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Abstract—Video streaming over cellular network has become
extremely popular in 4G and will be an integral part of future
cellular networks. While most modern-day video clients contin-
ually adapt quality of the video stream, they neither coordinate
with the network elements nor among each other. Consequently,
a streaming client may quickly overload the cellular network,
leading to poor Quality of Experience (QoE) for the users in
the network. Motivated by this problem, we present D-VIEWS
— a scheduling paradigm that assures video bitrate stability of
adaptive video streams while ensuring better system utilization.
D-VIEWS only needs to be aware of the set of video bitrates and
requires no changes to the streaming client and other network
functions. We also study, through simulations, the performance
of proportional fairness scheduler and D-VIEWS in the presence
of user arrival and departure events.

Index Terms—Adaptive Video Streaming, DASH, Scheduling,
Rate Control

I. INTRODUCTION

V
IDEO traffic (e.g. TV video, video streaming, live video

services) is expected to represent 90% of the Internet

traffic by 2021 [1]. While significant progress has been made

towards increasing the capacity of cellular networks, in recent

years, users’ Quality of Experience (QoE) has become a

challenging and prominent issue. Researchers are exploring

HTTP Adaptive Streaming (HAS) enabled architectures [2–6]

as a means to balance network performance and QoE. Dynamic

Adaptive Streaming over HTTP (DASH) has become a very

popular HAS standard in recent years.

With DASH, each video is divided into multiple segments,

and each segment is encoded into multiple bitrates/resolutions.

Based on available capacity, DASH clients dynamically choose

quality level on a segment-by-segment basis such that the

visual quality is maximized and playout buffer under runs are

minimized. Various proprietary pre-DASH technologies such

as Microsoft’s smooth streaming, Adobe’s HTTP dynamic

streaming, and Apple’s live streaming follow nearly the same

principles as DASH. Over time, DASH [7–9] has become

the de-facto HAS solution of choice for content providers

because it has a good balance between buffering delays and
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visual quality. This is achieved by employing an adaptation

engine which chooses an appropriate bitrate for each segment

taking into consideration network conditions such as estimated

throughput and playout buffer level.

The major drawback of HAS protocols such as DASH is the

potential instability in multi-user wireless networks under user

dynamics [10]. Here, instability refers to persistent oscillations

in the video bitrate of an adaptive stream. The root cause of

this instability is the myopic reaction of DASH sources to

bandwidth variations in multi-user wireless networks. From a

network operator’s point of view, this motivates us to design

fair schedulers able to arbitrate multiple class of flows while

ensuring stability for HAS flows.

A. Our contributions

In this paper, we present D-VIEWS — a scheduling

scheme that addresses the major challenges of allocating radio

resources to multiple adaptive video streams in multi-user

wireless networks. In particular, we present a low-complexity

solution that

• enforces bitrate stability for DASH stream while ensuring

good network resource utilization.

• assigns available resources fairly across multiple users.

D-VIEWS allocates radio resources to DASH users based on

their channel state information and the set of predefined video

bitrates at which DASH segments are encoded. The set of the

bitrates could possibly be retrieved from a bitrate database

that maps the source IP addresses of adaptive video streams

to set of DASH video bitrates. D-VIEWS does not require

(i) standardization of cross-layer interfaces; (ii) direct access

to the application layer, which may violate user privacy; (iii)

modification of existing base station schedulers, facilitating

quicker deployments.

The remainder of this paper is organized as follows. Related

works are presented in Section I-B. In Section II, we present

a few challenges in allocating resources to DASH users.

Section III presents in detail our design principles behind

D-VIEWS. A method to compute the target rates used by

D-VIEWS is presented in Section IV-A. Multiple resource

block allocation is discussed in Sections V. In Section VI, we

present evaluation details of D-VIEWS and the well-known

proportional fairness scheduler. Finally, in Section VII, we

present some discussions and conclude the paper.

B. Related work

Current cellular networks incorporate radio resource man-

agement techniques that are designed to meet QoE require-
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ments of traditional single-rate video streams and other HTTP-

based traffic [11, 12]. Several studies in the literature have

identified number of stalls, start-up delay and fraction of total

playback time spent in buffering as some critical metrics that

affect QoE of video traffic [13–16]. In addition to this, adaptive

video streams also have QoE criteria such as number of video

bitrate switches and average video quality. In fact, through

extensive LTE simulations and experiments on a WiMAX

base station prototype, the authors of [10] have established

that adaptive video streams in wireless networks often suffer

from performance issues such as bitrate unfairness among

competing flows, instability due to frequent video bitrate

switching and inefficient link utilization. Subsequently, several

solutions have been proposed to mitigate these issues.

In [17], the authors present SAP — a DASH video traffic

management solution that reduces playout stalls and seeks to

maintain a consistent QoE for cellular users. SAP achieves

this by leveraging both network and client state information

to optimize the visual quality of individual video flows. Since

SAP uses average video rate to predict stalls, it does not

take into consideration number of switches between different

video bitrates. If a video stream experiences frequent quality

switches, QoE maybe low, even if its average video bitrate

is high. The authors of [18] have established that variable

temporal quality is indeed worse than maintaining a constant

quality that is lower on the average. Also, it is not evident

how SAP can be enhanced to perform traffic management

when non-DASH flows are co-existent with DASH flows. By

non-DASH flows, we mean different types of HTTP traffic

such as long-lived file transfers, short-lived web traffic, delay

intolerant traffic such as SSH, and traditional single-rate video

streams.

MANE, proposed in [19], achieves fair playout buffer levels

among HAS clients competing for same wireless resources

by allocating radio resources according to video content

characteristics, playout buffer levels and channel conditions.

However, as in SAP, MANE also does not provide a means to

control number of quality switches in adaptive video streams.

The system architecture proposed in [19] requires MANE to be

located close to eNodeBs (eNBs), and requires Channel State

Information (CSI) updates from eNBs. Based on these updates,

it sets up rate values, i.e., Guaranteed bitrate (GBRs), that

eNBs will try to guarantee to their associated clients. Such a

scheme requires tight co-ordination among HAS servers, video

clients and the eNBs. While this may be possible in content

distribution networks, it will be difficult to achieve in cellular

networks.

