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Abstract In this article, we formulate and study quantum analogues of random-

ized search heuristics, which make use of Grover search (in Proceedings of the

28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New

York, 1996) to accelerate the search for improved offsprings. We then specialize the

above formulation to two specific search heuristics: Random Local Search and the

(1+1) Evolutionary Algorithm. We call the resulting quantum versions of these search

heuristics Quantum Local Search and the (1+1) Quantum Evolutionary Algorithm.

We conduct a rigorous runtime analysis of these quantum search heuristics in

the computation model of quantum algorithms, which, besides classical computa-

tion steps, also permits those unique to quantum computing devices. To this end,

we study the six elementary pseudo-Boolean optimization problems ONEMAX,

LEADINGONES, DISCREPANCY, NEEDLE, JUMP, and TINYTRAP.

It turns out that the advantage of the respective quantum search heuristic over its

classical counterpart varies with the problem structure and ranges from no speedup

at all for the problem DISCREPANCY to exponential speedup for the problem TINY-

D. Johannsen is supported by a Postdoc Scholarship of the German Academic Exchange Service

(DAAD).

P.P. Kurur work done on a visit to the Max Planck Institute for Informatics (MPII) funded by MPII

and Research I project (NRNM/CS/20030163).

D. Johannsen

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

e-mail: johannse@tau.ac.il

P.P. Kurur

Dept. of Comp. Sci. and Engg., Indian Institute of Technology Kanpur, Kanpur, UP 208016, India

e-mail: ppk@cse.iitk.ac.in

J. Lengler (�)

Department of Theoretical Computer Science, Eidgenössische Technische Hochschule ETH, Zürich,

Switzerland

e-mail: johannes.lengler@inf.ethz.ch

mailto:johannse@tau.ac.il
mailto:ppk@cse.iitk.ac.in
mailto:johannes.lengler@inf.ethz.ch


Algorithmica (2014) 68:152–189 153

TRAP. We show that these runtime behaviors are closely linked to the probabilities

of performing successful mutations in the classical algorithms.

Keywords Theory · Evolutionary computation · Quantum algorithm ·
Runtime analysis

1 Introduction

Quantum algorithms are algorithms that can be executed on a quantum comput-

ing device. One of the prominent computational problems which a quantum algo-

rithm solves more efficiently than classical algorithms is searching in an unordered

database. In his seminal work [15, 22], Grover gave an algorithm which can search in

an unordered data base of N elements in time proportional to
√

N , whereas any clas-

sical algorithm requires time proportional to N . When the underlying search space

has no structure, Grover search is known to be optimal [6, 26]. In the last decade,

algorithms based on Grover search have been studied extensively. Many specialized

algorithms have also been studied for problems such as searching [9, 15], Element

Distinctness [23], Minimum-Finding [12] and many others (e.g., [7, 13, 27]).

Although Grover’s algorithm gives a quadratic speedup1 for search, this is not a

universal phenomenon for all computational problems. For example, Grover search

can be thought of as evaluating the Boolean function OR on N bits. If instead of

the OR function we consider the XOR on N bits, a lower bound of Θ(N) queries

is known in quantum setting [2, 5]. Thus, the actual speedup that can be achieved

depends on the problem at hand.

Optimization problems, which are the topic of interest of this paper, have received

much attention in the quantum setting. Using Grover’s algorithm, Dürr, Heiligman,

Høyer, and Mhalla [13] have shown that it is possible to find the global optimum of

a black-box optimization problem on the search space {0,1}n in an expected number

of O(2
n
2 ) queries, while the classical complexity is Θ(2n). Moreover, a matching

lower bound of Ω(2
n
2 ) for all possible quantum algorithms exists [26]. In addition, if

there is enough structure in the search space, better bounds can be shown. For exam-

ple on general graph-based search spaces, Magniez, Nayak, Roland, and Santha [21,

Theorem 3] have shown that if the Markov chain associated with the random walk

on the space is ergodic, significant improvement in the expected query complexity

is possible provided that the spectral gap is large. Furthermore, if the underlying

quantum random walk is symmetric, better problem-specific quantum algorithms are

available [20, 25].

From the view-point of complexity theory, the model of computation which allows

the formulation of quantum algorithms is a generalization of the model of computa-

tion which allows the formulation of classical randomized algorithms (just as this

model is a generalization of that which allows the formulation of deterministic al-

gorithms). If we consider the complexity of a computational problem, then (i) upper

1By quadratic speedup we mean that the order of the runtime of the classical version of an algorithm is

quadratic in the runtime of the quantum version.
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bounds on the classical complexity are also upper bounds on the quantum complexity,

(ii) lower bounds on the quantum complexity are also lower bounds on the classical

complexity, and, most importantly, (iii) in certain settings lower bounds on the quan-

tum complexity can imply even stricter lower bounds on the classical complexity.

For example, in [1] Aaronson has derived a lower bound of Ω(2
n
2 /n2) on the ran-

domized complexity of the problem of finding a local optimum on the n-dimensional

hypercube from an Ω(2
n
4 /n) bound on its quantum complexity using the quantum

adversary method (cf. [3]). Only later has this result been improved to Θ(2
n
2 n

1
2 )

using classical methods of analysis [28].

Another example is given in [19], where the authors show lower bounds on the

length of locally decodable codes with quantum arguments. They show that the clas-

sical algorithm which is allowed to look at two bits (in order to recover the desired

bit of information) is at most as powerful as the quantum algorithm which is allowed

to look only at one bit.

In this light, theoretical work on quantum complexity and runtime analyses of

quantum algorithms serve not only the aim of preparing for a bright (but admittedly as

of now only hypothetical) future sporting actual quantum computers, but also furthers

the understanding of the classical complexity of a problem.

In this work, we consider quantum versions of elitist (1+1) randomized search

heuristics, which, for convenience, we simply abbreviate as RSHs. RSHs are heuris-

tics that successively generate candidate solutions according to some distribution de-

pending only on the best solution found so far.2 In the language of evolutionary algo-

rithms, this sampling procedure is called mutation. In a subsequent selection step, the

algorithm decides whether to replace the current candidate solution by the sampled

one.

The optimization problems that we are interested in are pseudo-Boolean optimiza-

tion problems: Given a finite search space S , in our case always the set of all n-bit

strings (where n is a positive integer), and an objective function f from S to R, we

want to compute a global optimum (that is, either a maximum or a minimum) of f .

A RSH starts with a candidate solution x(0) and repeatedly improves the objective

value (or fitness) of the solution by performing the following two steps:

(1) Mutation Generate a new solution y according to a distribution MUT(x) depend-

ing on the current solution x;

(2) Selection If the new solution y has better (or possibly equal) fitness than x then

set x := y, otherwise discard y.

Thus, different RSHs differ in the mutation operator, that is, the nature of the

distribution MUT(x), and the selection strategy, that is, a partial order relation on S .

For example, the mutation operator of Randomized Local Search (RLS) selects an

index i at random and flips the bit xi to get the new candidate solution whereas the

mutation operator of the (1+1) Evolutionary Algorithm (EA) flips each bit xi with

2Actually, the distribution of the candidate solutions might as well depend on the number of steps already

performed by the algorithm. However, in this work we only regard algorithms with time-homogeneous

distributions.
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probability 1/n. Orthogonally, we can choose one of the following two selection

strategies for each of these algorithms, which we name progressive or conservative

selection. Progressive selection accepts new search points of equal or better objective

value, whereas conservative selection only accepts new search points of strictly bet-

ter objective value (where better means larger or smaller, depending on whether we

consider a maximization or, respectively, a minimization problem). Whenever two

algorithms are the same except for the selection strategy, we denote the conserva-

tive algorithms by a superscript “ * ”, e.g., RLS and RLS∗ for the progressive and

conservative versions of Randomized Local Search, respectively.

When transferring the concept of RSHs to the setting of quantum computing, we

encounter one main difficulty. Clearly, an RSH for a maximization problem can never

move from a solution of higher objective value to a solution of smaller objective

value. Hence the Markov processes underlying these algorithms are not ergodic and

far from symmetric. Therefore, the setting of quantum random walks as in [20, 21, 25]

does not apply. More seriously, all quantum operations apart from measurements are

required to be reversible. This rules out a direct adaptation of the RSH to the quantum

world because it would force us to make a measurement after every mutation step and

perform the selection step based on the outcome of this measurement. Performing a

measurement after each mutation amounts to sampling from the classical distribution

associated with the mutation. Hence, such a version is the restatement of the same

classical randomized search heuristic in terms of quantum operators and measure-

ments and therefore uninteresting. We need to defer the measurements long enough

so as to allow quantum mechanical interference to have an effect on the sampling.

The main idea of our paper is to use quantum probability amplification [10] to

speed up the process of generating a new candidate solution in Step (1) that is ac-

cepted by the selection strategy in Step (2). Instead of picking a new candidate so-

lution directly from the distribution given by the mutation operator, which is what is

done classically, we amplify the probability of getting a better solution to at least a

constant (say 1/2) using quantum probability amplification (see Sect. 2). We call this

quantum variant of a RSH a Quantum Search Heuristic (QSH). In particular, we call

the quantum variants of RLS and EAs Quantum Local Search (QLS) and Quantum

Evolutionary Algorithms (QEAs). These QSHs can only run on a quantum computer.

We measure the runtime of a RSH on a given problem by the expected number

of function calls (queries) to f until a global optimum is found. In the quantum

setting, we cannot evaluate the function f for mixed (non-classical) quantum states.

Instead, for each search point x we construct a membership oracle associated with

f that distinguishes between search points of higher and of lower fitness than x. We

define the runtime of a quantum algorithm to be the expected number of calls to such

membership oracles for f until a global optimum is found (see Sect. 4 for details).

For comparing the runtime of a RSH and its quantum counterpart, the progress

probability pRSH(x) plays a central role. This is the probability of obtaining an accept-

able new solution from a candidate solution x by mutation in the classical setting.

That is, assuming the RSH maximizes the function f , if y is the random variable

generated by MUT(x) then

pRSH(x) = Pr
(
f (y) ≥ f (x) ∧ y �= x

)
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for the progressive selection strategy and

pRSH(x) = Pr
(
f (y) > f (x)

)

for the conservative selection strategy. In the classical setting, a RSH requires in ex-

pectation 1/pRSH(x) queries to f in order to make progress in x, that is, to move from

the current solution x to a new solution y. Using quantum probability amplification,

the expected number of queries reduces to Θ(1/
√

pRSH(x)).

The search heuristic Quantum Local Search which we define here is a restricted

version of the quantum algorithm by Aaronson [1] which first chooses Θ(n
1
3 2

2n
3 )

search points uniformly at random and then uses Grover search to determine the

optimal initial search point among them. The algorithm of Aaronson then proceeds

exactly like ours. However, our algorithm does not attempt to optimize on the starting

point, because (i) the runtime of such an optimization would dominate the runtimes

of our algorithms by orders of magnitude for problems with polynomial runtime and

(ii) the classical RSHs we compare to do not attempt to do so either.

