. For ease of understanding, we adopt the

four-core platform shown in Fig.1. The technology parameters

of cores and VRs are presented in section V-A. We consider

a processor with sixteen voltage settings, from 1.340 V down

to 0.988 V with scaled frequencies from 2 GHz down to 600

MHz, similar to the 〈V, f〉 pairs in work [30]. To make the mo-

tivational example easy to follow without affecting generality,

we assume four cores executing the same duplicated tasks.

Two different cases are taken as an example here: Case 1,

running Task 1, τ1 with parameter uτ1 = 0, wτ1 = 0.3 on

all four cores; Case 2, running Task 2, τ2 with parameter uτ2
= 0.85, wτ2 = 1.3 on all four cores, with a deadline equal to

5 ms. We select tasks with different characteristics (workload

pressure and CPU-bound ratio) to show the drawbacks of

existing energy optimization methods.

For comparison, we implement two representative and ef-

fective energy minimization methods in [2] and [5] as our

baseline algorithms. In [2], an analytical energy model of

an interval including static power is proposed. It minimizes

the energy model and derives the DVFS level off-line. This

model gives the optimal DVFS level setting without incur-

ring online overhead. However, as most previous works, this
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Fig. 5: Energy consumption of the whole platform for two cases. SM: Slack
minimization only [5], AM: Analytical model for DVFS [2], SP: Slack
minimization [5] + flow-in current based phase scaling, AP: Analytical model
[2]+ flow-in current phase scaling, CP: Proposed comprehensive convex model
combing DVFS and VR phase scaling

method only assumes the task as CPU-bounded. We denote

this baseline algorithm as Analytical Model[2]. To model the

power consumption of a core according to the model in [2],

pcore(f) = b · fa + s, we use a curve-fitting and obtain

b = 1.699, a = 1.721 and s = 1.412 based on Eq.(11) and

Eq.(12) for our experimental setup. We also implement the rep-

resentative slack minimization technique as proposed in [5] as

another baseline algorithm for comparison. Slack minimization

is a commonly used efficient method for minimizing energy

consumption, and it selects the lowest operating frequency

to execute a task while catching its deadline. However, this

method cannot take the static energy into consideration, yet

the static part has significantly contributed to the total energy

consumption.

Since [2] and [5] only target the DVFS setting optimization

without considering VR overhead, in order to make a fair

comparison for the system level optimization, we construct

another two representative baselines by applying the DVFS

strategies in [2] and [5], followed by the state-of-art flow-in-

current-based VR phase scaling method in [14][13]. In the fol-

lowing experiments, we will use the following four baselines

to compare with our proposed system energy minimization

model:

• Baseline 1 (SM): Slack minimization [5] without consid-

ering phase scaling.

• Baseline 2 (AM): Analytical model [2] without consider-

ing phase scaling.

• Baseline 3 (SP): Slack minimization [5] followed by flow-

in-current-based VR phase scaling.

• Baseline 4 (AP): Analytical model [2] followed by flow-

in-current-based VR phase scaling.

Fig.5 illustrates the energy consumption of the entire plat-

form when applying different energy optimization strate-

gies for the two cases. For both cases, slack minimization

[5][9][10] selects 0.6 GHz which is the lowest possible

frequency, and the analytical model in [2] selects 1.3 GHz

which is derived as the optimal point from the energy model.

However, from the histogram in Fig.5, SM and AM performs

better in different case. It is because SM does not consider

static power, and AM derives the frequency offline which

cannot adapt to the variation of online tasks. This drawback
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becomes more serious when the model does not consider the

memory-bound task characteristics.

Moreover, comparing SP and AP to SM and AM, respec-

tively, we can see that phase scaling of VRs can greatly

reduce the overall energy consumption of the whole platform.

However, all previous works for energy minimization deter-

mines the DVFS level of the cores first, and then selects

the active phase of the VR based on the flow-in current.