Several researchers have also explored cross-layer schemes

to improve QoE of adaptive video streams. Cross-layer al-

location schemes that factor channel quality, video quality

requirements, and encoding rate fluctuations of HAS video

streams with the goal of minimizing transmission delays

experienced by users were proposed in [20, 21]. The authors

in [22] propose a cross-layer scheme to optimize aggregate

utility of clients while maintaining stable video quality. AVIS

presented in [10] is yet another cross-layer scheme which

separates resource management of adaptive and regular video

flows. While cross-layer schemes ensure good performance,

they require co-ordination among video servers, clients and

the eNBs. However, due to practical reasons such as scalability

and operator policies, such co-ordination is often infeasible in

cellular networks.

II. SYSTEM MODEL AND MOTIVATION

A. DASH video traffic and QoE metrics

As per the MPEG-DASH specification published in early

2012 [9], within an MPEG-DASH server, each video is

divided into multiple segments (each containing about 2-10

seconds of video). Each segment is then encoded into multiple

bitrates/resolutions. Based on estimated throughput and media

playout buffer occupancy, an adaptation engine within the

MPEG-DASH client chooses a video bitrate, on a segment-by-

segment basis, that ensures good video quality while avoiding

playout interruptions.

When one wishes to quantify users’ perception of an appli-

cation or a service, one tries to identify measurable objects that

allow one to predict the average score that would be given by

users. These objects are known as Key Performance Indicators

(KPI). The following are a few popular KPIs in adaptive video

streaming:

1. Average bitrate: sum of the video bitrate of the segments

downloaded by the player divided by the total number of

downloaded segments.

2. Number of bitrate switching: number of times the video

quality has changed during its playout.

3. Buffering ratio: fraction of the total session time spent in

re-buffering.

4. Re-buffering rate: number of interruptions observed by a

user watching a video.

5. Startup delay: duration between initiation of a video session

and the start of its playout.

B. Network model

Long-Term Evolution (LTE) has adopted Orthogonal Fre-

quency Division Multiplexing (OFDM) as the signal bearer and

the associated access scheme Orthogonal Frequency Division

Multiple Access (OFDMA) for downlink transmissions. In

this scheme, the frequency dimension is divided into sub-

carriers, whereas the time dimension is divided into 10ms
radio frames. Each frame is further subdivided into ten 1ms
subframes, each of which is split into two 0.5ms time slots.

The smallest unit of resource which can be allocated to a user

is known as a Resource Block (RB). In the LTE standard, a

RB spans 12 OFDM carriers and 2 time slots, i.e., a total of

180 kHz for a duration of 1ms. We note that each subcarrier

can be modulated using schemes such as QPSK, QAM, 64-

QAM. In the remainder of this paper, we denote the set of

resource blocks available with an eNB as K.

A scheduler is located at each eNB and is responsible for

assigning RBs to its associated users every 1millisecond.

We will refer to this duration as a slot. A DASH segment,

containing several seconds of video, is typically transferred

over thousands of slots. The scheduler makes decisions at

the end of every slot, whereas DASH clients make decisions
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every few thousand slots. Assuming that average throughput1

converges quickly (in a few hundred slots) under the given

scheduling policy, the order-of-magnitude difference in the

timescales of the above mentioned decisions creates a two-

time scale process. Therefore, we can assume that a DASH

segment, over its download duration, experiences the average

throughput under the given scheduling policy.

C. DASH video bitrate adaptation

DASH video bitrate adaptation algorithms aim to deliver

the best possible video bitrate while trying to avoid playout

buffer underflow. These algorithms can be classified into three

main categories: buffer-based [23], throughput-based [24] and

buffer–throughput-based algorithms [25]. While the algorithms

in the first category make decisions based on playout buffer

occupancy state, ones in the second category use historical

TCP throughput measurements. The third category borrows

and combines techniques used in the first and second cate-

gories.

Several studies have shown that throughput estimation is

inherently unreliable and inaccurate over the HTTP layer

[24, 26]. This will lead to undesirable bitrate switches and low

quality for throughput-based algorithms. In [27], the authors

investigated performance of a buffer-based solution by formu-

lating it as a stochastic optimization problem with the objective

of maximizing the QoE metrics. In comparison to Netflix’s

default algorithm, their approach was able to reduce the re-

buffering rate by 10-20% while delivering similar average

video quality. Their approach was also able to outperform

alternative solutions such as FESTIVE [26], and the prediction

method proposed in [24]. Therefore, we restrict our study

to DASH flows with buffer-based video bitrate adaptation

algorithms. However, we believe that with slight modifications,

our approach can be used to efficiently allocate resources for

any HTTP-based adaptive video streaming technology while

maintaining good QoE.

As wireless network conditions are unpredictable, download

duration of DASH segments form a stochastic process. Let

tk denote the time instance when download of the kth seg-

ment of a DASH flow is completed. We assume that video

bitrate for the nth segment is chosen as l(n) ∈ L, where

L = {l1, l2, . . . , lm} is the set of constant2 video bitrates at

which DASH segments are encoded. In the remainder of this

paper, we refer to this set as the “set of DASH bitrates.” For

ease of presentation, we assume that all DASH flows in the

network have the same set of DASH bitrates. However, our

approach can be easily extended to cases when different flows

use different sets of DASH bitrates.

Regardless of the encoded video bitrate, each segment

contains s seconds of video, and the DASH clients change

1For sake of brevity, we refer to “throughput toward user’s end device” as
just “throughput.”

2Variable Bitrate (VBR) encoding allocates higher bitrate to complex
segments of a media file and lower bitrates to simple segments. However,
adding up the bitrates and dividing by the video duration (in seconds) gives
the average bitrate of the media file. If the file size is large, then performance
of VBR would be similar to Constant Bitrate (CBR) operating at the average
bitrate.
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Fig. 1: A mapping of buffer level to discrete video bitrates.

video bitrate on a segment-by-segment basis, i.e., at the end of

every segment download. The evolution of the playout buffer

of a typical DASH client is given by the following recursive

equation

b(tn) = [b(tn−1) + s− s · l(n)/r(n)]+ (1)

where [x]+ = max{0, x}, b(tn) is the playout buffer level at

the time instance tn, s · l(n) represents the size of the nth

segment in bits, and r(n) is the average throughput in the

time interval [tn−1, tn]. The choice of l(n) in Equation (1)

depends on the video bitrate adaptation algorithm used within

the DASH client.