To avoid confusion, we want to point out two other streams of work which might

be mistakenly associated with our work but are in fact not related.

First, our results on QSHs and QEAs are significantly different from that of Quan-

tum Inspired Evolutionary Algorithms (QIEAs) as introduced in [16]. QIEAs are

classical algorithms where the mutation and selection steps, though classical, are in-

spired from quantum operations. In contrast, our mutation process is genuinely quan-

tum and cannot be implemented on a classical computer.

Second, our algorithms are no attempts to apply genetic programming tech-

niques to better design quantum algorithms unlike for example the work of Spector

et. al. [24] where the “code” of an ordinary quantum algorithm is optimized by an

evolutionary algorithm. To the best of our knowledge, the (1+1) QEA investigated

here is the first attempt to generalize evolutionary algorithms to the quantum setting.

The theorem “No free lunch” states that no RSH can be good on all pseudo-

Boolean problems. Similarly, the general bound of time Θ(2
n
2 ) for optimizing an

arbitrary pseudo-Boolean function in the black-box model also applies to QSHs.

However, we may ask whether QSHs still experience a speedup over ordinary RSHs

on particular problems. In order to answer this question, we follow the approaches of

[8] and [11] and study the behavior of QLS and the (1+1) QEA on specific pseudo-

Boolean optimization problems.

1.1 Our Results

We give asymptotically tight bounds on the runtimes of QLS and the

(1+1) QEA. For both QSHs, we investigate the progressive and the conservative

selection strategy. We consider the objective functions ONEMAX, LEADINGONES,

DISCREPANCY, NEEDLE, JUMPm, and TINYTRAP, which are defined in Sect. 6.

Our results are summarized in Table 1. We see that in some cases the speedup

is quadratic or almost quadratic (e.g., conservative (1+1) QEA∗ on NEEDLE and

on JUMPm), for other functions there is only a smaller speedup (polynomial for the

conservative algorithms on LEADINGONES, logarithmic for all algorithms on ONE-

MAX), or no asymptotic speedup at all (DISCREPANCY; progressive algorithms on
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Table 1 A runtime comparison between progressive and conservative (*) RSHs and QSHs on different

objective functions

(1+1) EA / RLS (1+1) QEA / QLS (1+1) EA* / RLS* (1+1) QEA* / QLS*

ONEMAX Θ(n logn) Θ(n) Θ(n logn) Θ(n)

LEADINGONES Θ(n2) Θ(n2) Θ(n2) Θ(n
3
2 )

DISCREPANCY Θ(
√

n) Θ(
√

n) Θ(
√

n) Θ(
√

n)

NEEDLE Θ(2n) Θ(2n) Θ( 1
2n nn) / ∞ Θ( e

√
n

2n n
n
2 ) / ∞

JUMPm Θ(nm) / ∞ Θ(n
m− 1

2 ) / ∞ Θ(nm) / ∞ Θ(n
m
2 ) / ∞

TINYTRAP Ω(2
n
4 ) / ∞ Θ(1) / ∞ Ω(2

n
4 ) / ∞ Θ(1) / ∞

NEEDLE and JUMPm). We also see that the selection strategy may be crucial for the

speedup (JUMPm and LEADINGONES) even if one of the strategies does not change

the runtime of the classical algorithms (LEADINGONES). We even find an example

(TINYTRAP) where the runtime decreases from Ω(2n/4) to Θ(1).

We now give a broad reason for the differences in speedup. The quantum accel-

eration does not differ from its classical counterpart in the statistical nature of the

candidate solutions picked on its way to the optimal solution. In other words, for a

fixed trajectory of different search points the probabilities to take this trajectory co-

incide for the classical and the quantum algorithm. However, the quantum version is

faster because it reduces the expected time required for a successful mutation.

For example, for RLS∗ on LEADINGONES, it is comparatively hard to find the

next search point (that is, the right bit to flip), so there is a substantial speedup. On

the other hand, for DISCREPANCY it is very easy to find a better search point: the

expected time for improving the objective value is bounded from above by a constant,

and so there is no asymptotic speedup. In general, the speedup is higher when it is

difficult to find a search point that is accepted by the selection strategy.

Therefore, the gap between the RSHs and the QSHs tends to be larger for the

conservative selection strategy. Again for LEADINGONES, the progress probability

of RLS∗ is 1/n, namely to flip the first zero-bit. Consequently, the runtime decreases

by a factor of Θ(
√

n). On the other hand, in early steps of a run of RLS (that is,

the progressive version) on LEADINGONES, the progress probability is Θ(1), since

flipping any bit after the first zero-bit results in an accepted candidate solution in this

setting. Consequently, there is no asymptotic speedup at all.

However, this does not necessarily imply that conservative algorithms are superior.

For some problems like NEEDLE and JUMPm, the conservative selection strategy

leads to high or even infinite (the global optimum is never found) runtimes for both

RSHs and QSHs. In this case, the speedup due to quantum computing is negligible

compared to the speedup due to progressive selection.

Finally, let us briefly discuss the example of TINYTRAP where both, the con-

servative and the progressive (1+1) QEA, have runtimes bounded from above by a

constant instead of the exponential runtime of their classical counterparts. This result

may seem most impressive. However, it is quite artificial since the results hold only

in expectation but with an exponentially small probability. In a nutshell, it is based

on the following observation about quantum probability amplification. Consider the
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search space consisting only of two elements a and b, where b is defined to be the

“optimum”. With probability p, the initial search point is chosen as a and with prob-

ability 1 − p as b. The probability that a mutation in a samples b is set to p2. Then

the corresponding RSH has runtime 1/p (starting in a with probability p and moving

to b after 1/p2 steps in expectation), while the corresponding QSH has runtime Θ(1)

(starting in a with probability p and moving to b after only 1/p steps in expecta-

tion). Thus, the speedup 1/p can be arbitrary large if we choose p small enough. The

function TINYTRAP models this situation on the search space {0,1}n.

Summing up, we see that quantum search may speed up evolutionary algorithms

in some cases and that there are problems which are substantially accelerated by

quantum search. However, it depends on the specific problem how much is really

gained, and for some problems there is no improvement in the runtime at all.

This paper is the sequel of a conference paper by the same authors [18]. The pre-

quel paper only considered the problems ONEMAX, DISCREPANCY and LEADIN-

GONES. By including NEEDLE, JUMPm, and TINYTRAP we are able to demonstrate

the impact of different selection strategies, while the conference version only con-

sidered the progressive variant. Also, it did not include rigorous proofs and formula-

tions, but merely stated informally that the optimization time of a quantum algorithm

should equal
∑

t≤T p
− 1

2
t , where pt is the progress probability in time step t and T is

the number of steps the algorithm needs. Although this formula captures the intuition,

it is difficult to turn it into a rigid definition. In particular, pt is not a random variable

because it is not always defined. Also, the formula is not well-suited for computa-

tions, and the analyses used in fact slightly different formulas. Theorem 5.11 of this

paper removes this defect.

1.2 Outline

The paper is structured as follows. In Sect. 2, we review very briefly the quantum al-

gorithms we need. For the reader not familiar with quantum computations, it suffices

to use Theorem 2.2 as a black box. In Sects. 3 and 4, RSHs and QSHs, respectively,

are introduced formally.

In Sect. 5, we provide tools for analyzing the runtimes of QSHs. In the standard

framework for evolutionary algorithms one query is performed for each candidate

search point x(t), so the runtime is simply the expectation of the minimal t for which

x(t) is a global optimum. Unfortunately, this framework collapses in the quantum set-

ting, since the number of queries (calls to the oracle function) needed to produce the

next search point is not constant. Instead, we introduce in Definition 5.4 the notion of

progress times, which is compatible with both the classical and the quantum setting.

In Theorem 5.11, we describe the runtimes of QSHs purely in non-quantum terms,

and in the remainder of Sect. 5, we prove some lemmas that are useful for comparing

the complexity of a RSH and its corresponding QSH. Finally, in Sect. 6 we apply

these tools to determine the runtimes of the introduced QSHs for the problems ONE-

MAX, LEADINGONES, DISCREPANCY, NEEDLE, JUMPm, and TINYTRAP.
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2 Quantum Probability Amplification

In this section, we describe the basics of quantum computation, the Grover search

algorithm, and its reformulation as quantum probability amplification in a form that

is suitable for our purpose. For a detailed presentation, we refer the reader to any

standard text book on quantum computation, e.g. [22].

The most basic unit of information in the quantum setting is a qubit, which is a unit

vector in a 2 dimensional vector space H = C
2. To see the analogy with classical bits,

we fix an orthonormal basis {|0〉, |1〉}. The first basis vector |0〉 stands for the classical

bit 0 and the second basis vector |1〉 stands for the classical bit 1. However, a qubit

can also be in the superposed state |ϕ〉 = α|0〉 + β|1〉 where α and β are complex

numbers satisfying the relation |α|2 + |β|2 = 1. An n-qubit system is captured by a

unit vector in the n-fold tensor product H⊗n = C
2 ⊗ · · · ⊗ C

2.

The vector space H⊗n
is a 2n-dimensional vector space with orthonormal basis

{|x〉 | x ∈ {0,1}n}. More generally, if we have a sample space Ω of cardinality N

in the classical setting, the corresponding object in the quantum setting is an N -

dimensional complex Hilbert space HΩ . A set of orthonormal vectors of HΩ is fixed

and is denoted by {|ω〉 | ω ∈ Ω}. A state of the system is then a unit vector in HΩ .

Any quantum operation is either an application of a unitary operator or a measure-

ment. Unitary operations preserve inner products between vectors and are reversible.

The measurement is an irreversible process. We mention the von Neumann measure-

ment postulate for qubits. If a set of n-qubits
∑

αx|x〉 is measured, we obtain the

outcome |x0〉 with probability |αx0
|2. Furthermore, the state of the original system

then collapses to |x0〉, so the original state is irretrievably lost. So, as far as measure-

ment is considered, a state is like a distribution in the classical setting. What makes

quantum probability different and thus more powerful than classical computation is

that by combining certain unitary operations with measurement of a latter state, we

can perform a “constructive interference” of good probabilistic paths. It is the correct

use of unitary maps together with the correct timing of measurement that gives quan-

tum computation its power. Due to lack of space we leave the details to any standard

text book on quantum computation (c.f. [22]).

We now describe the Grover search algorithm. Let S0 be a subset of S for which

we are given a membership oracle, that is, we are given an oracle M from S to {0,1}
such that S0 = {x | M(x) = 1}. Our task is to search for a string in S0 using queries

to M . In this setting, we are interested in minimizing the number of queries made to

M . In an important breakthrough, Grover [15] gave a quantum algorithm to search

for such an element x0 ∈ S0 that makes only
√

|S|/|S0| queries to the oracle M .