This means that in the first step of the DVFS setting, the

overhead of the multi-phase VR is not considered, which will

lead to a non-optimal DVFS level for the whole platform. In

return, the phase scaling is also degraded by the non-optimal

DVFS level setting. For example, in Fig.5, for Case 1, SP

determines DVFS level of 0.6 GHz and phase scaling n=1,

while our proposed comprehensive algorithm determines the

DVFS level of 1.1 GHz and n=2 phase for the VR. For

Case 1, CP outperforms the conventional SP by a 13.3%

in terms of energy saving. Although our proposed algorithm

increases the frequency and activates more phases of VR,

it leads to lower energy consumption. The slightly higher

frequency can greatly reduce the execution time of a fully

compute-intensive task like Case 1, which can substantially

reduce the static energy consumption and offset the increase

of dynamic energy. For Case 2, AP determines the DVFS level

of 1.3 GHz and phase scaling n=2 phases, while our proposed

comprehensive algorithm determines the DVFS level of 0.7

GHz and n=1 phase for the VR. This decision achieves a

19.4% energy saving. Thus, it can be seen that, compared to

the conventional methods of determining DVFS, which are

unaware of the overhead of VRs followed by phase scaling

based on the flow-in current, there is still great room to

improve the energy saving in the multi-core platform with a

multi-phase VR. Thus we propose a comprehensive convex-

optimization-based approach that incorporates the per-core

DVFS and phase scaling of VR in one convex model, with the

CPU-bound and memory-bound characteristics of applications

considered.

B. Problem Formulation

Given the system models and task model described in

section III, a set of independent tasks τ = {τ1, τ2, · · · τj , · · · }
are assigned to the on-chip cores Cores = {C0, C1, . . . , Cm}
at the beginning of every DVFS interval Tint, during which the

DVFS level does not change. Assuming that during the task

assignment and DVFS interval setting, all the assigned tasks

must be finished in the current DVFS interval. The objective

of our optimization problem is to set the frequency of on-

chip cores and select the number of active phases for off-chip

VR, such that the total energy consumed by the system is

minimized.

Since task mapping to cores is not the focus of this work,

we employ a representative load balancing algorithm [31] for

initial task assignment. Once the tasks are mapped to cores,

tasks assigned to the same core are clubbed together to form

a hyper task. A hyper-task is the collection of all the tasks

mapped to the same core. Within a hyper-task, intra-task

scheduling is not required as these are independent of each

other. The total execution time of all tasks assigned to Ci can

be represented as

Ti =
∑

j∈Ci

uj +
∑

j∈Ci

wj/f

= Ui +
Wi

f
,

(13)

where Ui and Wi represent the summation of u,w of all

respective tasks assigned to core Ci. Thus the deadline

constraint is expressed as

Ui +
Wi

f
≤ Tint, (14)

According to Eq.(9) and (10), the workload pressure and CPU-

bound ratio of the hyper task can be expressed as:

Ψi =
Ui +Wi/fmax

Tint
, (15)

Φi =
Wi

Ui +Wi

, (16)

Higher workload pressure suggests that the core needs to run

faster to finish all tasks before the deadline. Ψi > 1 indicates

that even when applying the highest frequency some tasks still

can not catch the deadline. Thus the number of tasks that can

be assigned to a core must conform to the constraint Ψi ≤ 1.

C. Comprehensive Convex Model

Based on the power model in section III-D, the phase current

Ioffind and the number of active phases n of the off-chip VR

need to satisfy a constraint that the output power of the off-

chip VR is equal to the power consumption of the on-chip

components:

n · Ioffind · Vint =
∑

i
(CV 2

i fi + Vi · Ileak + P on
vr,i) (17)

In the same way, for the i-th on-chip VR , the phase current

Ioni satisfies:

Ioni · Vi = CV 2

i fi + Vi · Ileak (18)

Note that these sums of quadratic equality Eq.(17) and (18)

do not conform to the rules of geometric programming (GP)

[19]. We can relax it to an inequality, and it is shown in [20]

that the relaxed problem is equivalent to the original problem

and is able to derive the same optimal results.

From Eq.(1) to Eq.(7), Pdriver, Pctrl and Pstat for both an

on-chip and off-chip VR are constants depending on the char-

acteristics of the VR. P off
Ron, P off

Rind are directly proportional

to square of Ioffind , and P on
Ron,i, P

on
Rind,i are proportional to

the square of Ioni . Please note that Ioffind and Ioni are viewed

as intermediate variables in the following convex model in

Eq.(22), thus PRon and PRind in Eq.(2) and Eq.(4) also exhibit

a quadratic equality constraint. Similar to the constraint in

Eq.(17), the power loss model of the off-chip VR in Eq.(7)

can also be relaxed to an inequality constraint.

P off
vr ≥ n·(P off

driver+P off
Ron+P off

Rind+P off
ctrl .+P

off
stat+P off

sc ) (19)

Energy consumption of the whole system is comprised of two

parts: the energy consumed by on-chip components, and the

energy consumed by an off-chip VR

Etot = Eon chip + Eoff vr. (20)

Eon chip denotes the energy consumed by all cores and its
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Fig. 6: Off-line stage of the comprehensive convex optimization method

associated on-chip VRs, which is the summation of the energy

of the individual core and its associated on-chip VR. Thus,

Eon chip =
∑

i
(CV 2

i fi+Vi · Ileak+P
on
vr,i)(Ui+

Wi

fi
). (21)

Eoff vr represents the energy overhead of the off-chip VR

during a DVFS interval, which is the product of power

consumption, P off
vr , and activation time, t, of the off-chip VR.