Due to the discrete nature of set L, function f(·) which

maps playout buffer levels to video bitrate of the next re-

quested segment takes the form of a step (or staircase) function

(refer Fig. 1 for an illustration). Now, if the average throughput

r(n) is equal to any of the video bitrates in set L, then we

get a range of buffer sizes for which the video bitrate remains

unchanged. On the other hand, if r(n) takes values outside set

L, then there are no fixed points for Eqn. (1) and the video

stream would experience repetitive quality switches.

D. An initial experiment

DASH uses HTTP, which in turn uses TCP — a reliable

transport protocol that ensures end-to-end lossless commu-

nication between devices. Thus, from a DASH application’s

point-of-view, packet losses on a link will manifest itself as

a decrease in average throughput. So, a reasonable question

is: would the congestion window dynamics of TCP affect the

fixed points of Equation. (1)? To understand the impact, if any,

we performed experiments on a real-world DASH flow over a

wired network.

Our experimental setup consisted of a real-world DASH

server and client (both operating on Ubuntu 16.04 LTS ma-

chines) connected via a wired link. The server was setup as

per the instructions at [7]. For the client, we incorporated the

adaptation algorithm presented in Sec. II-C into the MPEG-

DASH client available at [8]. Throughput of the wired link

was limited to r using the linux netem tool. The results of this

experiment is summarized in Table I. In the first column of

this table, DASH bitrates3 are shown in bold.

From Table I, we observe that average video bitrate of a

DASH stream closely follows the average throughput. DASH

achieves this by requesting segments in different video bitrates.

3The set of quality levels used in this experiment is actually used by
Youtube (refer https://support.google.com/youtube/answer/2853702)
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TABLE I: Number of video bitrate switches and av-

erage video bitrate of a 3.2minute (96 segments of

duration 2 seconds each) DASH video stream, over a

rate-limited wired link, and set of quality levels L =
{0.2, 0.3, 0.48, 0.75, 1.2, 1.85, 2.85, 4.3, 5.3} (in Mbps)

Average throughput Number of video Average video
r (in Mbps) quality switches bitrate (in Mbps)

0.2 1 0.20
0.25 37 0.24
0.3 51 0.28
0.4 60 0.38

0.48 64 0.46
0.6 63 0.57

0.75 46 0.73
0.9 56 0.86
1.2 24 1.15
1.5 60 1.44

1.85 5 1.75
2.35 66 2.20
2.85 7 2.66
3.6 33 4.02
4.3 7 3.95
4.8 9 4.76
5.3 6 4.79
5.5 8 4.81

Therefore, when average throughput is not equal to any of

the DASH bitrates, video bitrate will oscillate between the

greatest DASH bitrate below r and lowest DASH bitrate above

r. This observation is validated by values in the second column

of Table I. We note that large number of quality switches

happen when r ∈ {0.3, 0.48, 0.75}Mbps because the first few

video bitrate levels are closely spaced. However, when r ∈
{1.2, 1.85, 2.85, 4.3}Mbps, we observe significant reduction

in number of quality switches.

Evolution of the playout buffer level and video bitrate during

a 3.2minute (96 segments of durations 2 seconds each)

video stream when r = 1.5Mbps (not a DASH bitrate) and

r = 1.2Mbps (a DASH bitrate) are shown in Figs. 2 and

3, respectively. From, Fig. 2, we observe that playout buffer

evolution when r = 1.5Mbps and r = 1.2Mbps are similar

to each other. However, there is a significant difference in the

video bitrate evolution at these rates. When r = 1.5Mbps (not

a DASH bitrate), DASH requests alternate between 1.2Mbps
and 1.85Mbps. On the other hand, when r = 1.2Mbps (a

DASH video bitrate), only a few video quality switches occur,

and almost all segments are have video bitrate of 1.2Mbps.

The results of this experiment demonstrate that stability

of DASH (with respect to video bitrate switches) is indeed

governed by the average throughput when round-trip times

(RTTs) are at most a few milliseconds. Due to similar RTTs

experienced by wired and last-hop wireless networks, we

believe that the conclusion drawn from this experiment remain

valid even for DASH flows over cellular networks.

III. SCHEDULER DESIGN

From Section II-D, we know that DASH stream of a user

whose average throughput takes values in set L experiences

minimal video quality switches. In this section, we achieve

this objective by designing an appropriate scheduling policy.
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Fig. 2: Evolution of the DASH client’s playout buffer level

during a 3.2minute (96 segments of durations 2 seconds

each) video.

0 20 40 60 80 100
Segment Index

0.00
0.20
0.30
0.48

0.75

1.20

1.85

Vi
de

o 
bi

t-r
at

e 
(M

bp
s)

(a) r = 1.5Mbps

0 20 40 60 80 100
Segment Index

0.00
0.20
0.30
0.48

0.75

1.20

1.85

Vi
de

o 
bi

t-r
at

e 
(M

bp
s)

(b) r = 1.2Mbps

Fig. 3: Video bitrates requested during a 3.2minute (96

segments of durations 2 seconds each) DASH video stream.

A. Design principles

1. Minimal video bitrate switching: The average throughput

should take values only in set L.

2. Quick stabilization of average throughput: The scheduler

makes decisions at the end of every slot, whereas DASH

clients make decisions every few thousand slots. In order to

maintain the time scale separation between the two decision

processes, the average throughput should stabilize within a few

hundred slots.

3. Practicality and stand-alone independent operation: Due

to practical reasons such as scalability, scheduler customiza-

tion and operator policies, co-ordination and co-operation

among content providers, clients and eNBs is often infeasible

in cellular networks. Therefore, the scheduler should be able
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to function with just information about set of video bitrates

used by different content providers to encode their adaptive

video streams. To facilitate this, network operators can setup

a lookup table at schedulers that maps source IP address of

adaptive video streams to set of video bitrates. Alternatively,

based on the origin (IP address) of the stream, the scheduler

can query the set of video bitrates through APIs.

B. Utility-based scheduling

We begin with a standard utility-based scheduler. The goal is

to adapt such a scheduler to handle DASH users with minimal

modifications. Let us consider a network of N = {1, 2, . . . , n}
users. With each user i ∈ N , we associate a utility function

which has the following form

Ui(γi) =

{

log γi if αi = 1
γi

1−αi

1−αi
otherwise

where γi is the long-term average throughput of user i. Ui(γi)
captures different fairness criteria such as proportional fair-

ness, minimum potential delay fairness and max-min fairness

for suitable choice of parameter αi [28].