One needs to, however, make the oracle M work for quantum states. The standard

approach, which we describe briefly for completeness, is to consider the membership

oracle as unitary operator UM on the n-qubit Hilbert space H = C
2⊗n

defined as

UM |x〉 = (−1)M(x)|x〉.

One application of this unitary operator UM is considered as a single query to the

membership oracle.

Let N denote the cardinality of the search space S , and let the cardinality of the

set S0 be N0. During initialization, Grover’s quantum search algorithm prepares the
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uniform superposition |ψ0〉 = 1/
√

N
∑

x∈S |x〉. The algorithm iteratively applies the

Grover step, a unitary operator which we denote by G, to |ψ0〉. Let |ψt 〉 denote the

state after t applications of G, that is, |ψt 〉 = Gt |ψ0〉. If we choose some appropriate

t in O(
√

N/N0) then on measuring the state |ψt 〉 we obtain an element x ∈ S0 with

probability bounded from below by a positive constant. More precisely, if we write

the state as |ψt 〉 =
∑

x∈S αx(t)|x〉, then for t = O(
√

N/N0) we have
∑

x∈S0
|αx(t)|2

is a constant (say 1/2). The exact form of the Grover step G is not relevant (for details

see the text book of Nielsen and Chuang [22, Chap. 6]) but the crucial point is that

G can be constructed using one application of the unitary operator UM . Hence the

Grover search makes
√

N/N0 queries to the oracle.

Grover search starts with the uniform superposition as a priori there is no spe-

cific reason to prefer one bit string over the other. Instead, if we start the search

algorithm with the state |ψ0〉 =
∑

αx|x〉, then the runtime will be
√

1/p where

p =
∑

x∈S0
|αx|2 is the probability of picking x ∈ S0 if we would measure the ini-

tial state |ψ0〉 directly. This reformulation due to Brassard et al. [10] is often called

the quantum probability amplification or quantum amplitude amplification as a quan-

tum algorithm is able to amplify the probability by performing just
√

1/p queries in

expectation as opposed to 1/p required by a classical algorithm.

There is a caveat to the Grover search algorithm. One needs to stop the Grover

iteration after Θ(
√

N/N0) steps, for otherwise the probability of getting a favorable

x0 ∈ S0 actually deteriorates. Thus it appears as if without knowing the count |S0|,
or in the case of probability amplification, the probability p of sampling an x ∈ S0

under the given distribution, one cannot use Grover search. However, using phase

estimation, Brassard et al. [10] gave a way to overcome this difficulty with essentially

no change in the overall runtime. From now on, by quantum probability amplification

we mean this generalized version where we do not need to know the probabilities.

We now explain an important invariant of the Grover search algorithm. This prop-

erty is crucial for our results. Even though each Grover iteration amplifies the prob-

ability of finding a solution in S0, for any x0 ∈ S0, the conditional probability of

obtaining x0 given the event that an element of S0 has been obtained remains un-

changed by the algorithm. We sketch the reason for this. Let H be the Hilbert space

of n-qubits, which has as basis {|x〉 | x ∈ S}. Let HA denote the space spanned by

{|x〉 | x ∈ S0}, and let HB = H⊥
A be its orthogonal complement. Consider any vector

|ψ〉 =
∑

x ax|x〉 in H. Then |ψ〉 = α|ψ〉A +β|ψ〉B where |ψ〉A and |ψ〉B are the pro-

jections of |ψ〉 to HA and HB with their norms normalized to 1, respectively. It is easy

to verify that the normalized projection |ψ〉A is given by |ψ〉A = 1√
|α|2

∑
x∈S0

ax|x〉

and the amplitudes α and β are given by |α|2 =
∑

x∈S0
|ax|2 and |β|2 = 1−|α|2. The

following proposition then follows from the measurement postulate.

Proposition 2.1 Consider the probability distribution Dψ on S obtained by measur-

ing the state |ψ〉. Then

1. the probability to obtain an element from S0, that is, Pr[S0], is |α|2,

2. for |ψ〉A =
∑

x∈S0
γx|x〉, the conditional probability Pr[x|S0] is |γx|2,

where all probabilities and conditional probabilities are with respect to the distribu-

tion Dψ .
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Proof By the measurement postulate, the probability to obtain x ∈ S is |ax|2. There-

fore,

Pr[S0] =
∑

x∈S0

Pr[x] =
∑

x∈S0

|ax|2 = |α|2.

Similarly, the second statement follows from

Pr[x|S0] =
Pr[x]

Pr[S0]
=

|ax|2

|α|2
= |γx|2.

�

Let G be the Grover iteration associated with the solution space S0. For any vector

|ψ〉 = α|ψ〉A + β|ψ〉B the vector G|ψ〉 is a linear combination α′|ψ〉A + β ′|ψ〉B
for some other constants α′ and β ′ such that |α′|2 + |β ′|2 = 1 (see the analysis of

Grover search in Sect. 6.1.3 of Nielsen’s and Chuang’s book [22]). It follows from

Proposition 2.1 that the conditional probability Pr[x|S0] does not change after the

application of G.

When quantum probability amplification is applied to an initial state that has suc-

cess probability p, then it achieves at least a constant success probability c > 0 with

a runtime in Θ(
√

1/p) that is known a priori. Now we take this algorithm as a black

box B . If we consider the algorithm that repeats B until it finds a solution, then its

success probability is 1 by definition. The runtime is no longer known a priori since

we do not know how often we need to call the black box B . However, the expected

runtime is 1/c times the runtime of B , which is still in Θ(
√

1/p). Summarizing, we

get the following theorem.

Theorem 2.2 (Probability Amplification) There exists two positive absolute con-

stants c and C such that the following statement is true.

Let S be a finite search space, S0 be any non-empty subset of S for which there

is a membership oracle M , and a sampling procedure A that produces a distribution

DA on S . Let p be the probability PrDA
[x ∈ S0] of obtaining an element in S0 on

running A. Then there exists a quantum algorithm that makes in expectation at least

cp− 1
2 and at most Cp− 1

2 queries to the membership oracle M and samples an element

x0 in S0 with a distribution Dψ on S0 given by

PrDψ [x = x0] = PrDA
[x = x0 | x ∈ S0].

The statement regarding the conditional probability comes from the fact that the

final state of the algorithm is Gt |ψ0〉 and that the Grover operator G preserves the

relevant conditional probability as discussed before.

3 Randomized Search Heuristics

In this section, we look at elitist (1+1) Randomized Search Heuristics, RSHs for

short. The RSHs we study in this article are Random Local Search (RLS) and the

(1+1) Evolutionary Algorithm (EA). Let S be the search space and let f be a function

from S to R that we want to maximize. A RSH like Random Local Search or the

(1+1) EA can be formalized by defining what is known as its mutation operator.
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Definition 3.1 (Mutation Operator MUT) Let S be a finite search space. A mutation

operator MUT over S is a function from S to the space of probability distributions

on S .

The mutation operator MUT is essentially the search strategy of the corresponding

RSH. With a slight abuse of notation we write MUT(x) to denote a sample from S

according to the distribution MUT(x).

To any mutation operator MUT, we associate a RSH, which starts from an initial

solution x(0), and successively improves by mutating the current solution according

to the probability distribution given by MUT. If the new solution is better than the

current one, we discard the current solution and keep the new solution for further

improvement. On the other hand, if the new solution is worse we discard it and retain

the current solution. If the new solution is of the same fitness as the current solution,

we can either choose to retain the current solution or move to the newly generated

solution. We call the former strategy conservative and the latter progressive. Which

of these two variant is better depends very much on the problem at hand. We now

formalize these two algorithms.

Algorithm 3.2 (RSH) The elitist (1+1) randomized search heuristic (RSH) over the

finite search space S with mutation operator MUT that maximizes the objective func-

tion f : S → R is the following iterative algorithm.

1. Start with x(0) ∈ S uniformly at random.

2. For each t ∈ N, iteratively assume that x(t) has been chosen.

(a) Pick y(t) ∈ S according to the distribution MUT(x(t)).

(b) Set x(t+1) = y(t) if

• f (y(t)) > f (x(t)) for the conservative selection rule,

• f (y(t)) ≥ f (x(t)) for the progressive selection rule.

Otherwise, set x(t+1) = x(t).

One can define a RSH for minimizing f by changing Step 2 of Algorithm 3.2. For

the conservative selection strategy, we set x(t+1) = y(t) if f (y(t)) < f (x(t)). For the

progressive selection strategy, we set x(t+1) = y(t) if f (y(t)) ≤ f (x(t)).

Based on this general scheme of a RSH, we define Randomized Local Search and

the (1+1) Evolutionary Algorithm by their corresponding mutation operators.

Algorithm 3.3 (RLS and RLS∗) Randomized Local Search is the RSH on the search

space {0,1}n for which the mutation operator MUTRLS assigns to the search point x

the probability distribution on {0,1}n obtained by picking an index 1 ≤ i ≤ n uni-

formly at random and flipping the i-th bit of x. We denote the progressive variant of

Randomized Local Search by RLS and the conservative variant by RLS∗.

Algorithm 3.4 ((1+1) EA and (1+1) EA∗) The (1+1) Evolutionary Algorithm is

the RSH on the search space {0,1}n for which the mutation operator MUTEA as-

signs to the search point x the probability distribution on {0,1}n obtained by flipping

each bit of x independently with probability 1
n

. We denote the progressive variant

of the (1+1) Evolutionary Algorithm by (1+1) EA and the conservative variant by

(1+1) EA∗.
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4 Quantum Search Heuristics

We now study quantum versions of RSHs. As in the previous section, we have a

search space S and an objective function f : S → R that we want to maximize. Con-

sider a mutation operator MUT. Recall that, in the classical randomized search heuris-

tic, we successively improve the current solution by sampling a new solution accord-

ing to the mutation operator MUT and retaining the new solution if it is better than

the previous one. In the quantum version, all the mutation and selection operations

needed to find an improved solution are considered as a single search, and we use

quantum probability amplification to speed up this search: In step k, if x(k) denotes

the current solution, we generate the distribution MUT(x(k)), amplify the probability

of getting a better solution using quantum probability amplification and measure the

amplified distribution to obtain a new solution.

The quantum probability amplification requires a membership oracle. Given the

objective function f , we define, for each x ∈ S , membership oracles Mf,x (progres-

sive version) and M∗
f,x (conservative version) as follows.

Mf,x(y) =

{
1 if f (y) ≥ f (x) and y �= x,

0 otherwise,

and

M∗
f,x(y) =

{
1 if f (y) > f (x)

0 otherwise.

We now define (progressive and conservative) elitist (1+1) Quantum Search

Heuristics (QSHs) associated with a mutation operator MUT.