Combining all the constraints listed above, the problem

formulation is presented as follows:

min
fi,n,

I
off

ind
,t

∑
i
(CV 2

i fi + Vi·Ileak + P on
vr,i)(Ui +

Wi

fi
) + P off

vr · t

s.t. :P off
vr ≥ n · (P off

driver + P off
Ron + P off

Rind + P off
ctrl

+ P off
stat + P off

sc )

P on
vr,i ≥ P on

driver + P on
Ron,i + P on

Rind,i + P on
ctrl

+ P on
stat + P on

sc

n · Ioffind · Vint ≥
∑

i
(CV 2

i fi + Vi · Ileak + P on
vr,i)

Ioni · Vi ≥ CV 2

i fi + Vi · Ileak
Vi = k · fi + V0
Ui +Wi/fi ≤ t

t ≤ Tint
fmin ≤ fi ≤ fmax

1 ≤ n ≤ N.
(22)

where fmin and fmax represent the restrictions of the min-

imum and maximum frequency, and N represents the total

number of phases of the off-chip VR.

The above problem formulation is actually a GP problem

that can be converted to a convex optimization problem with

polynomial complexity using logarithmic transformation [20].

In Eq.(22), the core’s operating frequency fi and the number of

active phases n are continuous real variables. After fi opt and

nopt are found in the solver, which will be discussed later in

the paper, we need to map these optimal values to an available

frequency and an integer value of the number of active phases.

To guarantee to catch the deadline, the core’s frequency fi is

set to an available frequency that is closest to and not smaller

than fi opt. The number of active phases of the off-chip VR,

n, is set to the nearest integer to nopt, i.e. n = ⌊(nopt+0.5)⌋.

Incorporating the selection of the active phase number

of the off-chip VR and DVFS into a comprehensive convex

model leads to a bigger exploration space as compared to those

considering the DVFS of the processor alone, and gives a glob-

ally optimal solution for energy minimization in polynomial

time. Besides this, the latency characteristics of tasks and the

overhead of the off-chip VR are precisely modeled. Compared

TABLE I: Optimal frequency settings of the comprehensive convex optimiza-
tion method when workload characteristics Φ = 0.9

Workload Pressure

fopt(GHz)

n=1 n=2 n=3 n=4 n=5 n=6

Ψ=0.11
U=0.1

W=0.9
0.94 0.99 1.02 1.05 1.08 1.11

Ψ=0.22
U=0.2

W=1.8
0.94 0.99 1.02 1.05 1.08 1.11

Ψ=0.33
U=0.3

W=2.7
0.94 0.99 1.02 1.05 1.08 1.11

Ψ=0.44
U=0.4

W=3.6
0.94 0.99 1.02 1.05 1.08 1.11

Ψ=0.55
U=0.5

W=4.5
1.00 1.00 1.02 1.05 1.08 1.11

Ψ=0.66
U=0.6

W=5.4
1.23 1.23 1.23 1.23 1.23 1.23

TABLE II: Optimal frequency settings of the comprehensive convex optimiza-
tion method when workload characteristics Φ = 0.8

Workload Pressure

fopt(GHz)

n=1 n=2 n=3 n=4 n=5 n=6

Ψ=0.30
U=0.5

W=2.0
0.84 0.87 0.90 0.93 0.95 0.98

Ψ=0.36
U=0.6

W=2.4
0.84 0.87 0.90 0.93 0.95 0.98

Ψ=0.42
U=0.7

W=2.8
0.84 0.87 0.90 0.93 0.95 0.98

Ψ=0.48
U=0.8

W=3.2
0.84 0.87 0.90 0.93 0.95 0.98

Ψ=0.54
U=0.9

W=3.6
0.88 0.88 0.90 0.93 0.95 0.98

Ψ=0.60
U=1.0

W=4.0
1.00 1.00 1.00 1.00 1.00 1.00

to previous works, these advantages greatly help to optimize

the total energy of the whole system.

