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Entanglement in a molecular three-qubit system
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We study the entanglement properties of a molecular three-qubit system described by the Heisen-
berg spin Hamiltonian with anisotropic exchange interactions and including an external magnetic
field. The system exhibits first order quantum phase transitions by tuning two parameters,  and v,
of the Hamiltonian to specific values. The three-qubit chain is open ended so that there are two types
of pairwise entanglement : nearest-neighbour (nn) and next-nearest-neighbour (nnn). We calculate
the ground and thermal state concurrences, quantifying pairwise entanglement, as a function of the
parameters z, y and the temperature 7. The entanglement threshold and gap temperatures are also
determined as a function of the anisotropy parameter z. The results obtained are of relevance in
understanding the entanglement features of the recently engineered molecular Cr7 Ni-Cu*t-Cry Ni
complex which serves as a three-qubit system at sufficiently low temperatures.

PACS numbers: 03.67.Mn, 03.67.Bg, 03.65.Ud, 64.70.Tg, 75.10.Dg

I. INTRODUCTION

Entanglement is a unique feature of quantum mechan-
ical systems with no classical analogue. In an entangled
state, two or more quantum particles have joint prop-
erties in the form of non-local correlations rather than
individual identities. Entanglement is known to be a key
resource in quantum information processing (QIP) tasks
such as quantum computation, teleportation and cryp-
tography [1]. Implementation of QIP protocols requires
the assembly of multi-qubit systems with the potential
for generating controlled entanglement. Natural exam-
ples of qubits, which are two-level systems, include spin-
% particles, photons with two states of polarization and
trapped ions with two atomic states. In recent years,
molecular nanomagnets have been proposed as appro-
priate candidates for qubit encoding and manipulation
[2, 3]. A specific example is provided by antiferromag-
netic (AFM) Cr7Ni rings which reduce to effective spin-
% systems at low temperatures. Each octagonal ring
consists of one Ni?T and seven Cr3t ions with AFM
coupling between neighbouring ions. A variety of exper-
imental techniques have been used to characterize the
rings. The rings have spin—% ground states and behave
as qubits at sufficiently low temperatures as the excited-
state multiplets remain unoccupied. Also the rings have
been demonstrated to possess long decoherence times, an
ideal requirement for several QIP tasks.

Recently, Timco et al [3] have engineered a coherent
coupling between two Cry Ni rings, serving as molecular
spin qubits, via a central Cu?t ion which acts as a third
qubit. The Cr;Ni-Cu?t-Cr;Ni complex is equivalent
to a three qubit system with the Cu?* ion serving as
a “linker”. The coupling between the spins of the rings
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Figure 1: A molecular three-qubit system in which the
qubits A and B represent two Cr7 N4 rings (see figure
1(a) of reference [3]) and qubit C' represents the
bridging ion Cu?*. The rings and the ion are effective
spin—% systems represented by solid arrows.

is tunable by a proper choice of the linker. In a mi-
croscopic approach, the spin Hamiltonian describing the
three-qubit system can be written as [3]

H=H"+ HP + HC 4+ HAY + HPC (1)

where the labels A, B and C correspond to the two rings
and the magnetic linker respectively. The terms H* and
H?P individually describe the Cr7; Ni rings:

8
HA = HP =3 0,55 1
=1

8 8
+ZdiSiz+Hdip+uB§.Z§.?i (2)
=1 =1

with z along the ring axis. The successive terms in the
Hamiltonian correspond to isotropic exchange (J;), axial
crystal field (d;), dipole-dipole couplings (Hg;p) between

eight individual spins ?i and the Zeeman coupling to the



magnetic field § with i; being the gyromagnetic tensor.
The term H in equation (1) is

Iy I (3)

whereas the terms HAC /HBC are

HAC — HBC — 'S 6 (?cw?m) (4)

where the spins ?cT and ? N4 correspond to ?1 and

s in their respective rings as these spins are located
on the edge of the octagon bound to the Cu link. Since
J' << Jy’s, the intra-ring exchange constants, the low-
temperature behaviour of the Cry Ni-Cu?T-CryNi com-
plex is determined by the splitting of the lowest eight
energy levels. The behaviour can be reproduced in terms
of an effective three-spin Hamiltonian [3]:

H=7Y S.So+usB. Y
i=A,B i=A,B,C

(2Si,zSC,z - Si,wSC,;E -
i=A,B

+Dew Si,ySC,y) (5)

where ?ABC represent spin-3 operators, J is the
strength of the effective Cu-ring isotropic exchange,

A,p are the g-tensors of the ring ground doublet,

¢ = Jcu, and D, is an effective Cu-ring axial ex-
change originating from the projection of the rings’ dipo-
lar and crystal-field anisotropies. Equation (5) represents
the Cry Ni-Cu?t-Cr; Ni system as a linear chain of three
coupled qubits with open boundaries. The three-qubit
system has ground and thermal states which are entan-
gled. One can focus on two types of entanglement : pair-
wise, i.e. between two qubits and three-party entangle-
ment involving all the three qubits. The Greenberger-
Horne-Zeilinger (GHZ) and Werner (W) states [4, 5, 6]
defined as

GHZ) = 35 (1111) +| L) 6
W) = 5 (10 + 110+ ] 1)

represent two fundamentally non-equivalent entangled
states of three qubits. In the first case, the pairwise en-
tanglement for all the qubit pairs is zero and one has gen-
uine three party entanglement known as the residual en-
tanglement. The nomenclature arises from the Coffman-
Kundu-Wootters (CKW) inequality [7] for a three qubit
system given by,

7'1>7'2 Z (7)

J#i

where 77 represents the one-tangle corresponding to the
entanglement between the ith qubit and the rest of the
system and ij is the square of concurrence, a measure
of the entanglement between the ith and jth qubits. The
one-tangle 71 is determined as 7, = 4detp)) where p(*)

is the single-site reduced density matrix. The residual
entanglement is given by the difference between 7 and
7o and hence provides a measure of quantum correlations
which cannot be expressed in terms of pairwise correla-
tions. The GHZ state has the maximum possible value
of 1 for the three-party (residual) entanglement. The W
state, on the other hand, possesses only pairwise entan-
glement between all qubit pairs and the magnitude of the
residual entanglement is zero. Timco et al [3] have pro-
vided a prescription for the generation of GHZ and W
states using a sequence of microwave pulses applied to
the molecular three-qubit system.

In this paper, we study the entanglement properties
of the ground and thermal states of the molecular three-
qubit system described by the reduced Hamiltonian in
equation (5). We specially focus on the variation of en-
tanglement measures as a function of the parameters of
the Hamiltonian. Wang et al [8] have earlier studied
thermal entanglement in the three-qubit Heisenberg XXZ
model. The Hamiltonian considered by them satisfies
periodic boundary condition and includes anisotropic ex-
change interaction and magnetic field terms. The molec-
ular three qubit system considered in this paper has the
structure of an open chain and the entanglement features
turn out to be different from those of the three-qubit
Heisenberg ring. The experimental demonstration that
the coupling between the molecular spin clusters can be
controlled without disturbing the intra-cluster interac-
tions provides the impetus for characterizing the entan-
glement properties of the molecular three-qubit system.

II. GROUND STATE ENTANGLEMENT

We consider the molecular three-qubit system to be in
an external magnetic field pointed in the z direction. The
Hamiltonian (equation (5)) then reduces to

H=J Z §i-§C+gMBB Z SZZ
i=A,B i=A,B,C

+Dez (2Si,zSC,z - Si,mSC,z -
i=A,B

SiyScy) (8)

This can be rewritten in the form,

H = H/j = (1 + 2I) (SA,ZSC,Z + SB,ZSC,Z)

1 _ _ _ _
+5(1-2) (S5Sc + S3SE+5ESc + S55%)

Y (Sa:+ 582+ 5c.:) (9)
where x = D, /J,y = gupB/J and S*, S~ are the rais-
ing and lowering operators. Since the z-component of the
total spin, St  is a conserved quantity, the eigenvalue
problem can be solved in the separate subspaces corre-

sponding to the different values of S°!. The eigenvalues
and the eigenstates are given by,

tot _ 3
Stot = 43
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In the above equations,
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Figure 2: Two lowest energy levels (i) Eq and Eg and
(ii) F3 and F5 of the Hamiltonian (equation (9)) versus
the parameter x for y = 0.