Utility-based schedulers are typically used to maximize

aggregate utility of the long-term average throughput of users

subject to capacity constraints determined by channel statistics.

It has been shown in [29–31] that this optimization problem is

equivalent to solving the following problem in every time-slot

t.

P1 : max
∑

i∈N
U

′

i (γi(t)) · Γi(t) (2)

where U
′

i (·) is the derivative of function Ui(·), Γi(t) is

the instantaneous channel capacity of user i in time-slot t,
and γi(t) is the average throughput of user i till time t,
i.e., γi(t) = 1

t

∑t−1
τ=0 Γi(τ) · 1{user i is scheduled in slot τ}. Here,

1{user i is scheduled in slot τ} ∈ {0, 1} is equal to 1 only if user

i is scheduled in slot τ . If we impose the constraint that only

one user can be scheduled in any slot, the optimal solution of

problem P1 is

i∗(t) = argmaxi∈N U
′

i (γi(t)) · Γi(t) (3)

We note that i∗ : N → N maps every slot to a user in

the network. Therefore, we denote it as a function of t. The

restriction that only one user can be scheduled in any slot will

be relaxed in Sec. V.

Example 3.1: Consider a network with 2 users who have

independent and identically distributed (i.i.d) ON-OFF chan-

nels with ON capacity 10Mbps and ON probability 0.5. Let

αi = 1 (proportional fairness), and DASH video bitrates L =
{0.2, 0.3, 0.48, 0.75, 1.2, 1.85, 2.85, 4.3, 5.3} (in Mbps). From

the Bhatia-Davis inequality, we know that if a random variable

X ∈ [0, b], then V ar(X) ≤ b2/4. Now, if X is a Bernoulli

random variable such that P{X = b} = P{X = 0} = 1/2,

we have V ar(X) = b2/4, i.e., ON-OFF channels with ON

probability 0.5 achieve the largest possible variance among

all channels with bounded capacity.

When both users have their respective channel in ON state,

they are given equal fraction of air-time (0.5 each); this

happens with probability 0.25. When only one user has its

channel in ON state, the user with ON channel is given full air-

time; once again this happens with probability 0.25. Therefore,

the expected throughput of each user is 10 × (0.5 × 0.25 +
1 × 0.25) = 3.75Mbps. Since average throughput achieved

by both users is not equal to any of the video bitrates in set

L, these users will experience video playout that frequently

switches between video bitrates 2.85Mbps and 4.3Mbps —

an undesirable user experience.

C. VIEWS: Virtual Penalty Weighted Scheduling

We recall that our primary objective is to assign resources

to DASH flows while avoiding video bitrate oscillations. To

that end, in this section, we propose VIEWS — a scheduler

capable of guiding average throughput of a DASH user to a

desired target rate. We achieve this by modifying the utility-

based scheduling rule as follows

i∗(t) = arg max
1≤i≤n

U
′

i (γi(t)) · Γi(t) · φi(ri, γi(t)) (4)

where φi(ri, γi(t)) = exp(−β(γi(t)−ri)
ri

), β denotes the growth

rate of penalty function φi(·, ·), and ri is the target rate

for user i. We call the scheduler given by Equation (4) as

the Penalty Weighted (PW) scheduler. For large values of

β, φi(ri, γi(t)) is a large positive value when ri > γi(t),
i.e., users with average throughput less than their respective

target rate are imposed a high penalty, in turn increasing

their chances of being scheduled. On the other hand, we have

limγi(t)→∞ φi(ri, γi(t)) = 0, i.e., for large values of β, users

with average throughput greater than their respective target rate

are assigned a penalty very close to zero. Thus, these users

are less likely to be scheduled, in turn bringing their average

throughput closer to their respective target rate. If β = 0, then

φi(ri, γi(t)) = 1 and the PW scheduler becomes the utility-

based scheduler. We will use this property to propose a hybrid

scheduler in Section IV-B.

Now, consider a network with a single DASH user who has

an ON-OFF channel with ON capacity 10Mbps, and ON

probability 0.5. The PW scheduler, irrespective of the penalty,

always schedules user 1. Consequently, user 1 achieves an

average throughput of 0.5×10 = 5Mbps; not a DASH bitrate.

To circumvent this problem, we add a virtual user (user 2) to

the system and slightly tweak the PW scheduler as follows

i∗(t) =











1 U
′

i (γ1(t)) · Γ1(t) · φi(r1, γ1(t))

≥ (1− ǫ) · U
′

i (γ1(t)) · Γ1(t)

2 otherwise

(5)

where ǫ is a small positive real number. We term the

scheduling scheme given by Equation (5) as VIrtual PEnalty

Weighted Scheduling (VIEWS). To see how VIEWS works,

consider the following example.

Example 3.2: Let us set r1, i.e., target throughput of user

1, as 2.85Mbps (one of the DASH bitrates). Now, if γ1(t) >
2.85 + ǫ

β
, then φi(r1, γ1(t)) < 1 − ǫ (we have used the

approximation e−ǫ
≅ 1−ǫ for small values of ǫ), and user 1 is

not scheduled, in turn reducing its average throughput. On the

other hand, if γ1(t) ≤ 2.85 + ǫ
β

, then φi(r1, γ1(t)) ≥ 1 − ǫ,
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Algorithm 1 VIEWS: VIrtual PEnalty Weighted Scheduling

Input: set of video bitrates L, target rate vector r =
[r1, r2, . . . , rn], and ǫ > 0.

Output: user allocation for each time slot t ≥ 1, i.e.,

{i∗(t), t ≥ 1}

1: for all i ∈ N , initialize γi(0) = 0
2: for time slot t ≥ 0 do

3: obtain the instantaneous channel capacity vector

{Γi(t), i ∈ N}
4: if max1≤i≤n U

′

i (γi(t)) · Γi(t) · φi(ri, γi(t)) ≥
max1≤i≤n(1− ǫ) · U

′

i (γi(t)) · Γi(t) then

5: i∗(t) = argmax1≤i≤n U
′

i (γi(t)) ·Γi(t) ·φi(ri, γi(t))
6: else

7: i∗(t) = n+ 1 — the virtual user

8: end if

9: for i ∈ N do

10: γi(t+ 1) = (t · γi(t) + Γi(t) · 1{i∗(t)=i})/(t+ 1)
11: end for

12: end for

and user 2 is not scheduled allowing user 1 to increase its

average throughput.