Algorithm 4.1 (QSH) The elitist (1+1) quantum search heuristic (QSH) over the

finite search space S with mutation operator MUT that maximizes the objective func-

tion f : S → R is the following iterative algorithm.

1. Start with x(0) ∈ S uniformly at random.

2. For each k ∈ N, iteratively assume that x(k) has been picked. Sample x(k+1) ac-

cording to sampling procedure for Theorem 2.2 with search space S , membership

oracle Mf,x(k) for progressive and M∗
f,x(k) for conservative selection, and sam-

pling procedure MUT(x(k)). In the case that the set of possible samples for x(k+1)

is empty (that is, the mutation operator cannot reach a better search point) then set

x(k+1) = x(k).

It seems that the condition y �= x in the oracle function Mf,x does not have any

influence on the algorithm. This is true in so far as the algorithm would not visit

different search points if this condition was dropped. However, from the runtime

analysis in Sect. 5 it will become clear that there would be a huge difference in the

runtime. In particular, the (1+1) EA has at least a constant positive probability to

sample the current search point x again. Therefore, the algorithm (1+1) QEA defined

below would have asymptotically exactly the same runtime as the classical (1+1) EA
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for every objective function f by Corollary 5.13, so there would be no gain in speed

at all. For the classical version, on the other hand, this changes the runtime of the

algorithm by at most a constant factor which does not influence our runtime analysis.

We conclude this section by defining the quantum versions of Randomized Lo-

cal Search and the (1+1) Evolutionary Algorithm. Note that these definitions arise

directly from the corresponding mutation operators.

Algorithm 4.2 (QLS and QLS∗) Quantum Local Search is the QSH on the search

space {0,1}n defined by the mutation operator MUTRLS of Randomized Local Search

(Algorithm 3.3). We denote the progressive variant of Quantum Local Search by QLS

and the conservative variant by QLS∗.

Algorithm 4.3 ((1+1) QEA and (1+1) QEA∗) The (1+1) Quantum Evolutionary Al-

gorithm is the QSH on the search space {0,1}n defined by the mutation operator

MUTEA of the (1+1) Evolutionary Algorithm (Algorithm 3.4). We denote the pro-

gressive variant of the (1+1) Quantum Evolutionary Algorithm by (1+1) QEA and

the conservative variant by (1+1) QEA∗.

5 Runtime Analysis of Quantum Search Heuristics

In this section, we introduce a selection of methods which allow us to link the run-

time of a QSH to the optimization behavior of the corresponding RSH. In the first

two sub-sections, we develop the basic terminology and formulas. Afterwards, we

present the main theorem (Theorem 5.11), which expresses the runtime of a QSH by

a purely non-quantum parameter of the corresponding RSH. Moreover, we give tools

to relate the runtimes of the RSH and the QSH if the probability of moving to a new

search point in the next step is bounded (Corollary 5.13), or if it is bounded in certain

regions of the search space, where the time spent in these regions is known for the

classical algorithm (Lemma 5.12). Finally, we derive an alternative characterization

of the runtime of a QSH by scaling the transition probabilities of the Markov chain

associated to the corresponding RSH.

For the results of this section we fix a positive integer n and consider the optimi-

sation of an objective function f on the domain S = {0,1}n of n-bit strings. In this

section, we fix a mutation operator MUT on S and a selection strategy (either pro-

gressive or conservative). By fixing these, recall that the RSH (Algorithm 3.2) and its

associated QSH (Algorithm 4.1) that optimises f is completely determined.

In the following, whenever a definition or statement applies to both heuristics,

we simply refer to both as the considered search heuristic. In particular, we use a

common mathematical notation for both heuristics and signify the distinction by the

subscripts “RSH” and “QSH” only if needed. For example, in Definition 5.1 we define

the “optimization time T of the considered search heuristic”. By this, we implicitly

define TRSH for the RSH and TQSH for the QSH.

Our aim is to compare the performance of different search heuristics. To this end,

we assume the query complexity model: The considered search heuristics are only

charged for the number of queries it makes to the objective function, all other oper-

ations are free of cost. Recall that in the case of the RSH, a query is an evaluation
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of the objective function f . For the QSH, a query is an evaluation of the associated

membership oracle. To ease the following calculations (and since we are only inter-

ested in asymptotic results anyhow), we do not charge the RSH or QSH for querying

the first search point x(0).

Since we use the query complexity model, we define the runtime of the search

heuristic as its expected optimization time.

Definition 5.1 (Optimization Time) The optimization time of the considered search

heuristic is the random variable T that denotes the number of queries performed by

the search heuristic until it has found the first (globally) optimal search point. The

runtime of the considered search heuristic is its expected optimization time.

In general, the runtime of the considered search heuristic is unbounded. For ex-

ample, if the objective function has a local optimum (JUMP, NEEDLE, TINYTRAP),

then the runtime of RLS is unbounded (with positive probability the local optimum

is the initial search point of RLS). We treat the special case of unbounded runtimes

separately in our analysis of specific objective functions in Sect. 6. In this section,

we provide tools to bound the runtime of a QSH on problems for which the corre-

sponding RSH has finite runtime. Therefore, for the rest of this section, we always

assume that the runtime of the considered RSH (on the considered objective function)

is finite.

For the RSH, we need exactly one query to move from the search point x(t) to

the search point x(t+1). Therefore, the optimization time TRSH is the first point in time

t ∈ N such that x(t) is optimal. Unfortunately, there is no analogous description for

QSHs, as the number of queries needed to move from a search point x(t) to its suc-

cessor x(t+1) is a random variable. In order to overcome this difficulty, we develop

the framework of progress times and trajectories, which turns out to be equally suited

for RSHs and QSHs.

5.1 Transition Probabilities and Progress Times

We now introduce the notions of transition probabilities, progress probabilities, and

progress times for the considered search heuristics. Let σ := (x(t))t∈N be the ran-

dom sequence of search points in S generated by the considered search heuristic. We

call σ a run of the search heuristic. It follows from the definitions of Algorithm 3.2

and Algorithm 4.1 that the sequence σ forms a Markov chain. Moreover, since x(0) is

chosen uniformly at random from the finite space S , the event “x(0) = x” has a posi-

tive probability for every x ∈ S . We may therefore define the transition probabilities

for the search heuristic as follows.

Definition 5.2 (Transition Probability p(x,y)) For two search points x and y in S ,

the transition probability from x to y of the considered search heuristic is

p(x,y) := Pr
[
x(1) = y

∣∣x(0) = x
]
.

Note that, since σ forms a Markov chain, we actually have

p(x,y) = Pr
[
x(t+1) = y

∣∣x(t) = x
]

for all t ∈ N for which the event “x(t) = x” has positive probability.
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In our analysis, the probability p(x,x) that the considered search heuristic stays at

the current search point and does not move to a better solution plays a major role. For

example, if p(x,x) = 1, then the search heuristic will never leave the search point x.

Following the terminology of Markov chains, we call such a search point absorbing

and all other search points non-absorbing.

As stated above, we only consider RSHs with finite runtimes in this section. Since

each search point appears with positive probability as the initial search point of the

RSH, this implies that in our case all absorbing search points must be optimal. How-

ever, the inverse is not necessarily true since the considered RSH might move between

different optima.

We will be particularly interested in the probability that the RSH does not remain

in the same search point. We call this probability the progress probability.

Definition 5.3 (Progress Probability pRSH(x)) For a search point x ∈ S , the progress

probability pRSH(x) at x of the considered RSH is given by

pRSH(x) := 1 − pRSH(x,x).

If x is the current search point of the RSH and x is non-absorbing, then the ex-

pected time the RSH remains in x is the reciprocal of the progress probability pRSH(x).

In other words, the progress probability determines the expected number of queries

the RSH needs to leave x. (In case x is absorbing, the future behavior of the RSH is

fixed since it will never leave x.)

We might as well define the quantity 1 − pQSH(x,x) as the progress probability

of the QSH. However, we deliberately refrain from doing so for the following rea-

sons. First, pQSH(x,x) takes only the two values zero and one, since the QSH always

progresses if possible. Second, even if pQSH(x,x) equals zero, unlike to the RSH the

expected numbers of queries needed for the QSH to progress is usually not one, since

the QSH applies in each step the sampling procedure from Theorem 2.2 which takes

several steps. Third, we will soon see that it is much more comfortable to link the

expected number of queries the QSH needs to leave the search point x to the progress

probability pRSH(x) of the RSH.

In the light of these facts, we focus on the number of queries needed for both

search heuristics, the RSH and the QSH, to progress from the current search point,

rather than on a definition of progress probabilities for the QSH. Since we only count

in the optimization time queries of the considered search heuristic which happen until

an optimum is found, we do not charge the search heuristics for queries if the current

search point is already optimal.

Definition 5.4 (Progress Time R(x) with Expectation r(x)) For all x ∈ S , the

progress time R(x) at x is the random variable defined as follows. If x is optimal, then

R(x) takes the value zero. Otherwise, R(x) denotes the number of queries needed by

the considered search heuristic starting at x to find a search point different from x.

We denote the expected progress time by r(x).

Let x ∈ S be a non-optimal search point. Then it is well-known that the expected

progress time rRSH(x) and the progress probability pRSH(x) of the considered RSH
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satisfy

rRSH(x) =
1

pRSH(x)
. (5.1)

Recall, that we only consider RSHs with finite runtime, that is, non-optimal implies

non-absorbing.

As discussed above, there is no such direct relation between the expected progress

time of the considered QSH and the probability for it to leave the current search point.

However, Theorem 2.2 allows us to express the expected progress time of the QSH

in terms of the expected progress time of the RSH.

Lemma 5.5 Let c and C be the two positive absolute constants from Theorem 2.2.

For every x ∈ S , the expected progress time rRSH(x) of the considered RSH and the

expected progress time rQSH(x) of the associated QSH satisfy

c · rRSH(x)
1
2 ≤ rQSH(x) ≤ C · rRSH(x)

1
2 . (5.2)

Proof The relations (5.2) follow directly from the definition of Algorithm 4.1 and the

first part of Theorem 2.2 if we set p := pRSH(x) = rRSH(x)−1. �

Apart from relating the expected progress times of the RSH and the QSH, Theo-

rem 2.2 also allows us to relate the transition probabilities of the two search heuristics.

Lemma 5.6 Let x ∈ S be non-optimal and let y ∈ S with x �= y. Then the transi-

tion probability pRSH(x,y) of the considered RSH, the progress probability pRSH(x) of

the considered RSH and the transition probability pQSH(x,y) of the associated QSH

satisfy

pQSH(x,y) =
pRSH(x,y)

pRSH(x)
. (5.3)

Proof Recall, that we only consider RSHs with finite runtime. That is, since x is non-

optimal, it is also non-absorbing. Thus, we have pRSH(x) > 0 and the above fraction

is well defined.