=
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Alz) = _2+ {72(__Uff3;)} _ (21)
r 273
B(x) = _2+ {72(__[]1‘52)} _ (22)

We first consider the case of zero magnetic field (y=0).
The eigenvalues then become

(23)

We assume z to range over both positive and negative val-
ues. Figure 2 shows a plot of the two lowest energy levels
of the Hamiltonian (equation (9)) versus the parameter
z. Each energy level is doubly-degenerate. The nature
of the ground states change at x = —2, bringing about a
first-order quantum phase transition (QPT). When z is
< —2, the ground states are the separable states |¢)1) and
|tbs). When z is > —2, the doubly-degenerate ground
state is described by the wave functions |13) and |)5).
At 2 = 1, however, the Hamiltonian (9) becomes Ising-
like, i.e., loses its quantum character and the degenerate
ground states, | 1J1) and | [1]), are separable. We now
discuss the entanglement properties of the ground states.
Because of the degeneracy, the ground state density ma-
trix describes a mixed state with

1
P=3 (1) (W3] + |v5)(¥s)) (24)
The reduced density matrix p;;, (i,5 = A, B,C) is ob-
tained from p by tracing out the spin degrees of freedom
associated with the spins which are not located at the
sites ¢ and j. The reduced density matrix in the stan-
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Figure 3: Variation of concurrences (a) Cac and (b)
Cap versus x for y = 0.

dard basis, {| 1), T4), | 1), | 44)}, has the structure

u 0 0 0
0 wy y* O
0 y wy O (25)
0 0 0 w

The concurrence Cjj, a measure of the entanglement be-
tween a pair of spins at sites ¢ and j, is given by [9, 10],

Gy =2 maz (0, |y| - /) (26)

Figures 3(a) and 3(b) show the variation of C4c and Cap
versus x. The analytical expressions for the concurrences
are;

CAc:CBc:Qma$(0,|%| 2%) (27)
Cap =2 max (O, %} — 21%?)
The variation of C'g¢ as a function of x is identical with
that of Cac. We remind ourselves that A and B are
the boundary spins and C the central spin. A jump in
the magnitude of the concurrence indicates a first order
QPT [11, 12, 13, 14] which, as already mentioned, occurs
at r = —2. C'a¢c and Cpe both become zero at x = 1 due
to the separability of the ground state density matrix and

Figure 4: Plot of the two lowest energies (i) Es and
(ii) E5 versus x for y = 0.5.

Figure 5: Plot of the lowest energy levels (i) Es, (ii) Es,
(iii) E5 and (iv)E; as a function of y for z = 0.5

then rises as z is increased to attain a saturation value
Cac = éigg for large . The entanglement between
the boundary spins, however, has a non-zero value only
for negative values of z and that too in a restricted range
of x values.

We next consider the case of non-zero magnetic field
(y # 0). Figure 4 shows the plots of the two low-
est energies, F5 and Ejg, versus x for y = 0.5. One
finds that a first-order QPT occurs at a specific value

of . = z, (: —\/g— ,/%) indicating a change in the

nature of the ground state. Figure 5 shows the variation
of F5 and Fg as a function of y for x = 0.5. Again, one
notes the occurrence of a first-order QPT at a specific
value of y = y.. The external magnetic field removes
the ground state degeneracy of the zero-field case and
the three-qubit system has a unique ground state. Fig-
ures 6(a) and 6(b) show the variation of the concurrences
Cac and Cyp versus x for y = 0.5. In this case, the an-
alytical expressions for the concurrences are;

CAC = CBC = 2 max (0, }%D

Cag =2 mazx (O,|%‘ (28)

In zero magnetic field (y = 0), the next-nearest-
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Figure 6: Variation of concurrences (a) Cac and (b)
Cap versus x for y = 0.5.