D. Two-Stage Decomposition

Although the comprehensive convex model in Eq.(22) can

give the globally optimal setting of per-core DVFS and optimal

active phase number of the VR, the complexity of the convex

model in Eq.(22) is polynomial in the number of variables

and constraints [20][32]. This means that the running time to

solve the convex problem increases sharply with the increasing

number of cores since more cores lead to more variables fi
and constraints on fi. For example, for a four-core platform,

the specific GP solver, GGPLAB [33] takes around 3 ms to

solve the convex model in Eq.(22) while for an eight-core

platform, the solving time increases to 7 ms, as discussed in

Sec.V-A. This makes it infeasible to find the optimal solution

at the on-line stage within one DVFS interval.

The sharply increasing time overhead highly hinders the

scalability of our convex model implementing at the on-line

stage. Therefore, we decompose our comprehensive convex-

optimization-based method into two stages: an off-line stage

and an on-line stage, to reduce the on-line overhead.

Off-line Stage: The off-line stage of our method, which is

performed at design time for a multi-core platform, is depicted

in Fig.6. During the off-line stage, we solve the convex model

in Eq.(22) with a convex optimization solver and collect the

optimal frequency assignments corresponding to the different

number of active phases of the VR for various workload

pressures and workload characteristics, and store them in a

look-up table. As shown in Fig.6, the off-chip VR model,

power model of the cores and system model are obtained
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as inputs. In the rounded rectangles, there are three varying

values. When Ψi and Φi, which define the workload pressure

and workload characteristics of the cores, respectively, are

specified, Ui and Wi for tasks on cores can be derived from

Eq.(15) and Eq.(16). The convex optimization procedure is

solved for different workload pressures Ψi, different workload

characteristics Φi, and n active phases of the VR. As repeating

the procedure for all possible combinations of Ψi and Φi of the

different cores leads to exponential complexity and infeasibil-

ity, we simplify the process by only iterating on one workload

pressure value and one workload characteristics value for all

cores. This is feasible since we assume a load balancing

algorithm for task assignment, which leads to a relatively

balanced workload distribution on every core. Furthermore,

during the on-line stage, the different workload pressures and

workload characteristics of every core are considered since we

use the actual value of Ψi and Φi to determine the frequencies

of cores, as discussed in the on-line stage in next subsection.

For each combination of these three variables, we substitute

Ui, Wi and n with specific values in convex formulation in

Eq.(22) and solve it at design time. Please note that we fix

the active phase number n of the VR, as a specific integer

value in every iteration of the convex optimization procedure.

This is because the active phase number of the VR must be

an integer and its available range is very limited due to the

constraint of the total phase number of the VR [14].

To elucidate clearly the two-stage decomposition of our

convex-optimization-based method, we present an example

of applying our comprehensive convex model on a four-core

platform as shown in Fig.1, where the off-chip VR and on-

chip cores are modeled as in [13] and [30], respectively.

The DVFS interval, Tint, is set to be 5 ms. Table I gives

the optimal solutions of the off-line stage of our method for

different workload pressures Ψ and different numbers of active

phases of VR n when the workload characteristics Φ is fixed

at 0.9. We can see that the optimal solutions in each column,

corresponding to the same number of active phases of the

VR, remain almost unchanged until Ψ increases up to 0.55

or 0.66, as shown in the blue cells. Similar to Table I, Table

II, which gives the optimal solutions of the comprehensive

convex model when the workload characteristics Φ is fixed at

0.8, also shows the same discipline that optimal solutions in

each column remain unchanged until the workload pressure Ψ

TABLE III: The look-up table created during off-line stage

Φ

fopt(GHz)

n=1 n=2 n=3 n=4 n=5 n=6

Φ=1.0 1.1 1.1 1.2 1.2 1.3 1.3

Φ=0.9 0.9 1.0 1.0 1.1 1.1 1.1

Φ=0.8 0.8 0.9 0.9 0.9 1.0 1.0

Φ=0.7 0.7 0.8 0.8 0.8 0.8 0.9

Φ=0.6 0.7 0.7 0.7 0.7 0.8 0.8

Φ=0.5 0.6 0.6 0.6 0.7 0.7 0.7

exceeds some threshold. Furthermore, it is easily found that

the values in the blue cells are exactly the frequencies that

catch the deadline constraint. For example, in the last row in

Table I, where U = 0.6,W = 5.4, we can get the frequency

lower bound f ≥ 1.23 based on Eq.(14).