The inclusion of the virtual user can be interpreted as a

means to prevent users whose average throughput is higher

than their respective target rate from being scheduled. VIEWS,

generalized to a n user network, is presented as Algorithm 1.

In Algo. 1, if average throughput of every user is equal to

their respective target rate, then φi(ri, γi(t)) = 1, and the

virtual user does not come into play. From the decision rule of

Algo. 1, it is easy to see that, for any i ∈ N , if γi(t) > ri, then

i∗(t) 6= i, i.e., users whose average throughput is higher than

their respective target rate are throttled. Further, if γi(t) ≤ ri
for some i ∈ N , then i∗(t) 6= n+1, i.e., the virtual user always

relinquishes its air time to users whose average throughput is

below their respective target rate. We note that when there

are non-DASH user in the network, there is no need for the

virtual user, and resources not allocated to DASH users can

be reallocated to non-DASH users (refer Section V).

Figs. 4a, 4b and 4c present the evaluation results of the

utility-based scheduler and VIEWS in a network with 4 users

who have independent ON-OFF channels. User i has ON

capacity C
i

and ON probability 0.5. Let αi = 1 ∀1 ≤ i ≤ n.

Then, as expected, the utility-based scheduler is able to

achieve proportional fairness when there is heterogeneity in

the network (refer Fig. 4a). However, average throughput of

some users lies outside set L. Consequently, these users would

experience incessant video quality switches. In Fig. 4b, the

target rate vector is [2.85, 1.2, 0.75, 0.48]Mbps, i.e., all users

are throttled. As a consequence of this, the virtual user gets a

large fraction of the air-time. On the other hand, in Fig. 4c,

the target rate vector is [2.85, 1.2, 1.2, 0.48]Mbps, i.e., users

1 and 2 are throttled, whereas average throughput of users 3
and 4 are pulled-up. Since the air-time lost by users 1 and 2 is

used up by users 3 and 4, and not by the virtual user, the red

line (with the marker ×) in Fig. 4c hovers around 2.5Mbps.
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(a) Utility-based scheduler
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(b) VIEWS: r1 = 2.85Mbps, r2 = 1.2Mbps, r3 = 0.75Mbps,
r4 = 0.48Mbps, β = 1000, ǫ = 0.001.
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(c) VIEWS: r1 = 2.85Mbps, r2 = 1.2Mbps, r3 = 1.2Mbps,
r4 = 0.75Mbps, β = 1000, ǫ = 0.001.

Fig. 4: 4 user network, αi = 1∀1 ≤ i ≤ 4, user i ∈ {1, 2, 3, 4}
has an ON-OFF channel with ON capacity 15

i
Mbps, and ON

probability 0.5.

We would like to note that throughput of the virtual user is

merely a proxy for number of scheduler slots unused by the

bitrate constrained DASH flows. Therefore, channel statistics

of the virtual user is irrelevant for VIEWS.

IV. OBTAINING TARGET RATES

VIEWS can guide average throughput of users to a target

rate vector. If target rates are too high, it may be infeasible
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and average throughput of users may take values outside set

L. On the other hand, low target rates may be achievable,

but may result in system under-utilization. Thus, choosing the

right target rate vector is a challenging problem.

A. Optimal target rates

In this section, we present a means to obtain an optimal

target rate vector r. Let Ci denote the set of possible instanta-

neous rates of user i’s channel. Then, the joint channel state

space is given as C = C1 × C2 × . . . × Cn. The problem of

optimal target rate computation can be formally stated as the

following Mixed Integer Nonlinear Program (MINLP)

P2 : max
{ai(c) i∈N c∈C,yij i∈N 1≤j≤m}

∑

i∈N

Ui

(

∑m

j=1
lj · yij

)

Subject to:
∑

c∈C
π(c) · ai(c) · c[i] =

∑m

j=1
ljyij ∀i ∈ N (6)

∑

i∈N
ai(c) ≤ 1 ∀c ∈ C (7)

∑m

j=1
yij = 1 ∀i ∈ N , c ∈ C (8)

yij ∈ {0, 1} ∀i ∈ N , 1 ≤ j ≤ m (9)

ai(c) ≥ 0 ∀i ∈ N , c ∈ C (10)

where c[i] ∈ Ci denotes the ith element of vector c,

{l1, l2, . . . , lm} is the set of m DASH bitrates, ai(c) is the

fraction of resource allocated to user i when joint channel

state is c, π(c) is the probability of occurrence of joint channel

state c, and yij ∈ {0, 1} is an indicator variable that takes the

value 1 if any only if user i’s DASH segments are always

encoded at bitrate lj . Constraints (8) and (9) together force

average throughput of each user to take values only within set

L. Constraint (6) ensures existence of a schedule that achieves

an average throughput of
∑m

j=1 ljyij for user i.
Let {a∗i (c) i ∈ N c ∈ C, y∗ij i ∈ N 1 ≤ j ≤ m} be

an optimal solution of problem P2, then target rate ri for

user i ∈ N can be computed as ri =
∑m

j=1 lj · y∗ij . It

can be easily shown that P2 is a NP-hard problem. While

heuristic-based algorithms are known to aid in the solution of

such problems, applying these algorithms to solve P2 would

require knowledge of channel statistics. Due to exponentially

growing cardinality (with respect to the number of users) of

joint channel state space C, P2 also suffers from state space

explosion.

B. Dynamic rate inference

In this section, rather than computing an optimal target rate

vector, we explore the possibility of dynamic throttling of av-

erage throughput to sub-optimal target rates. We do this by first

observing the evolution of users’ average throughput under the

utility-based scheduler for a sufficiently long duration. From

these observations, for each user, we infer the best possible

video bitrate that does not cause video quality switches and

set it as their target rate. Let

Iij(t) =

{

1 if j = argmax{lk|lk ≤ γi(t), 1 ≤ k ≤ m}

0 otherwise

i.e., Iij(t) ∈ {0, 1} is a binary valued variable that takes value

1 if lj is the largest bitrate less than average throughput γi(t).
We note that

∑m
j=1 Iij(t) = 1. Next, for user i, we define a

random time Ti as follows

Ti =
[

min
{

t
∣

∣

∣
max

1≤j≤m

t
∑

τ=1

Iij(τ) ≥ ζt, t ≥ tmin

}]∗
(11)

where ζ ∈ [0, 1] and [·]∗ = min{·, tmax}.