neighbour (nnn) concurrence C4p has non-zero values
only in a restricted range of negative x values (figure
3(b)) whereas in the presence of a magnetic field (y # 0),
Cap is non-zero in a range of both negative and positive
x values. The magnitude of the nnn entanglement is less
than that of the nn entanglement for both y = 0 and
y # 0. As y increases, one finds that z., the first or-
der QPT point shifts towards more positive values. For
sufficiently high values of y, entanglement exists only for
positive values of x. This is so provided y is less than
the critical value y. (which depends upon ) at which a
first-order QPT takes place to a separable ground state.
Figures 7(a) and 7(b) show the plots of the nn and nnn
concurrences, Cac (= Cpc) and Cap respectively versus
y for x = 0.5. The concurrences have constant values
for y < y., the QPT point, and jump discontinuously
to zero values at y = y.. As z increases, the value of
Y also increases. In the case of non-zero magnetic field,
y # 0, the ground state is non-degenerate and the den-
sity matrix represents a pure state. In this case, the
one-tangle 71 (defined in equation (7)) can be calculated.
For any choice of the central spin, the residual entangle-
ment involving three spins is found to be zero so that
only pairwise entanglement exists in the ground state.
The ground states thus belong to the class of W rather
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Figure 7: Variation of concurrences (a) Cac and (b)
Cap versus y for x = 0.5.

than GH Z states.

III. THERMAL STATE ENTANGLEMENT

We next discuss the finite-temperature entanglement
properties of the molecular three-qubit system. The ther-
mal density matrix p(T) = + exp (—BH)(8 = %,k = 1)
now replaces the ground state density-matrix with Z de-
noting the partition function of the system. The reduced

density matrix p;;(T) has the same form as in equation
(26) with C;;(T) given by [15]

O (1) = = maz (0,Jy(T)| ~ VaTo(T))  (29)

For the three-qubit system, the thermal density matrix
is

8
o) = 23 esp(~BE W (30
k=1

where the [1x)’s and E}’s are given in Egs. (10)-(17) for
the general case y # 0. When y = 0, the energy eigenval-
ues are as shown in equation (23). We first consider the



case of zero magnetic field (y = 0). The matrix elements
u,v and y of the reduced density matrix pac(T) are

- 1 = 1 - 1
uzvz(e%—i——e 7{:3—}——6#—}—5) (31)

A2 B?
2 : 2
y=y = <—A—}2%6ETIg —B—‘S216ET4) (32)

The reduced density matrix ppc(T') has the same ma-
trix elements as in equations (31) and (32). For the nnn
concurrence, Cap, the matrix elements of the reduced
density matrix are :

_ R2 _ 92 _
u_v_<efl+ﬁef3+ﬁef4> (33)

y=y* = (%e%—i—%e% —1) (34)
Figures 8(a) and 8(b) show the plots of Cac and Cap
respectively as a function of x for different values of the
temperature 7. As T increases, the range of x values
for which Ca¢c # 0 shifts towards more positive values.
Figures 9(a) and 9(b) show Cac and Cyp versus T for
negative values of z. One can obtain similar plots for
Cac when z is > 0. For both the nn and nnn entangle-

ments, one can define threshold temperatures Tél) and
Té?) respectively, beyond which the concurrences [8, 16]
have zero values. Figures 10(a) and 10(b) show how Tél)

and Té?) vary with x for different values of y.
For non-zero magnetic field, y # 0, the matrix elements
of the reduced density matrix pac(= ppc) are given by,

_B 1 _By 1 _Bs 1 B
U = <€ T +§€ T +ﬁ€ T +—B2€ T) (35)

B N 1 _ms 1 B
U—<6 T +§€ T +A26 T +§6 T) (36)
y=y" .

E. E E E
(e - e e - e F) O

The corresponding matrix elements for the nnn reduced
density matrix are:

R? 52
u= (e%—FFeE —l—ﬁe T> (38)
Eg R2 Es 82 _Es
’U_(e +—2€ +ﬁ€ T) (39)
y:y*:—% e_% —|—e_%
Es Ej
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Figure 8: Variation of concurrences (a) Cac and (b)
Cap versus x at different temperatures T" with y = 0.
The different temperature values are (a) (i) 7' =0, (ii)
T =0.5, (iii) T = 1.5 and (b) (i) T =0, (ii) T = 0.1,