Equation (5.3) follows directly from Algorithm 4.1 and from Theorem 2.2 if we

set S0 := {y ∈ S : y �= x}, and let the distribution DA be given by the probabili-

ties pRSH(x,y) for all y ∈ S . Then, we have by the second part of Theorem 2.2 that

PrQSH

[
x(1) = y

∣∣x(0) = x
]
= PrDA

[
x(1) = y

∣∣x(0) = x ∧ x(1) �= x
]
.

Thus, by the law of conditional probability, we have

pQSH(x,y) =
PrDA

[x(1) = y
∣∣x(0) = x]

PrDA
[x(1) �= x

∣∣x(0) = x]
=

pRSH(x,y)

pRSH(x)

which shows (5.3). �
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The previous two lemmas, Lemma 5.5 and Lemma 5.6, capture the consequence

of Theorem 2.2 to the setting of QSHs and serve as the (only) link between the run-

time analysis of QSHs and the results and observations in Sect. 2. Together, these

two lemmas formulate the central observations that allow us to analyze the runtime

behavior of the QSH. Lemma 5.5 tells us that using the considered QSH gives us a

quadratic speedup over the associated RSH in the expected number of queries nec-

essary to move from a non-optimal search point to the next one. Lemma 5.6 tells

us that, conditioned on the event that both search heuristics indeed move to a new

search point (which happens with certainty for the QSH), the distributions of these

new (random) search points are the same for both search heuristics.

In the next section, we see how these observations extend from a single step of the

considered search heuristics to the whole run.

5.2 The Trajectory of a Run

The run of a QSH never reproduces the same search point in consecutive steps except

for the last search point. For RSHs, this does not need to be the case. At the t-th

sampling step a search heuristic might sample a point which is worse than the current

solution in which case it discards it. In this case, both x(t) and x(t+1) are the same

point in the search space. Thus, in a run σRSH of the RSH, many of the consecutive

sample points may be repetitions. To overcome this difference and to compare the

optimization behavior of the considered QSH with that of the associated RSH, we

introduce the notion of the trajectory of a run of the RSH. It is obtained from the

sequence of search points generated by the RSH if we keep only one element in each

consecutive repetition of the same search point, with the potential exception of the

last point which then repeats itself forever.

Definition 5.7 (Trajectory τ of a Run σ ) Let σRSH := (x(t))t∈N be a run of the consid-

ered RSH. Then the trajectory of σRSH, denoted by τRSH, is the sub-sequence (x(tk))k∈N

of σRSH such that t0 = 0 and, for all k ∈ N,

tk+1 := min
{
t ∈ N : t > tk ∧ x(t) �= x(tk)

}

if this minimum exists, and

tk+1 := tk + 1

otherwise.

According to this definition, if τRSH = (y(k))k∈N is the trajectory of a run σRSH of the

RSH, we have either

x(0), . . . ,x(t1−1)

︸ ︷︷ ︸
=y(0)

,x(t1), . . . ,x(t2−1)

︸ ︷︷ ︸
=y(1)

,x(t2), . . . ,x(t3−1)

︸ ︷︷ ︸
=y(2)

, . . .

or

x(0), . . . ,x(t1−1)

︸ ︷︷ ︸
=y(0)

,x(t1), . . . ,x(t2−1)

︸ ︷︷ ︸
=y(1)

, . . . , x(tℓ)︸︷︷︸
=y(ℓ)

, x(tℓ)︸︷︷︸
=y(ℓ+1)

, x(tℓ)︸︷︷︸
=y(ℓ+2)

, . . .



Algorithmica (2014) 68:152–189 169

in the special case that x(tk) = x(tk+1) for all k ≥ ℓ. Note that a run σRSH is a random

sequence of search points and so is its trajectory τRSH.

As mentioned above, a run σQSH of a QSH never reproduces the same search point

in consecutive steps except for the last search point. Therefore, we refrain from defin-

ing the trajectory of σQSH as we did for RSHs in Definition 5.7, since this trajectory

would be equal to σQSH.

Now, the crucial observation is that for a fixed sequence σ , the probability that a

run of the associated QSH coincides with σ is exactly the same as the probability that

a run of the considered RSH has trajectory σ . In other words, the runs of the QSH and

the trajectories of the runs of the RSH share the same distribution.3 This is a direct

consequence Lemma 5.6.

Lemma 5.8 Let σQSH := (x
(k)
QSH)k∈N be a run of the considered QSH and let τRSH :=

(x
(tk)
RSH )k∈N be the trajectory of a run σRSH := (x

(t)
RSH)t∈N of the associated RSH. Then,

Pr
[
∀k ∈ {0, . . . , ℓ} : x(k)

QSH
= y(k)

]
= Pr

[
∀k ∈ {1, . . . , ℓ} : x(tk)

RSH
= y(k)

]

holds for every ℓ ∈ N ∪ {∞} and for every infinite sequence σ := (y(k))t∈N of search

points in S .

Proof On the one hand, for PQSH := Pr[∀k ∈ {0, . . . , ℓ} : x
(k)
QSH = y(k)], we have

PQSH = Pr
[
x(0)

QSH
= y(0)

]
·

ℓ∏

k=1

Pr
[
x(k)

QSH
= y(k)

∣∣x(k−1)
QSH

= y(k−1)
]

and on the other hand, for PRSH := Pr[∀k ∈ {0, . . . , ℓ} : x
(tk)
RSH = y(k)], we have

PRSH = Pr
[
x(t0)

RSH
= y(0)

]
·

ℓ∏

k=1

Pr
[
x(tk)

RSH
= y(k)

∣∣x
(tk−1)
RSH = y(k−1)

]
.

Thus, in order to show Lemma 5.8, it suffices to show that

Pr
[
x(t0)

RSH
= x

]
= Pr

[
x(0)

QSH
= x

]
(5.4)

holds for all k ∈ N and x ∈ S and that

Pr
[
x
(tk+1)
RSH = y

∣∣x(tk)
RSH

= x
]
= Pr

[
x(k+1)

QSH
= y

∣∣x(k)
QSH

= x
]

(5.5)

holds for all x,y ∈ S with x �= y. In this, we assume all conditional probabilities are

defined and non-zero, since otherwise the result holds trivially with both probabilities

equal to zero.

3Note that the set of infinite sequences of search points in not countable. Thus, technically, we consider

the probability space over the sigma-algebra generated by all sets of sequences starting with the same first

elements. Lemma 5.8 reflects this notion. For reasons of simplicity, we assume this argument implicitly

for the remainder of this section.
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Equation (5.4) holds since t0 = 0, and both the considered RSH and the associated

QSH generate the initial search point uniformly at random.

To show (5.5), we recall that by the definition of the tk’s, we have that x
(tk+1−1)
RSH =

x
(tk)
RSH and that x

(tk+1)
RSH �= x

(tk)
RSH . Since σRSH forms a Markov chain, we have for all x �= y

that

Pr
[
x
(tk+1)
RSH = y

∣∣x(tk)
RSH

= x
]
= Pr

[
x(1)

RSH
= y

∣∣x(1)
RSH

�= x ∧ x(0)
RSH

= x
]
.

Applying the laws of conditional probability, we get

Pr
[
x(1)

RSH
= y

∣∣x(1)
RSH

�= x ∧ x(0)
RSH

= x
]
=

Pr[x(1)
RSH = y

∣∣x
(0)
RSH = x]

Pr[x(1)
RSH �= x

∣∣x
(0)
RSH = x]

.

Therefore,

Pr
[
x
(tk+1)
RSH = y

∣∣x(tk)
RSH

= x
]
=

pRSH(x,y)

pRSH(x)
.

Finally, since σQSH also forms a Markov chain, we have

Pr
[
x(k+1)

QSH
= y

∣∣x(k)
QSH

= x
]
= Pr

[
x(1)

QSH
= y

∣∣x(0)
QSH

= x
]
= pQSH(x,y).

Then (5.5) follows from Lemma 5.6. �

A central notion in the main lemma of this section (Lemma 5.10) is the notion of

frequency of a search point. Lemma 5.8 assures that the following definition of the

expected frequency is well-defined.

Definition 5.9 (Frequency M(x) with Expectation m(x)) Let the frequency MQSH(x)

and MRSH(x) of a non-optimal search point x be the random variable that denotes the

number of occurrences of x in the run σQSH of the considered QSH and in the trajec-

tory τRSH of the run of associated RSH, respectively. If x is optimal, we set MRSH(x)

and MQSH(x) to be the random variable that is 0 with probability 1. Then, for ev-

ery x ∈ S , we call the value

m(x) := E
[
MRSH(x)

]
= E

[
MQSH(x)

]

the expected frequency of x.

Note that for the conservative selection rule, the fitness is strictly monotonically

increasing along the trajectory. Therefore, the random variable M(x) takes only val-

ues in {0,1}, and its expectation m(x) (for non-optimal x) is just the probability that

x occurs in the trajectory. We now give the main lemma of this section which con-

nects the runtime of the considered search heuristic to its expected frequencies and

expected progress times.

Lemma 5.10 Let r(x) be the expected progress time of the considered search heuris-

tic and let its optimization time T be finite in expectation. For a search point x ∈ S ,
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let m(x) be the expected frequency of x as defined in Definition 5.9. Then, we have

E[T ] =
∑

x∈S

m(x) · r(x).

Note, that in this lemma the quantity r(x) depends on whether we consider the

classical or the quantum search heuristic but the quantity m(x) does not.

Proof of Lemma 5.10 Let σ = (x(t))t∈N be a run of the considered search heuristic

and let (y(k))k∈N := (x(tk))k∈N be its trajectory in the case where we consider the RSH

and (y(k))k∈N := σ in the case where we consider the QSH.

For a non-optimal search point x ∈ S and k ∈ N, let Mk(x) be the random indi-

cator variable that takes the value 1 if y(k) = x, and the value 0 otherwise. More-

over, let Rk := R(y(k)) be the random variable that denotes the number of queries

the considered search heuristic needs to move from y(k) to y(k+1). We set Rk(x) := 0

and Mk(x) := 0 if x is optimal.

Then we have

T =
∑

k∈N

Rk

and

M(x) =
∑

k∈N

Mk(x).

Let k ∈ N. We want to determine E[Rk]. By the law of total expectation, we have

that

E[Rk] =
∑

x∈S

r(x)Pr
[
y(k) = x

]
,

since, for both the RSH and the QSH, r(x) is the expected number of queries needed

to leave the search point x. Next, we have

Pr
[
y(k) = x

]
= E

[
Mk(x)

]
,

and therefore

E[Rk] =
∑

x∈S

r(x)E
[
Mk(x)

]
.