Ti ∈ [tmin, tmin + 1, . . . , tmax − 1, tmax] is the first time

when max1≤j≤m
1
t

∑t
τ=1 Iij(t) exceeds the threshold ζ. In

other words, we are looking for a time Ti when there exists

a bitrate which was the largest bitrate less than average

throughput for at least ζt slots. We note that there is a

possibility of this never happening; in which case the value of

Ti is set to tmax. In Equation (11), we ensure that we make

a decision only after observing the first tmin slots because

we would like to discard the transients of the utility-based

scheduler. We note that tmin and tmax are the minimum and

maximum number of slots we observe before computing the

target bitrates and enforcing penalty. The actual values of tmin

and tmax can be chosen by the network operator based on their

operational and QoE requirements. Given Ti, target rate ri of

user i is chosen as follows

ri = lj∗(i) where j∗(i) = arg max
1≤j≤m

1

Ti

Ti
∑

τ=1

Iij(τ)

As soon as we have ri, we can switch on penalty function

for this user so that average throughput of user i is guided to

ri. We achieve this by manipulating growth rate of the penalty

function proposed in Section III-C. Let T = max1≤i≤n Ti, i.e.,

T is the time when all users have obtained their target rates.

We propose the following dynamic growth rate for penalty

function φi(·, ·)

βi(t) =

{

0 if t ≤ T

β otherwise

As before, for a system with n users, we add user n+1 as

a virtual user. Now, for this system, we define the Dynamic

VIrtual PEnalty Weighted Scheduling (D-VIEWS). D-VIEWS

is identical to VIEWS with the exception of penalty func-

tion’s growth rate. VIEWS, uses a time invariant growth rate.

Whereas in D-VIEWS, penalty growth rate of user i at time

t is βi(t) — a function of t.
It is easy to see that when t ≥ T , D-VIEWS is identical to

VIEWS. Further, when t < T , then i∗(t) 6= n+1. We activate

the virtual user only after all users have acquired their target

rates. If activated earlier, the virtual user will overwhelm other

users and end up forcing them to low rates.

Evaluation results of D-VIEWS in a network with 6 homo-

geneous (independent and identically distributed channels) and

6 heterogeneous (independent but not identically distributed

channels) users are presented in Fig. 5a and Fig. 5b, re-

spectively. In the homogeneous case, each user is assigned

1.85Mbps (the highest bitrate less than 15
6 (1− (1− 0.5)5) =

2.50Mbps) as their target rate. At t = 150, penalty function is

switched on for all users, and average throughput of each user

quickly drops to 1.85Mbps. D-VIEWS ensures fairness by
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(a) Each user has an ON-OFF channel with ON capacity 15Mbps,
and ON probability 0.5.
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(b) User i ∈ {1, 2, 3, 4, 5, 6} has an ON-OFF channel with ON
capacity 15

i
Mbps, and ON probability 0.5.

Fig. 5: D-VIEWS: 6 user network, αi = 1∀1 ≤ i ≤ 6, tmin =
100, tmax = 1000, ζ = 0.9, β = 1000, ǫ = 0.001.

forcing users with identical channel statistics to the same target

rate. However, each user had to sacrifice about 0.65Mbps of

throughput resulting in an under-utilized system.

In the heterogeneous case, D-VIEWS activates penalty and

the virtual user at t = 750, and average throughputs converge

to the target rate vector [1.85, 1.2, 0.75, 0.48, 0.48, 0.3]Mbps
(refer Fig. 5b). The throughput loss of users with lower average

rate is less, resulting in a better resource utilization compared

to the homogeneous case. We note that user 6 who has an

average channel rate of 1.25Mbps gets assigned a target rate

of 0.2Mbps, whereas users 1 who has an average channel rate

of 7.5Mbps has a target of 2.75Mbps; indicating that users

with better average channel rates get better target rates.

We recollect that in D-VIEWS, penalty is enabled only after

all users have acquired their target rates, i.e., at time T =
max1≤i≤n Ti. Alternatively, we could active penalty for user

i immediately after its target rate is acquired, i.e., at time Ti.

Then, penalty function growth rate for user i is given by

βi(t) =

{

0 if t ≤ Ti

β otherwise

We refer to D-VIEWS with the above policy as D-

VIEWS v2. We would like to note that even with the above
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(a) Each user has an ON-OFF channel with ON capacity 15Mbps,
and ON probability 0.5.
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(b) User i ∈ {1, 2, 3, 4, 5, 6} has an ON-OFF channel with ON
capacity 15

i
Mbps, and ON probability 0.5.

Fig. 6: D-VIEWS v2: 6 user network, αi = 1∀1 ≤ i ≤ 6,

tmin = 100, tmax = 1000, ζ = 0.9, β = 1000, ǫ = 0.001.

policy, the virtual user is enabled only after all users have

acquired their target rates, i.e., at time T = max1≤i≤n Ti.

Performance of D-VIEWS v2 in a network with 6 homoge-

neous and 6 heterogeneous users is presented in Fig. 6a and

Fig. 6b, respectively.

For the homogeneous case, average throughput of users 1
and 6 settles down to 2.85Mbps, whereas average throughput

of others settles down to 1.85Mbps (refer Fig. 6a). This

happens because penalty function was enabled individually

and not at the same time. In this evaluation run, users 2 − 5
turn on their penalty before users 1 and 6. After the penalty

is turned on, throughput of users 2 − 5 rapidly decreases to

1.85Mbps. This, in turn, gives more air-time for users 1 and

6; allowing their average throughput to converge to a higher

target rate. Due to the individual activation of penalty, we have

better resource utilization. However, we lose out on fairness.

In the heterogeneous case, penalty function is activated last

for user 1. Thus, most of the air-time lost by users 2 − 6
is consumed by user 1, allowing its average throughput to

reach 2.85Mbps (refer the curve with marker H in Fig. 6b).