(iii) 7 = 0.3

Figures 11(a) and 11(b) show the plots of the nn and nnn

entanglements, C'4¢c and C4p respectively, versus x for
y = 0.5 and at different values of T. Figure 12(a) shows
the plot of C's¢ versus T for different negative values of
with y = 0.5. Similar plots are obtained in other ranges
of x values. Figure 12(b) shows how Cap varies as a
function of T

We lastly calculate the entanglement gap temperature
[17, 18], Tk, as a function of x for both zero and non-
zeroy. Ty is determined from the relation U(Tg) = Esep,

where U(T) (: —% %) is the thermal energy at temper-

ature 17" and Fj, is the ground state energy of the clas-
sical spin model corresponding to the three-qubit Hamil-
tonian in equation (5). Esep can be easily calculated,
e.8., Bsep = 3 (—1 — 2z — y) for z > 0. For temperature
T < Tg, the thermal state is entangled. Figure 13 ex-
hibits the variations of Tg versus z for different values of

Y.
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IV. SUMMARY AND DISCUSSION

In this paper, we have obtained quantitative measures
of pairwise entanglement in a molecular three-qubit sys-
tem as a function of two parameters  and y. The system
represents the recently engineered Cr;Ni-Cu?t-Cr;Ni
complex consisting of two C'r7 N rings coupled via a cen-
tral Cu®* ion. The parameters z and y appearing in the
qubit Hamiltonian (equation (9)) have their origins in
an effective Cu-ring axial exchange due to the projection
of the rings’ dipolar and crystal-field anisotropies and
an external magnetic field respectively. Timco et al [3]
have provided an experimental demonstration that the
coupling between molecular spin clusters can be manipu-
lated by altering the nature of the linker ions. This opens
up the possibility of chemically controlling the generation
of entanglement in spin systems. The molecular three-
qubit system studied in this paper belongs to a family of
clusters with AFM exchange interactions between the nn
ions and a spin—% ground state. The simplest case is that
of a finite chain with an odd number of S = % spins and
dominant AFM interactions between the nn spins. An
alternative way of obtaining an S = % ground state is

Figure 10: The threshold entanglement temperature (a)
Tél) versus z for nn entanglement and (b) Téz) Versus x

for nnn entanglement with (i) y = 0.1 (ii) y = 0.5 and

(iii) y = 1. Tél) has a very weak dependence on the
values of y.

to replace a single spin in an AFM chain, containing an
even number of spins, by a spin of different magnitude
such that the ground state spin is of magnitude % The
Cr7Ni ring provides an example of the latter possibility.

In general, the arrangement of spins in a chain can be
either linear, or cyclic. The molecular three-qubit system
studied in this paper is a linear-chain complex, whereas
the three qubit chain studied in [8] is cyclic in nature.
Cyclic spin chains with an odd number of antiferromag-
netically coupled spins have degenerate ground states due
to magnetic frustration. For a three-spin cyclic chain,
the anisotropic Heisenberg XXZ model has a four-fold
degenerate ground state in zero magnetic field [8]. In the
presence of an external magnetic field, the ground state
is doubly degenerate. The effective three-qubit Hamil-
tonian (equation (9)) has the form of the anisotropic
Heisenberg XXZ Hamiltonian but with a linear i.e. an
open-ended structure. In this case, the ground state is
doubly degenerate in zero magnetic field (y = 0) and non-
degenerate when y # 0. The cyclic chain has a greater
ground state degeneracy because of frustration.

There are prominent differences in the entanglement
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Figure 11: Variation of concurrences (a) Cac and (b)

Cap versus x at different temperatures T' with y = 0.5.