Finally, we can determine E[T ]. By the linearity of expectation, we get

E[T ] =
∑

k∈N

E[Rk] =
∑

k∈N

∑

x∈S

r(x)E
[
Mk(x)

]
=

∑

x∈S

r(x)E
[
M(x)

]
,

which concludes the proof of the statement. Note that in the last step we could reorder

the sum since we assumed that T has finite expectation. �
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5.3 Approximate Runtimes

In this section, we introduce the tools we will apply later to approximate the run-

time of the considered QSH by studying the optimization behavior of the associated

RSH. We start with our central theorem, which allows us to bound the runtime of

the considered QSH in terms of the progress times and transition probabilities of the

associated RSH.

Theorem 5.11 Let c and C be the two positive absolute constants from Theorem 2.2.

For all search points x ∈ S , let rRSH(x) be the expected progress time of the considered

RSH (see Definition 5.4), and let m(x) be the expected frequency of x in the trajectory

of its run (see Definition 5.9).

The optimization time of the considered RSH is finite if and only if the optimization

time TQSH of the associated QSH is finite. In this case, TQSH satisfies

c
∑

x∈S

m(x) ·
(
rRSH(x)

) 1
2 ≤ E[TQSH] ≤ C

∑

x∈S

m(x) ·
(
rRSH(x)

) 1
2 .

Proof The RSH and QSH are equally likely to take any fixed trajectory through the

search space, only with different speed. Recall from Lemma 5.10 that

E[T ] =
∑

x∈S

m(x) · r(x) (5.6)

and that the quantity r(x) depends on whether we consider the classical or the quan-

tum search heuristic but the quantity m(x) does not.

Since the search space is finite, the expected progress times rRSH(x) and rQSH(x)

differ at most by a constant factor depending on the search space S , the mutation

operator MUT, and the objective function f . Thus if (5.6) yields a finite value for the

RSH, then it also does so for the QSH, and vice versa.

So the RSH has finite expected optimization time if and only if the QSH has.

Hence, Theorem 5.11 is a direct consequence of Lemmas 5.10 and 5.5. �

Next, we prove a lemma which is tailored for analyzing the problems in Sect. 6. It

is useful if we can partition the search space into regions where the progress probabil-

ity of the RSH behaves similarly. This turns out to be very convenient for the analysis

of a QSH when the associated RSH is already understood. A good example for the

situation is the fitness level based analysis of the function ONEMAX in Sect. 6.1.

(However, in general the regions do not need to correspond to fitness levels.) In this

case, the runtimes of QSH and RSH are strongly related.

Lemma 5.12 Let c and C be the two positive absolute constants from Theorem 2.2.

Let ℓ ∈ N and let S be partitioned into ℓ parts S1, . . . , Sℓ.

Suppose, for every j ∈ {1, . . . , ℓ}, there exist two real values pj and Pj with

0 < pj ≤ Pj ≤ 1 such that for all non-optimal search points x ∈ Sj , the progress

probability pRSH(x) of the considered RSH satisfies the inequalities

pj ≤ pRSH(x) ≤ Pj .
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For j ∈ {1, . . . , ℓ}, let Tj denote the number of queries spend by the RSH on leaving

search points in Sj . Then the optimization time TQSH of the associated QSH satisfies

c

ℓ∑

j=1

p
1
2

j E[Tj ] ≤ E[TQSH] ≤ C

ℓ∑

j=1

P
1
2

j E[Tj ].

Before we proof this lemma, we restate it for the case that we only consider one

region. This proves useful for bounding the runtime of the considered QSH in case

that there is an easy way to bound the progress probability as well as the runtime of

the associated classical variant.

Corollary 5.13 Let c and C be the two positive absolute constants from Theorem 2.2.

Suppose there exist two values pmin and pmax in R with 0 < pmin ≤ pmax ≤ 1 such

that, for all non-optimal x ∈ S , the progress probability pRSH(x) of the considered

RSH satisfies the inequality

pmin ≤ pRSH(x) ≤ pmax.

Then the optimization time TRSH of the considered RSH and the optimization time TQSH

of the associated QSH satisfy

cp
1
2

min E[TRSH] ≤ E[TQSH] ≤ Cp
1
2
max E[TRSH].

Note that Corollary 5.13 implies that E[TQSH] ∈ O(E[TRSH]) since we may always

choose pmax = 1. We now turn to the proof of Lemma 5.12.

Proof of Lemma 5.12 For the beginning, let j ∈ {1, . . . , ℓ} and x ∈ S be fixed. Start-

ing with Lemma 5.5, we have

c
(
rRSH(x)

) 1
2 ≤ rQSH(x) ≤ C

(
rRSH(x)

) 1
2

Thus, by (5.1), we get

c
(
pRSH(x)

)− 1
2 ≤ rQSH(x) ≤ C

(
pRSH(x)

)− 1
2 .

We multiply the three parts of the two inequalities by m(x). This gives us

cm(x)
(
pRSH(x)

)− 1
2 ≤ m(x)rQSH(x) ≤ Cm(x)

(
pRSH(x)

)− 1
2 .

Since we assumed that pj ≤ pRSH(x) ≤ Pj for all non-optimal points x ∈ Sj (and

since m(x) = 0 for all optimal x), this implies

cp
1
2

j m(x)
(
pRSH(x)

)−1 ≤ m(x)rQSH(x) ≤ CP
1
2

j m(x)
(
pRSH(x)

)−1
.

We substitute (5.1) again and obtain

cp
1
2

j m(x)rRSH(x) ≤ m(x)rQSH(x) ≤ CP
1
2

j m(x)rRSH(x).
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Finally, we sum over all x ∈ Sj and all j ∈ {1, . . . , ℓ} which results in

c

ℓ∑

j=1

p
1
2

j

∑

x∈Sj

m(x)rRSH(x) ≤
∑

x∈S

m(x)rQSH(x) ≤ C

ℓ∑

j=1

P
1
2

j

∑

x∈Sj

m(x)rRSH(x).

Then Lemma 5.12 follows directly from Lemma 5.10. �

5.4 The Adapted Markov Chain

Recall that the considered RSH can be seen as a Markov chain that performs one

query each step and has transition probabilities pRSH(x,y) as defined before. The sit-

uation for the associated QSH is slightly more complicated. At each sampling step,

the QSH has probability 1 of sampling a new solution (unless it has found an ab-

sorbing optimum) because the probability has been quantum mechanically amplified.

However, if the current solution is x then to make the one sampling step costs the

algorithm in expectation a total of rQSH(x) ∈ Θ(pRSH(x)−
1
2 ) queries where pRSH(x) is

the progress probability of the RSH. Nevertheless, we can still model the QSH as a

Markov chain which charges in expectation one query per step by scaling the tran-

sition probabilities of the corresponding RSH appropriately. It turns out that, with

respect to the runtime, the QSH behaves asymptotically as if it was a RSH with these

adapted transition probabilities.

Theorem 5.14 Let TQSH be the optimization time of the considered QSH. For the

corresponding RSH, let pRSH(x,y) be the transition probability between the points x

and y and let pRSH(x) be the progress probability at the point x. Then

E[TQSH] ∈ Θ
(
E[TR̃SH]

)
,

where TR̃SH is the optimization time of the (adapted) RSH corresponding to the

adapted transition probabilities

pR̃SH(x,y) =

⎧
⎪⎨
⎪⎩

1 − pRSH(x)
1
2 if x = y,

pRSH(x,y)/pRSH(x)
1
2 if x �= y and pRSH(x) > 0,

0 otherwise.

Proof First note that pR̃SH(x,y) is well-defined, since, for pRSH(x) > 0, we have

∑

y∈S

pR̃SH(x,y) = 1 − pRSH(x)
1
2 +

∑
y∈S\{x} pRSH(x,y)

pRSH(x)
1
2

= 1.

Next, let pR̃SH(x) = 1−pR̃SH(x,x) be the progress probability at x of the adapted RSH.

Then we have, for every non-absorbing point, that

rRSH(x)
1
2 = pRSH(x)−

1
2 = pR̃SH(x)−1 = rR̃SH(x).
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For every non-absorbing points x and every other point y we have

pR̃SH(x,y)

pR̃SH(x)
=

pRSH(x,y)

pRSH(x)
,

that is, the probabilities to move from x to y conditioned on the event that the process

moves at all coincide for the adapted RSH and the RSH corresponding to the consid-

ered QSH. Thus, these probabilities also coincide for the adapted RSH and the QSH

itself. Therefore, the run of the considered QSH, the trajectory of the corresponding

RSH, and the trajectory of the adapted RSH all have the same distribution and

mQSH(x) = mRSH(x) = mR̃SH(x).

Together, this implies that

∑

x∈S

mQSH(x) · rRSH(x)
1
2 =

∑

x∈S

mR̃SH(x) · rR̃SH(x)

and E[TQSH] ∈ Θ(E[TR̃SH]) follows from Lemma 5.10 and Theorem 5.11. �

6 Runtime Analysis of Basic Fitness Functions

In this section we present asymptotically tight runtime bounds for the progressive and

conservative variants of QLS and the (1+1) QEA on the pseudo-Boolean optimiza-

tion problems ONEMAX, LEADINGONES, DISCREPANCY, NEEDLE, and JUMPm

and compare them to their classical counterparts. The results of this section are sum-

marized in Table 1 in the introduction. Throughout this section, let n ∈ N be the length

of the bit-strings that are the search points. Since we are only interested in asymptotic

results we may assume that n is sufficiently large. In particular, in order to make the

following proofs more readable, we suppress rounding signs. For example, without

further notice we assume that n/2 is an integer.

6.1 OneMax

The pseudo-Boolean function ONEMAX returns the Hamming weight | · |1 of a bit-

string x ∈ {0,1}n, that is, it counts the number of one-bits in x,

ONEMAX(x) := |x|1 =
n∑

i=1

xi . (6.1)

We start with the well-known result on the runtimes of the considered classical

search heuristics on the objective function ONEMAX (compare [11]).

Theorem 6.1 The runtimes of the (1+1) EA, RLS, the (1+1) EA∗, and RLS∗ for

minimizing ONEMAX are in Θ(n log n).
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We show that the expected query time in the quantum version decreases only by a

logarithmic factor.

Theorem 6.2 The runtimes of the (1+1) QEA, QLS, the (1+1) QEA∗, and QLS∗ for

minimizing ONEMAX are in Θ(n).

In this subsection, our particular focus is to demonstrate how the proof of The-

orem 6.2 can be derived from the ingredients of the proof of Theorem 6.1. To this

end, we retrace the steps necessary to prove Theorem 6.1. The core of this proof is a

bound on the progress probabilities of the considered RSHs.

Proposition 6.3 Let k ∈ {1, . . . , n} and let x ∈ {0,1}n be a search point of Hamming

weight k. Then for each, the (1+1) EA, RLS, the (1+1) EA∗, and RLS∗, the progress

probability is in Θ(k/n) and consequently the expected numbers of queries needed to

find a search point of Hamming weight at most k −1 when starting in x is in Θ(n/k).