Whereas, with simultaneous penalty activation, user 1 had

achieved an average throughput of just 1.85Mbps (refer

Fig. 5b).
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Algorithm 2 Scheduling multiple resource blocks

Input: set of video bitrates L, ǫ > 0, set of DASH users

{1, . . . , n}, set of non-DASH users {n+ 1, . . . , u}
Output: user-resource block allocation for each time slot

t ≥ 1, i.e., {i∗k(t), k ∈ K, t ≥ 1}

1: for all 1 ≤ i ≤ u, initialize γi(0) = 0
2: for each time slot t ≥ 0 do

3: obtain the instantaneous channel capacity vector

{Γk
i (t), k ∈ K, 1 ≤ i ≤ u}

4: set γ̂i = γi(t) · (1−
1

t+1 ) for all 1 ≤ i ≤ u
5: for k ∈ {1, 2, . . . , |K|} do

6: if max1≤i≤n U
′

i (γ̂i) · Γk
i (t) · φi(ri, γ̂i) ≥

max1≤i≤n(1− ǫ) · U
′

i (γ̂i) · Γ
k
i (t) then

7: i∗k(t) = argmax1≤i≤n U
′

i (γ̂i) · Γ
k
i (t) · φi(ri, γ̂i)

8: else

9: if no non-DASH users in the network then

10: i∗k(t) = virtual user indexed as n+ 1
11: else

12: if max1≤i≤n U
′

i (γ̂i) · Γk
i (t) · φi(ri, γ̂i) <

maxn+1≤i≤u U
′

i (γ̂i) · Γ
k
i (t) then

13: i∗k(t) = argmaxn+1≤i≤u U
′

i (γ̂i) · Γ
k
i (t)

14: else

15: i∗k(t) = argmax1≤i≤n U
′

i (γ̂i) · Γk
i (t) ·

φi(ri, γ̂i)
16: end if

17: end if

18: end if

19: set γ̂p = γ̂p +
Γk
p(t)

t+1 , where p = i∗k(t)
20: end for

21: for 1 ≤ i ≤ u do

22: γi(t+ 1) = γ̂i
23: end for

24: end for

V. ALLOCATING MULTIPLE RESOURCE BLOCKS TO

CO-EXISTING DASH AND NON-DASH USERS

In this section, we consider the problem of allocating a set of

K resource blocks to co-existing DASH and non-DASH users.

Let DASH users be indexed as {1, 2, . . . , n} and regular (non-

DASH) users be indexed as {n+1, n+2, . . . , u−1, u}. Now,

each resource block k ∈ K, can be allocated to any of the u
users in set N . Then, user to whom kth resource block should

be allocated in tth slot is determined using Algorithm 2.

Algo. 2 is an extension of D-VIEWS that allocates multiple

resource blocks to co-existing DASH and non-DASH users.

While D-VIEWS assigns resources given up by DASH users

to the virtual user, Algo. 2 reuses these resources by allocating

them to non-DASH users (refer steps 9 − 13). Consequently,

when there are non-DASH user in the network, no virtual user

is added to the network. The user scheduled in each resource

block is decided by considering one resource block at a time.

However, when computing schedule for a resource block, the

schedule computed for the previous resource blocks, in the

current time-slot, is also taken into consideration (refer step

2).

Evaluation results of a scheduler based on Algo. 2 in a
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(b) 4 DASH users (1, 3, 4, and 6), 2 non-DASH users (2 and 5)

Fig. 7: Algo. 2: 6 user network, αi = 1 ∀1 ≤ i ≤ 6, tmin =
100, tmax = 1000, ζ = 0.9, β = 1000, ǫ = 0.001 , 100

resource block, in each resource block user i ∈ {1, 2, 3, 4, 5, 6}
has an ON-OFF channel with ON capacity 0.15

i
Mbps, and ON

probability 0.5 in each resource block.

heterogeneous network with only DASH users, 100 resource

blocks and proportional fairness (all αi = 1) is presented

in Fig. 7a. From Fig. 7a, we can see that acquisition and

subsequent convergence to target rates are comparable to the

single RB case presented in Fig. 5b.

Fig. 7b presents performance of Algo. 2 in a network with

co-existing DASH and non-DASH users (users downloading

a large file). DASH users are 1, 3, 4 and 6, whereas the non-

DASH users are 2 and 5. Algo. 2 reallocates slots unused by

DASH users to non-DASH users. Therefore, the virtual user

is not present in Fig. 7b. From Fig. 7b, we can see that Algo 2

is able to ensure that average throughput of each DASH users

takes values only in set L. Algo. 2 also ensures that air-time

given up by DASH users, in order to attain their respective

target bitrates, is shared with non-DASH users in the network.

This, in turn, improves average throughput of non-DASH users

(refer the curve corresponding to users 2 and 5 in Fig. 7b).

VI. SIMULATION RESULTS

A. Simulation setup

In order to evaluate D-VIEWS under different scenarios,

we conduct extensive simulations with Vienna LTE-A sim-
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Fig. 8: Impact of D-VIEWS on a DASH user in the presence

of user arrival and departures events; vertical pink lines and

dashed golden lines denote user arrival and departure events,

respectively.

ulator — a MATLAB based 3GPP-compliant LTE system-

level simulator. For comparison, we also report performance of

Proportional Fairness scheduler (PF) [32]. The basic scenario

is a LTE downlink with a single base station and multiple

DASH (D) and non-DASH (E) users.

We simulate a total of 100 users entering the system

according to a Poisson process with rate λj , j ∈ {D,E}.

Each arriving DASH user requests a video whose dura-

tion follows an Exponential distribution with mean µD =
80 sec. The set of DASH bitrates are chosen as L =
{0.2, 0.3, 0.48, 0.75, 1.2, 1.85, 2.85, 4.3, 5.3}Mbps. This set is

chosen based on the Media Presentation Description (MPD)

file of videos on YouTube. Furthermore, DASH users adapted

their video bitrate according to a buffer-based strategy,

whereas non-DASH users download a file whose size followed

an Exponential distribution with mean µE = 10Mbits.

For simulations presented in this section, λE was chosen

0.05 users/sec.

B. Handling user dynamics and mobility

Till now, we had considered the set of users in the network

to be fixed. However, due to mobility of users, this set is

often dynamic. To handle such scenarios we reset D-VIEWS

every treset number of slots. Upon reset, average throughput

of users is set to zero, growth rates of the penalty functions

are set to zero, and the virtual user is disabled. Such a

reset mechanism coupled with quick stabilization of average

throughput, ensured by the design of D-VIEWS, improves

network resource utilization when there are user arrival and
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Fig. 9: Impact of PF scheduler on a DASH user in the presence

of user arrival and departures events; vertical pink lines and

dashed golden lines denote user arrival and departure events,

respectively.

departure events. The choice of reset interval treset depends

on operator’s requirements. Large values of treset will reduce

number of quality switches experienced by DASH users,

whereas smaller values allow the scheduler to react quickly

to changes in the system, albeit at a cost of large number of

quality switches. For all simulation, treset was chosen as 2 sec
(2000 scheduler slots).