From the optimal solutions in Table I and Table II, we

conclude two facts:

1) In Table I and Table II, the workload characteristic Φ is

fixed while varying Ψ and n. Based on the definition in

Eq.(16), a fixed workload characteristic Φ means a fixed

linear ratio between Ui and Wi, namely Ui = δ · Wi

where δ = (1−Φ)/Φ . Thus, when the workload pressure

increases (Ui,Wi increases), the objective function in the

convex model (in Eq.(22)) actually does not change if we

divide it with the coefficient Wi. As a result, the optimal

solutions for the convex model remain unchanged if the

deadline constraints are inactive, as shown in Fig.7 where

an inactive constraint does not have any effect on the

optimal solution.

2) When the workload pressure pushes the lower bound of

the frequency to a value exceeding the original optimal

solution, the deadline constraints become active. In this

case, the optimal solution of the convex model turns

out to be the value which exactly catches the deadline

constraint, as shown in Fig.8 where an active constraint

pushes the optimal solution to catch the constraint.

Based on the above facts, it is easily found that we do not

need to store the whole content of Table I and Table II

in the look-up table of the frequency assignment at design-

time. What we need to store is only the optimal frequency

assignments corresponding to the different number of active

phases of the VR and various workload characteristics when

the deadline constraint is inactive, namely when the workload

pressure is low. During the on-line stage, the stored optimal

frequency with the inactive deadline constraint is retrieved and

compared with the lower-bound frequency derived from the

deadline constraint. The bigger of the two values is exactly

the optimal solution of the original convex model with the

deadline constraint considered.

The look-up table we created at design-time is shown in

Table III. The results in Table I and Table II correspond to

the second and third row in Table III. Note that in this table

we have mapped the optimal values in Table I and Table

II to an available frequency that the on-chip cores support.

Thus, fewer registers are needed for storing the look-up table

since we can record the integer level number, which ranges

from 1 to 15 (corresponding to 0.6 GHz to 2.0 GHz), instead
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Fig. 9: Flow-chart of the on-line stage

of recording the floating-point frequency values. In this way,

the 2-D array of Table III only takes 36 integers, namely

144 bytes if we assume an integer takes up 4 bytes. From

Table III, we can see that the values of two adjacent rows,

namely the optimal frequency assignments for two adjacent

workload characteristics and the same number of active phases

of VR, are very close. This means that the look-up table we

create during off-line stage is fine-grained in terms of workload

characteristics. Thus it can maintain a good optimality of the

original convex model in Eq.(22).

On-line Stage: Fig.9 presents the overall flowchart of the on-

line stage of our method. During the on-line stage, first, the

workload characteristics array Φcur of all cores are computed.

Then, for active phase number n = 1, 2, . . . N , the frequency

assignments of all cores are retrieved from the look-up table

indexed by n and the closest workload characteristics to Φcur.

From Table III, we can see that when Φ = 0.5, the frequency

approaches to 0.6 GHz, which is the lowest available fre-

quency. Thus, if Φ < 0.5 for a hyper task on a core, we select

0.6 GHz as the frequency assignment for this core. In this way,

we can get N frequency arrays fn=1

stored, f
n=2

stored, . . . , f
n=N
stored

corresponding to active phase number n = 1, 2, . . . N . Next,

each of these N frequency arrays is element-wisely com-

pared with the lower-bound frequency array f lower, where

f lower denotes the lower-bound frequency array of an in-

dividual core and is derived from Eq.(14). The bigger el-

ements in each comparison form the candidate frequency

assignments fn=1
opt , f

n=2
opt , . . . , f

n=N
opt for active phase number

n = 1, 2, . . . N . Thus, we have N local optimal settings of

per-core frequency, and the active phase number of the VR,

namely 〈fn=1
opt , n=1〉, 〈fn=2

opt , n=2〉, . . ., 〈fn=N
opt , n=N〉. To find

the most energy-efficient setting among these N choices, we

use an exhaustive method since N is usually a small integer

[14]. The total energy of the whole platform of these N local

optimal settings, En=1

pred, E
n=2

pred, . . . E
n=N
pred , can be predicted

based on the objective function in Eq.(22). The minimum

value in En=1

pred, E
n=2

pred, . . . , E
n=N
pred is easily found and the

corresponding setting of 〈fnopt, n〉 is exactly the most energy-

efficient setting of per-core DVFS and active phase number.