We omit the proof to this proposition. For RLS and RLS∗, the proof is straight-

forward. For the (1+1) EA and the (1+1) EA∗, the proof is well-known and can be

easily deduced from the results and proofs in [11].

The previous proposition already allows us to derive an upper bound on the run-

times of the four classical search heuristics. The search space may be subdivided into

regions of equal fitness, which we call fitness levels. In the worst case, a run visits

search points for all fitness levels, giving us the upper runtime bound of O(n logn)

in Theorem 6.1.

In order to use the same approach to show the lower bound in Theorem 6.1, we

have to be slightly more careful, since the search heuristic may skip some fitness

values. However, the following statement ascertains that with sufficiently large prob-

ability, still linearly many fitness levels are visited.

Proposition 6.4 Consider a run of the (1+1) EA, RLS, the (1+1) EA∗, or RLS∗ that

finds the optimum. With probability at least 1/6, this run visits at least n/24 many

non-optimal search points with distinct Hamming-weights.

Proof First, we show that with probability at least 1/3, the Hamming weight of the

initial search point x(0) (which is uniformly distributed for all four search heuris-

tics) is at least n/4. This is a direct consequence of the Markov Inequality (see, e.g.,

Chap. 1 in [4]). The random variable X := n − |x(0)|1 has expectation E[X] = n/2

(each bit is a one-bit with probability 1/2). Thus,

Pr

[
|x(0)|1 <

n

4

]
= Pr

[
X >

3

2
E[X]

]
≤

2

3
.

Next, suppose that the initial search point has indeed Hamming weight at least n/4.

For RLS and RLS∗, this directly implies Proposition 6.4, since both search heuristics

then necessarily need to visit search points of Hamming weights 1, . . . , n/4 in order

to reach the optimum. For the (1+1) EA and the (1+1) EA∗, this does not need to

be true. However, we may bound the expected number of one-bits flipped each time
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the algorithms improve their current search point. Because of the symmetry of the

ONEMAX function, the same analysis applies to both search heuristics.

Let x ∈ {0,1}n be the current search point of Hamming weight k ∈ {1, . . . , n} of

the (1+1) EA or the (1+1) EA∗ and let y be the next random search point selected

by the respective search heuristic. We are interested in the progress  := |x|1 − |y|1,

in particular we want to give a constant upper bound on the expectation of  condi-

tioned on the event that  ≥ 1. By the law of total expectation, we have that

E[] = E[
∣∣ ≥ 1]Pr[ ≥ 1]

since  ≥ 0 (worse search points are never selected). We already know from Propo-

sition 6.3 that

Pr[ ≥ 1] ≥
k

en
,

both for the (1+1) EA and the (1+1) EA∗. Moreover, we get an upper bound of k/n

on E[] if we condition on the event that none of the zero-bits in x flips. Thus,

E[
∣∣ ≥ 1] ≤ e ≤ 3.

We conclude the proof of Proposition 6.4 by applying the same argument using

the Markov inequality as above. We have just seen that, in expectation, the progress

made by the search heuristic in the first n/24 improvements is at most n/8. Thus,

the probability that it exceed n/4, the Hamming weight of the first search point, is

at most 1/2. In other words, with probability at least 1/6 = (1/3) · (1/2), the run

visits at least n/24 search points of distinct Hamming weight before reaching the

optimum. �

Proposition 6.4, together with Proposition 6.3, now allows us to prove Theo-

rem 6.2 based on the following idea. Suppose the run of the considered search heuris-

tic indeed visits at least n/24 fitness levels before it finds the optimum. Then we get

a lower bound on the runtime if we sum over the lower bounds on the times to leave

these fitness levels given in Proposition 6.4. In a worst case scenario, the fitness lev-

els visited before finding the optimum are the levels with values (23/24)n, . . . , n.

However, even then the runtime is at least Ω(n) as stated in Theorem 6.2.

Proof of Theorem 6.2 The following proof holds for all four QSHs considered in

Theorem 6.2. Thus, we consider one of these QSHs and its corresponding RSH.

Let TQSH be the optimization time of the considered QSH. For all k ∈ {1, . . . , n},
let Sk be the set of all search points in {0,1}n of Hamming weight k and let Tk be is

the number of queries the RSH spends on leaving the search points in Sk .

We start with the upper bound on E[TQSH]. By Lemma 5.12 and Proposition 6.3 we

have that

E[TQSH] ∈ O

(
n∑

k=1

(
k

n

) 1
2

E[Tk]

)
.
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Moreover, Proposition 6.3 gives us that E[Tk] ∈ O(n/k), where we pessimistically

assume that the RSH visits all fitness levels. Together, this yields

E[TQSH] ∈ O

(
n

1
2

n∑

k=1

1

k
1
2

)
.

Thus, since

n∑

k=1

k− 1
2 ≤ 1 +

∫ n

1

x− 1
2 dx = 2n1/2 − 1

we get E[TQSH] ∈ O(n).

We now turn to the lower bound on E[TQSH]. Here, we have to be more careful since

the typical run does not visit all fitness levels. Let I ⊆ {1, . . . , n} be the random set of

Hamming weights of non-optimal search points visited by the RSH. Then we apply

Proposition 6.4 and condition on the event that the run of the RSH visits at least n/24

fitness levels, that is,

E[TQSH] ≥
E[TQSH

∣∣ |I | ≥ n/24]
6

We again invoke Lemma 5.12 and Proposition 6.3 and get

E[TQSH] ∈ Ω

(
n∑

k=1

(
k

n

) 1
2

E[Tk

∣∣ |I | ≥ n/24]

)
.

Then, Proposition 6.3 gives us that

E[TQSH] ∈ Ω

(
n1/2 E

[∑

k∈I

1

k
1
2

∣∣ |I | ≥ n/24

])
.

Note that the random sum
∑

k∈I k− 1
2 strongly depends on the random choice of I .

However, for all |I | ≥ n/24, this sum is bounded from below by

n∑

k=( 23
24 )n

1

k
1
2

≥
∫ n

( 23
24 )n

x− 1
2 dx = 2

(
1 − (23/24)

1
2
)
n

1
2 ∈ Ω

(
n

1
2
)
.

Therefore, we have E[TQSH] ∈ Ω(n) which concludes the proof of Theorem 6.1. �

6.2 LeadingOnes

The pseudo-Boolean function LEADINGONES counts the number of one-bits preced-

ing the first zero-bit in a bit-string x ∈ {0,1}n, that is, let

LEADINGONES(x) :=
n∑

k=1

k∏

i=1

xi . (6.2)

The following theorem can be deduced from [11].
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Theorem 6.5 The runtimes of the (1+1) EA, RLS, the (1+1) EA∗, and RLS∗ maxi-

mizing LEADINGONES are in Θ(n2).

For the progressive selection rule, quantum acceleration does not yield a substan-

tial speedup. In contrast, for the conservative selection rule the runtime decreases

considerably.

Theorem 6.6 The runtimes of the (1+1) QEA∗ and of QLS∗ maximizing LEADIN-

GONES are in Θ(n3/2). The runtimes of the (1+1) QEA or QLS maximizing LEADIN-

GONES are in Θ(n2).

Proof We start with the conservative selection strategy. Let us first consider QLS∗.

For any non-optimal search point x, the mutation step yields a better search point

if and only if the first zero-bit is flipped. So the progress probability of RLS∗ is

pRSH(x) = 1/n for all non-optimal search points. For the (1+1) QEA∗ let x be any

non-optimal search point. Assume that xi is the first zero-bit in x. Then the mutation

step yields a better search point if and only if xi is flipped, and all preceding bits are

unchanged. Therefore, the progress probability is

pRSH(x) =
1

n

(
1 −

1

n

)i−1

.

Thus, since (1 − 1/n)n−1 ≥ e−1 and 0 ≤ i ≤ n, we may bound the progress probabil-

ity by 1/(en) ≤ pRSH(x) ≤ 1/n.

So for both QLS∗ and the (1+1) QEA∗, we have shown that

1

en
≤ pRSH(x) ≤

1

n
.

Therefore, by Corollary 5.13,

E[TQSH] ∈ Θ
(
n− 1

2 E[TRSH]
)
= Θ

(
n3/2

)
.

Now consider the progressive selection strategy. The upper bound is trivial,

Lemma 5.12 implies that QSH is always asymptotically at least as fast in expecta-

tion as the corresponding RSH.

For the lower bound, we partition the search space into two sets

S1 :=
{
x | LEADINGONES(x) < n/2

}
,

S2 :=
{
x | LEADINGONES(x) ≥ n/2

}
,

and give a lower bound for the time spent in S1.

We want to apply Lemma 5.12. For this, we have to give a lower bound on the

progress probability pRSH(x) of RLS and the (1+1) EA for all x ∈ S1. Thus, let x be

any search point in S1. First consider RLS. The progressive selection strategy will

accept any search point of equal fitness. Thus if the mutation operator flips any bit in

the second half of x, then the offspring is accepted. Therefore,

pRSH(x) ≥ 1/2.
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Now we turn to the (1+1) EA. If the mutation operator flips exactly one bit in the

second half, and no bit in the first half, then the offspring will be accepted since it has

at least the same fitness and differs from x (which is required in the quantum case).

There are many other ways to produce offsprings that are accepted, but this particular

way will suffice. Hence, the progress probability is at least

pRSH(x) ≥
n

2
·

1

n
·
(

1 −
1

n

)n−1

≥
1

2e
.

In both cases, for the QSH and the (1+1) QEA, we have pRSH(x) ≥ 1/(2e). Therefore,

by Corollary 5.13, we get

E[TQLS] ∈ Ω
(
E
[
T (1)

RLS

])

and

E[TQEA] ∈ Ω
(
E
[
T (1)

EA

])
,

where E[T (1)
RLS ] and E[T (1)

EA ] are the expected times needed by RLS and the (1+1) EA to

leave S1. These expected times are at least of the same order as the expected times to

solve the LEADINGONES problem on n/2 bits. (Just consider the first n/2 bits of x).

Thus E[T (1)
RLS ] ∈ Ω(n2) and E[T (1)

EA ] ∈ Ω(n2). (Another way to see this is to recapture

the proof of Theorem 6.5). Therefore, Theorem 6.6 follows. �

6.3 Discrepancy

The pseudo-Boolean function DISCREPANCY denotes half the difference in the num-

ber of one-bits and zero-bits in a bit-string x ∈ {0,1}n of even length n, that is, let

DISCREPANCY(x) :=
∣∣∣∣
n

2
− ONEMAX(x)

∣∣∣∣. (6.3)

This function is not a standard test function for evolutionary algorithms, because

it is too easy to optimize. However, it demonstrates that for easy problems (with high

progress probabilities) a QSH is not necessarily strictly faster than the corresponding

RSH.

Lemma 6.7 Let n ∈ N be even and let x ∈ {0,1}n be chosen uniformly at random.