C. Performance of PF and D-VIEWS

We consider a scenario where six resource blocks (band-

width of 1.4Mbps) are shared by users in the LTE simulator.

We compare the impact of PF and D-VIEWS on different QoE

metrics for different DASH user arrival rates.

Figs. 8a and 8b show the impact of D-VIEWS on average

throughput and video quality of a DASH flow. It is clear

that D-VIEWS successfully throttles average throughput of the

user to target rates chosen from set L, ensuring that there are

limited video quality switches even when the set of users in

the network is dynamic. On the other hand, for PF scheduler

(refer Figs. 9a and 9b) we observe frequent fluctuations in

video quality. The reason for this is the greedy nature of DASH

adaptation algorithm that tends to set a playout bitrate which

is not sustainable at the throughput achieved under the PF

scheduler.

In Fig. 10, for different DASH user arrival rates, we plot

the ratio of number of video bitrate switches to number

of downloaded DASH segments. From Fig. 10, we can see

that D-VIEWS ensures a much lower switching rate among
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Fig. 10: Number of video bitrate switches per segment for

different DASH flow arrival rates.
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Fig. 11: Average video bitrate for different DASH flow arrival

rates.

competing DASH flows than PF scheduler. In fact, with D-

VIEWS, switching rate reduces by as much as 70% while

average video bitrate decreases by not more than 12% (refer

Fig. 11). A drop in average video quality is expected because

DASH flows often have to sacrifice some of their air-time to

achieve the designated target rate. However, this will not result

in under-utilization of the systems because these slots are

eventually reallocated to non-DASH users in the network. It

is worth noting that, during these simulations, video stalls did

not occurred for any DASH client because average throughput

was always higher 0.2Mbps (the lowest video bitrate).

Next, we compare D-VIEWS and PF in terms of average

startup delay. From Fig. 12, we can see that D-VIEWS has

a higher startup delay compared to PF. This happens because

DASH flows are allocated lesser resources under D-VIEWS

compared to PF. In Fig. 13, we plot fraction of user that

experienced video stalls for different DASH flow arrival rates.

We observe that this fraction changes by less than 5% when

D-VIEWS is used instead of PF. This is a further validation

for the operation of D-VIEWS scheduler which is designed to

negatively affecting other QoE metrics.
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Fig. 12: Average startup delay for different DASH flow

arrival rates.
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Fig. 13: Fraction of users that experienced video stalls for

different DASH flow arrival rates.

D. Efficiency and fairness

To study the trade-off between efficiency and fairness, we

use two metrics which are critical for networks performance

where multiple users share resources. These metrics are im-

portant to evaluate the performance improvement that can be

attained by any cellular resource allocation solution.

1. Aggregate rate: It is the expected sum of rates delivered

to users of the network in a slot. D-VIEWS attains good

aggregate rate, because RBs unused by DASH flows are

utilized to serve non-DASH flows. In fact, the values achieved

by D-VIEWS are very close to that of PF scheduler (refer

Fig. 14).

2. Fairness: We use Jain’s fairness index [33] to measure

whether users are receiving a fair share of system resources.

Let Ji =
ri
Ri

where Ri is the average throughput of user i if

it was allocated the full transmission (depends on its channel

state statistic), and ri is the average rate allocated to user i
(depends on the scheduling policy). Jain’s fairness index is

defined by J ( ~J) =
(
∑n

i=1
Ji)

2

n
∑

n
i=1

J2

i

, where n is the number of

users in the system.

In order to understand the degree of fairness attained by D-

VIEWS, we consider a scenario where an arriving user is either
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Fig. 14: Aggregate rate for different DASH flow rates and

λE = 0.05 users/sec.
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Fig. 15: Jain’s index for different number of DASH flows in

the systems.

close to eNB (a high data rate user) or close to cell edge (a low

data rate user) with equal probability. For this scenario, Jain’s

fairness index under D-VIEWS and PF is shown in Fig. 15,

which indicates that D-VIEWS, like PF scheduler, is able to

perform fair resource allocation across users in the presence

of heterogeneous channel conditions.

VII. DISCUSSIONS AND CONCLUSION

In recent years, several researchers have designed schedulers

for video streaming using cross-layer approaches, which re-

quire coordination among content providers, clients and eNBs.

However, due to practical reasons such as scalability, network

operator’s policies and different video adaptation algorithms

used by DASH players, tight co-ordination between content

providers and network operators is often infeasible. Motivated

by this, we proposed Dynamic VIrtual PEnalty Weighted

Scheduling (D-VIEWS). D-VIEWS is capable of enforcing

bitrate stability for DASH streams without necessitating any

modification to the video delivery mechanism or other network

elements.

Design of D-VIEWS allows it to be used within the radio-

access component of the upcoming 5G network, in which

the slicing concept allows for flexible and dynamic service

of diverse traffic types. Imagine a slice dedicated to adaptive

streaming videos. The mechanism of our scheduler can be used

within this slice to dynamically allocate resources. Further,

by feeding information about users’ throughput back into

the Radio-Access Network (RAN) multi-tenant cell slicing

controller, we can ensure that the portion of slice unused

by DASH flows can be redistributed to other slices, in turn,

ensuring better utilization of radio resources. Such a joint

allocation has to be performed vertically (a PHY-MAC cross-

layer approach) as well as horizontally through the RAN

controller in a dynamic setting.

In this paper, we have assumed cellular last hop to be the

bottleneck, i.e., users’ queue at the scheduler have infinite

backlog. However, bottlenecks can also occur in the WAN

path. Then, we will have to consider scenarios when users

have finite and different queue lengths. An interesting future

research direction would be to enhance D-VIEWS to account

for size of users’ queue when allocating resources. We rec-

ollect from our discussions in Section IV-B, that aggregate

utility achieved by our scheduler depends on the set of bitrates

available for the video streaming service. A natural question

that arises is: how does the set of video bitrates impact

the difference in aggregate utility obtained by D-VIEWS

and utility-based scheduler? It would also be interesting to

investigate sensitivity of D-VIEWS to various parameters such

as set of video bitrates, number of users sharing the network

resources, and different video bitrate adaptation methods.
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