The different temperature values are (a) (i) 7' = 0, (ii)
T =0.5, (iii) T = 2 and (b) (i) T =0, (i) T = 0.5

features of cyclic and linear spin chains. As shown in
[8], in the case of the AFM cyclic XXZ model, there is
no pairwise entanglement, as measured by concurrence,
for all values of the anisotropy constant. At 7' = 0 also,
the concurrence is zero for the AFM case. In contrast,
the AFM linear chain has pairwise entanglement at both
T =0and T # 0 (figures 3 and 8). One now distinguishes
between nn and nnn entanglements. In the AFM case,
the nnn concurrence C4p is zero at zero and finite tem-
peratures whereas the nn concurrence Cyc(= Cpc) is
non-zero at both 7' =0 and T" # 0. Comparing figures 3
and 6, one finds that on inclusion of the magnetic field the
range of z values for which C4p (the nnn concurrence)
is # 0 is considerably extended. For a specific value of
x, there is, however, a critical value of y. of y such that
the pairwise entanglement vanishes when y > y.. Earlier
studies [8, 10] have shown that the entanglement between
two spins in an AFM chain can be increased by raising
the temperature or the external magnetic field in specific
ranges. This is true for our three-qubit system also. In
figures 12(a) and 12(b), the curve (i) shows the increase
of both Cxc and Cup with temperature 7. We have
further shown that only pairwise entanglement exists in
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Figure 12: Variation of concurrences (a) Cac and (b)
Cyp versus T for different negative values of z with
y = 0.5. The different values of z are (i) z = —1.5, (ii)
x = —1, and (iii) = —0.5 for both (a) and (b).

the ground state with y # 0, i.e., there is no three-qubit
entanglement as exists in the GHZ state (equation (6)).
One interesting feature of the linear three-spin chain re-
lates to the variation of the threshold entanglement tem-

peratures Tél) and Té2) versus x for different values of

y. As shown in figure 10(a), the Tél) versus z plot de-
pends weakly on the values of y. The threshold temper-
ature Tg), for nnn entanglement, however, varies more
prominently with y. In the case of the cyclic chain, the
single threshold temperature depends on both z and y.
As shown in figure 13, the plots of the entanglement gap
temperature, Ty, versus = are different for different val-
ues of y. In fact, Ty has a non-monotonic dependence on
the values of y (the y = 1 curve lies in between the y = 0.1
and y = 0.5 curves). One further notes, from figures 10
and 13, that the entanglement gap and threshold temper-
atures are different for the same values of the parameters
z and y. In fact, one finds that Té?) <Tg < Tél). Fig-
ures 4-7 and Figures 11-12 have been obtained by fixing
either = or y at a specific value. The observations are,
however, general in nature and hold true in extended
ranges of x and y values. In the model studied by us, we



Figure 13: Variation of the entanglement gap
temperature, Ty , versus x for different magnetic fields.
The different values of y are (i) y =0, (ii) y = 0.5, and

(iii) y = 1

have assumed that the gyromagnetic factors g4, g5, gc
are of equal amplitude g (equation (8)). In the case of
the engineered three-qubit system, the diagonal tensors
ga,p and gc are different. Assuming g4 = g # gc,
(9o(z2) = 2.07, ga,B(z2) = 1.79, as quoted in [3]), we find
no qualitative changes in the results reported in sections
2 and 3. It will be of interest to study the general case
of the magnetic field pointing in an arbitrary direction.
The three-qubit molecular cluster exhibits first-order

QPTs at specific values of x and y. In figure 3(a), the
QPT at x = —2 separates two phases, for x < —2 the
ground state has no entanglement whereas for —2 < x <
1, the ground state, described by the mixed state in equa-
tion (24), has pairwise entanglement. Similarly, as shown
in figure 7, a first order QPT occurs at y = y.. The
point z = 1 is of special interest as the ground and ther-

mal states become separable at this point. The threshold

entanglement temperatures, Tél) and T((f), drop sharply

to zero at * = 1. The first-order transition points can
be shifted by changing the parameters x and y. For ex-
ample, the transition point z. can be shifted towards
higher values by increasing y. The first order QPTs
are marked by discontinuities in the magnitude of both
the nn and nnn concurrences associated with the ground
states. The molecular three-qubit system, Cr7 Ni-Cu?*-
Cr7yNi, has been specifically engineered with QIP appli-
cations in mind. Since entanglement is a fundamental
resource in such applications, a knowledge of its depen-
dence on the relevant parameters of the system will be
of use in the designing and implementation of QIP pro-
tocols. With possibilities for controlling the couplings
in molecular qubit systems [3] and realizations of spin
Hamiltonians in optical lattices [19], some of the theoret-
ical results could be observed in actual experiments.
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