From the flowchart in Fig.9, we can see that for a platform

with M on-chip cores and the VR with N phases, the on-line

stage performs NM integer reads and comparisons, followed

by TM computations, where T is the number of terms in the

energy model for each core in Eon chip in Eq.(21). Thus, for

a four-core platform with a total of 6 phases VR, the total

number of cycles of the on-line stage of our decomposed

TABLE IV: Off-chip VR parameters for the four-core platform

Parameter Value Parameter Value

Ceff [F ] 1.40E-08 Rds [Ω] 4.35E-03

Vdriver [V ] 5 Rind [Ω] 9.09E-03

fsw [Hz] 6.19E+05 D 0.175

Ictrl [A] 2E-3 Lind [H] 6.83E-07

TABLE V: On-chip VR parameters for the four-core platform

Parameter Value Parameter Value

Ceff [F ] 3.27E-10 Rds [Ω] 1.33E-02

Vdriver [V ] 2 Rind [Ω] 1.36E-02

fsw [Hz] 8.2E+07 D 0.559

Ictrl [A] 2E-3 Lind [H] 1.36E-09

algorithm only reaches up to several thousands of cycles. For

a core running with 1 GHz, this only takes about several

microsecond. Compared to the interval of 5 ms, the on-line

overhead is negligible. Furthermore, compared to solving the

comprehensive convex model in Eq.(22) at run-time, which

takes around 3 ms for a four-core platform using the GGPLAB

solver [33], our on-line stage has greatly reduced the on-line

overhead and improved its scalability.

V. EXPERIMENTAL RESULTS

In this part, we validate the efficiency of our approach

through a series of experiments on real benchmarks. First,

we present the experimental setup, followed by a thorough

analysis of the results comparing our proposed methodology

with the conventional DVFS technique.

A. Experimental Setup

System Configuration: We build our system using the pro-

cessor and VR model described in section III-A and III-B.

To show the scalability of our method, we use three different

targeted platforms consisting of four, eight and sixteen cores

respectively. We assume the Intel Haswell processors support-

ing per-core DVFS and the capacitance C for each core is

derived from gem5, C = 1.5nF . The voltage-frequency pairs

are based on the work in [30], which has been described

in section IV-A. For the relationship between voltage and

its corresponding frequency that is modeled in Eq.(12), we

calculate the fitting constants using linear regression based on

the available DVFS states and obtain that k = 0.2467, V0 =
0.8493. The predicted voltages retrieved from Eq.(12) are

compared against the given voltage levels in [30] and it is

found that the model Eq.(12) only incurs a less than 1% error.

The DVFS interval is set to be 5 ms and it can be increased

by the OS scheduler if a longer interval is needed. For the off-

chip and on-chip VR for a four-core platform, the parameters

in Eq.(1) to Eq.(7) are obtained from work [13] and are listed

in Table IV and Table V. For bigger platforms consisting of

eight and sixteen cores, the parameters of the VR are obtained

in the same way. For good performance and low complexity,

the total number of phases of the off-chip VR is set to N = 6
according to work [14].
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Convex Optimization Solver: During the off-line stage, we

need to use a solver to find the global optimal solution for

the comprehensive convex model. For a four-core platform

as shown in Fig.1, the CVX [19], which is a general convex

problem solver, takes around 2 seconds, while a specific GP

solver, GGPLAB, only takes around 3 ms to determine the

optimal solution [33]. As for a eight-core platform, the solving

time increases to 6.5 s and 7 ms for CVX and GGPLAB,

respectively. For a sixteen-core platform, the solving time

increases to 8.5 s and 11 ms. In our experiment, we use

the CVX solver for its acceptable running time and ease of

programming. Note that the convex optimization solver is only

applied at off-line stage to collect the optimal solutions for

different inputs. Thus, the running time overhead of the solver

lies in the off-line stage. With regard to on-line overhead,

it only includes tens of accesses to the look-up table and

comparisons between several entries, which incurs negligible

overhead, as we have discussed in the on-line stage subsection

in Section IV-D.

Task Benchmarks: Our task set comprises of independent

tasks with a balanced mix of CPU-bound and memory-bound

latency characteristics. To ensure the diversity, we use an

extensive data set collected across all workloads in the SPEC

2006 benchmark suite [27]. The CPU-bound ratios of tasks

in these benchmarks vary from 1.0 to 0.6. In the following

experiments, we use the benchmark povray, soplex, dealll, gcc,

mcf as the workload with CPU-bound ratios range from 1.0

to 0.6. The latency data for each benchmark is divided into 1

million instruction intervals, and these data are collected on

gem5 using all available operating frequencies. Based on these

latency data and their corresponding operating frequency, the

curve fitting constants, uj and wj in Eq.(8), are calculated.

As we have demonstrated in section III-C, the execution time

model in Eq.(8) incurs a less than 1% error. Besides this, tasks

with different CPU-bound ratios will be used to explore the

effects of task characteristics on energy minimization methods.

Experiments: For comparison, we implement four baseline

algorithms as discussed in section IV-A. Although there are

some previous methods based on convex optimization for

energy optimization [6][21], these methods cannot directly

compare with our proposed model because their energy models

are given at cycle level and only work for streaming applica-

tions. To fully evaluate our proposed model, we define two

scenarios of applying our convex model:

• Scenario 1: The reduced convex model, which only

considers per-core DVFS and is oblivious to VR phase

scaling, where only fn=N
stored is retrieved from the look-up

table and active phase number is fixed at n = N during

the on-line stage.

• Scenario 2: The complete convex model (in Eq.(22))

combing per-core DVFS and VR phase scaling, where

fn=1

stored, f
n=2

stored, . . . f
n=N
stored are all retrieved for active

phase number n = 1, 2 . . . N .

In all, we conduct four different experiments to assess

the energy efficiency of our proposed method. First, we

demonstrate the advantages of applying DVFS with the help

of our convex model through comparing Scenario 1 with
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Fig. 10: Energy consumption of an interval of the whole platform at var-
ious workload characteristics when workload pressure Ψ=0.3; (SM: Slack
minimization, AM: Analytical model [2], RC: Reduced convex model
Scenario 1).
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Fig. 11: Energy saving of the reduced convex model over slack minimization
at various workload pressures for five different workload characteristics Φ.
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Fig. 12: Energy saving of the reduced convex model over the analytical
model[2] at various workload pressures for five different workload charac-
teristics Φ.

Baseline 1 and Baseline 2. Next, to highlight the importance

of considering the VR overhead, we conduct an experiment

to compare Scenario 2 with Scenario 1. Then, Scenario 2
is compared against Baseline 1 and Baseline 2 to show

the overall advantage of our approach. Finally, we validate

our proposed comprehensive method against the decoupling

method through comparing Scenario 2 with Baseline 3 and

Baseline 4.

B. Results and Analysis for the Four-core Platform

1) Reduced convex model: We first compare the reduced

convex model with the traditional Baseline 1 and Baseline 2
to demonstrate the advantage of determining DVFS level using

a convex model with task characteristics considered.

Fig.10 illustrates the breakdown of average energy con-

sumption of an interval of the whole platform at various

workload characteristics Φ when Ψ=0.3. For a fair comparison,

the active phase number n in the reduced convex model is

set to be fixed at N through only retrieving fn=N
stored during
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Fig. 13: Energy consumption of an interval of the whole platform at various
workload characteristics when the workload pressure Ψ=0.3; (SP: Slack
minimization + flow-in-current-based phase scaling, AM: Analytical model
[2]+ flow-in current phase scaling, CP: Complete convex model Scenario 2).
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Fig. 14: Energy saving of the complete convex model over slack minimization
at various workload pressures for four different CPU bounds.

the on-line stage. As you can see, the analytical model in

[2] achieves better energy efficiency than slack minimization

when Φ is close to 1.0, while it behaves in the opposite way

when Φ decreases. However, in any case, the reduced convex

model always outperforms these two baseline algorithms since

our convex model can achieve a better trade-off between the

dynamic energy, static energy and VR overhead.

Fig.11 shows the relative energy saving of the reduced

convex model compared to slack minimization. We select the

workload pressure range from 0.3 to 0.45 because during this

range we can see clearly the energy saving varies with the

workload pressure. When workload pressure is lower than 0.3,

the energy saving of RC compared to SM does not change and

remains the plateau. When workload pressure is higher than

0.5, the deadline constraint pushes higher frequency bound

and shrinks the available DVFS space which leads to energy

saving tending to zero. The histogram shows that determining

the DVFS level using convex optimization can achieve up to

a 17.6% energy saving compared to the conventional slack

minimization method. This is due to the fact that our algorithm

takes the static energy into consideration and uses precise task

latency models. Hence, it can find the optimal point for total

energy optimization. The trend of the histograms demonstrates

two key properties of our convex algorithm: 1) The higher

CPU-bound ratio gives a better energy saving when comparing

RC to SM. This is because the high CPU-bound ratio provides

an opportunity to greatly reduce the static energy by slightly

increasing the operating frequency to greatly reduce execution

time of tasks. 2) Lower workload pressure gives better energy

saving. This is due to the fact that high workload pressure

means that the core has to run very fast to catch the deadline.

Lower workload pressure has lower frequency bound and gives
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Fig. 15: Energy saving of the complete convex model over the slack minimiza-
tion followed by flow-in-current-based phase scaling for a 4-core platform
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Fig. 16: Energy saving of the complete convex model over analytical model
followed by flow-in-current-based phase scaling for a 4-core platform

higher flexibility of DVFS.

In Fig.12, the reduced convex model shows an up to 11.4%

energy saving compared to the analytical model in [2]. In

contrast to Fig.11, the reduced convex model achieves a better

energy saving when workload characteristics Φ are lower. This

is because the memory-bound characteristics of application

are not considered in the analytical model [2], while our

method accurately models the CPU-bound and memory-bound

characteristics of different applications.

2) Complete convex model: In this subsection, we conduct

experiments to compare the complete convex model with

four baselines. These experiments prove the importance of

optimizing DVFS level and phase scaling of VR in a compre-

hensive model, instead of determining DVFS and phase scaling

in a decoupled manner. Fig.13 illustrates the breakdown of

the average energy consumption of an interval of the whole

platform at various workload characteristics Φ when Ψ=0.3

with overhead of the VR considered. Compared to Fig.10,

we can see that the VR energy consumption has been greatly

reduced through phase scaling. In our convex model, the VR

overhead can also impact the decision of the DVFS setting.

Fig.14 illustrates the relative energy saving of the complete

convex model compared to slack minimization. From the

histogram, we can see that our algorithm can reduce the total

energy by up to 22.4% compared to Baseline1. The trend of

the histograms shows that at light workload pressure, a higher

CPU-bound ratio is more beneficial for energy saving, while

at heavy workload pressure, a lower CPU-bound ratio gives a

better energy saving. This is because at a light load, the energy

saving due to the convex model dominates, while at a heavy

load, the energy saving due to phase scaling dominates.

Fig.15 and Fig.16 respectively illustrate the advantage of our

proposed complete convex model compared to the decoupling
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Fig. 17: Energy saving of the complete convex model over slack minimization
followed by flow-in-current-based phase scaling for an 8-core platform.

0.3 0.35 0.4 0.45
0

4

8

12

16

Workload Pressure Ψ

E
ne

rg
y 

S
av

in
g 

[%
]

 

 
Φ=1.0

Φ=0.9

Φ=0.8

Φ=0.7

Φ=0.6

Fig. 18: Energy saving of the complete convex model over analytical model
followed by flow-in-current-based phase scaling for an 8-core platform.

methods, Baseline 3 and Baseline 4. The histograms show

that our proposed model can achieve an up to 12.7% energy

saving compared to the decoupling method Baseline 3, and

an up to 16.3% energy saving compared to the decoupling

method Baseline 4. This is due to our comprehensive method

incorporating phase scaling and DVFS into one comprehensive

convex model with an accurate task characteristics model,

which enlarges the exploration space. It gives a globally

optimal selection of DVFS and phase scaling, as shown in

Fig.5.

C. Platform Scalability

The previous analysis shows that our proposed two-stage

comprehensive convex model achieves great energy savings

for a 4-core platform. To validate the scalability and feasibility

of our method, we implement the two-stage comprehensive

convex model on larger platforms with eight cores and sixteen

cores. Fig.17 and Fig.18 reveal the energy savings of our

proposed comprehensive model compared to the decoupling

method, Baseline 3 and Baseline 4, for an 8-core platform.

Fig.19 and Fig.20 reveal the energy savings of our method

for a 16-core platform. The results from Fig.17 to Fig.20

manifest an up to 12.34% and 17.11% energy saving compared

to Baseline 3 and Baseline 4, respectively, and they display

the same energy saving trend in Fig.15 and Fig.16. With the

increasing number of on-chip cores, the time overhead at the

on-line stage is O(Num) where Num denotes the number of

on-chip cores, which greatly guarantees the scalability of our

two-stage method.

VI. CONCLUSION

This paper proposes a novel convex formulation to optimize

the energy consumption of a multi-core platform. Based on
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Fig. 19: Energy saving of the complete convex model over slack minimization
followed by flow-in-current-based phase scaling for a 16-core platform.
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Fig. 20: Energy saving of the complete convex model over analytical model
followed by flow-in-current-based phase scaling for a 16-core platform.

workload characteristics, the VR overheads and static power

of the processors, our proposed algorithm combines the DVFS

setting and phase scaling of the off-chip VR into an integrated

convex model. To achieve better scalability of our comprehen-

sive convex model, we decompose our method into an off-

line stage and an on-line stage. The experimental results show

that our algorithm outperforms existing DVFS methods and

achieves an up to 22.4% energy saving. Even compared to the

conventional DVFS technique followed by the flow-in-current-

based phase scaling method, our approach can achieve an up

to 16.3% energy saving.
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