Then,

E
[
DISCREPANCY(x)

]
∈ Θ

(
n

1
2
)
.

Proof Let n = 2k. Then, the lemma follows from

E
[
DISCREPANCY(x)

]
= 2

k∑

i=0

(k − i)
(

2k
i

)
2−2k

=
k∑

i=0

(
(2k − i)

(
2k
i

)
− i

(
2k
i

))
2−2k
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=
k∑

i=0

2k
((

2k−1
i

)
−

(
2k−1
i−1

))
2−2k

= 2k
(

2k−1
k

)
2−2k

= k
(

2k
k

)
2−2k,

and from
(

2k
k

)
∼ 22k/

√
π k due to Stirling’s formula. �

For the function DISCREPANCY, we show that the runtimes of the RSHs and QSHs

we consider are asymptotically equal.

Theorem 6.8 For each of the algorithms (1+1) EA, RLS, (1+1) QEA, and QLS,

both for the conservative and for the progressive selection strategy, the runtime for

minimizing DISCREPANCY is in Θ(
√

n).

Proof We first show that throughout the runs of the classical algorithms (RLS, the

(1+1) EA, RLS∗, and the (1+1) EA∗) the progress probabilities are bounded below

by positive constants. By Corollary 5.13, this implies that the runtimes of the QSHs

and the corresponding RSHs are of the same order.

For every search point x with DISCREPANCY(x) > 0 we have at least n/2 zero-bits

or n/2 one-bits. In both cases, flipping exactly one of these bits and leaving all other

bits untouched decreases the discrepancy by one. Thus, the progress probability is at

least (n/2) · (1/n) ≥ 1/2 for RLS and at least (n/2) · (1/n) · (1 − 1/n)n−1 ≥ 1/(2e)

for the (1+1) EA, independent of the selection strategy we use.

It remains to establish the runtimes of the classical algorithms. Since the objective

function DISCREPANCY behaves symmetrically for all search points of equal value,

the runtimes of the classical algorithms coincide for the progressive and the conser-

vative selection strategy. We restrict ourselves to the conservative versions and show

that both have runtimes in Θ(n
1
2 ).

To this end, consider a search point x with DISCREPANCY(x) > 0, and let y be

the search point after one mutation and selection step. Then for both RLS∗ and the

(1+1) EA∗, the expected progress is bounded from above and below by two positive

constants, that is

1

2e
≤ E

[
DISCREPANCY(x) − DISCREPANCY(y)

]
≤ 1. (6.4)

The lower bound holds since both strategies make a progress of one with probability

at least 1/2e as we have already seen above. The upper bound holds since the progress

is bounded from above by the expected number of flipped bits which equals one for

both algorithms.

By classical drift analysis (see [17]), the inequalities in (6.4) imply that the run-

times are of the same order as the objective value of the initial search point, which

we have shown in Lemma 6.7 to be in Θ(n
1
2 ). �
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6.4 Needle

The pseudo-Boolean function NEEDLE has a unique optimum, and is constant else-

where. For x ∈ {0,1}n,

NEEDLE(x) :=

{
1, if x = (0, . . . ,0)

0, else.
(6.5)

Theorem 6.9

(a) The runtime of the (1+1) EA maximizing NEEDLE is in Θ(2n).

(b) The runtime of RLS maximizing NEEDLE is in Θ(2n).

(c) The runtime of the (1+1) EA∗ maximizing NEEDLE is in Θ( 1
2n nn).

(d) RLS∗ asymptotically almost surely does not find the global maximum of NEEDLE

(that is, with probability tending to 1 as n → ∞).

Proof The statement for RLS∗ is clear because the algorithm only finds the optimum

if the starting point is either the optimum itself or adjacent to the optimum. The

probability that this happens is exponentially small.

For RLS and the (1+1) EA, see [14]. For the (1+1) EA∗, the algorithm starts

in a point x ∈ {0,1}n with probability 2−n and then needs in expectation Θ(nd)

steps to find the optimum (0, . . . ,0), where d > 0 is the Hamming weight of x.

For x = (0, . . . ,0), it needs 0 steps. Thus, by the Binomial formula, we have

E[TEA∗ ] ∈ Θ(μEA∗) with

μEA∗ =
1

2n

n∑

d=1

(
n

d

)
nd =

(n + 1)n − 1

2n
=

(1 + 1/n)nnn − 1

2n

Hence, E[TEA∗ ] ∈ Θ((n/2)n) since limn→∞(1 + 1/n)n = e. �

We show that the quantum versions perform equally bad on the NEEDLE function.

Only the (1 + 1) QEA∗ is better than the (1 + 1) EA∗. However, since the runtime is

super-exponential (growing faster than any exponential function), the improvement

is small in comparison.

Theorem 6.10

(a) The runtime of the (1+1) QEA maximizing NEEDLE is in Θ(2n).

(b) The runtime of QLS maximizing NEEDLE is in Θ(2n).

(c) The runtime of the (1+1) QEA∗ maximizing NEEDLE is in Θ( e
√

n

2n n
n
2 ).

(d) QLS∗ asymptotically almost surely does not find the global maximum of NEE-

DLE.

Proof First let us look at the progressive algorithms. Since all points except the

optimum are of equal fitness, the algorithms accept every sample point as a new

search point. Hence, the progress probability is 1, and E[TQSH] ∈ Θ(E[TRSH]) by Corol-

lary 5.13. This proves (a) and (b).
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The statement for QLS∗ follows immediately from the statement for RLS∗ in The-

orem 6.9 since both algorithms have exactly the same probability to terminate by

Theorem 2.2.

So let us look at the (1+1) QEA∗. The algorithm will visit at most two search

points x(0) and x(1), with x(0) drawn uniformly at random, and x(1) = (0, . . . ,0) the

optimum. Therefore, the expected number of visits m(x) is 1
2n for all x �= (0, . . . ,0).

Assume that the Hamming weight of x(0) is d . Then the progress probabil-

ity pQEA∗(x(0)) of the associated (1+1) EA∗ is n−d and its expected progress time

is in Θ(nd) (or 0 if x(0) = (0, . . . ,0)). Since there are exactly
(
n
d

)
search points with

Hamming weight d , we have by Theorem 5.11 that E[TQEA∗ ] ∈ Θ(μQEA∗) with

μQEA∗ :=
1

2n

n∑

d=1

(
n

d

)
n

d
2 .

By the Binomial formula, we obtain

μQEA∗ =
1

2n

((
n

1
2 + 1

)n − 1
)
=

1

2n

((
1 + n− 1

2
)n

n
n
2 − 1

)

and therefore, since ex−2x2 ≤ 1 + x ≤ ex holds for all x ∈ [−1/2,1/2], we have

e
√

n−2n
n
2 − 1

2n
≤ μQEA∗ ≤

e
√

nn
n
2 − 1

2n
.

Thus,

E[TQEA∗] ∈ Θ

(
e
√

nn
n
2

2n

)
.

�

6.5 Jump

Let m be a positive integer constant. The pseudo-Boolean function JUMPm is defined

as follows. For x ∈ {0,1}n,

JUMPm(x) :=

⎧
⎪⎨
⎪⎩

ONEMAX(x), if 0 < ONEMAX(x) < m

2n − ONEMAX(x), if ONEMAX(x) ≥ m

2n, if x = (0, . . . ,0).

(6.6)

The function has a unique maximum in (0, . . . ,0), but has small fitness in a region

around this point. Therefore, typically a RSH will have to jump to the optimum. This

problem has been analyzed by Droste, Jansen, and Wegener [11] in order to show that

a wide variance of runtimes can occur. Compared to these authors, we have changed

the definition of the function slightly so that the indices are more convenient for our
analysis.

Theorem 6.11 Let m ∈ N with m ≥ 2 be a constant.

(a) The runtimes of the (1+1) EA and the (1+1) EA∗ maximizing JUMPm are in

Θ(nm).

(b) RLS and RLS∗ asymptotically almost surely do not find the global maximum of

JUMPm.
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Proof For the (1+1) EA, see [11]. For the (1+1) EA∗, note that for any two search

points x and y with the same number of one-bits, the problem is symmetric with

respect to x and y. That is, there is a fitness-invariant automorphism of the space

mapping x to y. Therefore, the runtime is the same for x and y. So the runtime is

equal for the (1+1) EA and the (1+1) EA∗, and the statement for the (1+1) EA∗

follows.

The statements for RLS and RLS∗ are obvious because the only fitness-increasing

paths ending in the optimum start either in the optimum itself or in a search point

of Hamming weight 1. Since the sequence of search points will be such a path, the

algorithm can only find the optimum if it starts either in the optimum itself or in a

point of Hamming weight 1. By the Chernoff bound (see, e.g., Chap. 1 in [4]), the

probability for this event is exponentially small as n → ∞. �

We find that for JUMPm, the conservative algorithm gains quadratic speedup (for

m > 1) while the progressive one is hardly better than its classic version. The reason

is that in the conservative setting there is one very hard step (the jump) with no easy

alternatives, whereas in the progressive version the algorithm is allowed to make easy

moves along the boundary of the gap. Note that for the classical algorithms, there is

no difference between the conservative and the progressive selection strategy.

Theorem 6.12 Let m ∈ N with m ≥ 2 be a constant.

(a) The runtime of the (1+1) QEA maximizing JUMPm is in Θ(nm− 1
2 ).

(b) The runtime of the (1+1) QEA∗ maximizing JUMPm is in Θ(n
m
2 ).

(c) QLS and QLS∗ asymptotically almost surely does not find the global maximum

of JUMPm.

Before we prove the theorem, we state a lemma.

Lemma 6.13 Let x ∈ {0,1}n be of Hamming weight k ∈ {1, . . . , n}. Then the proba-

bility p that the mutation operator of the (1+1) EA generates a vector y �= x of the

same Hamming weight satisfies

min{k,n − k}
2en

≤ p ≤
k

n
.

Proof Since y �= x and both vectors have the same Hamming weight, the mutation

operator has to flip at least one one-bit and at least one zero-bit.

We bound p from below by the probability that exactly one zero-bit and one one-

bit are flipped in x,

p ≥ k(n − k) ·
1

n2
·
(

1 −
1

n

)n−2

≥
min{k,n − k}

2en
,

since

k(n − k) = min{k,n − k} · max{k,n − k} ≥
min{k,n − k}n

2
.
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To bound p from above, we apply the union-bound to the (not necessarily inde-

pendent) events that a given pair of a zero-bit and a one-bit is flipped in x, while we

do not care whether the other bits flip. Therefore

p ≤ k(n − k) ·
1

n2
≤

k

n
. �

Proof of Theorem 6.12 The statements for QLS and QLS∗ follow directly from the

statements for RLS and RLS∗, because the classical algorithm will find the optimum

if and only if the quantum algorithm does.

For the (1+1) QEA and (1+1) QEA∗, we divide the run of the algorithms into three

phases, some of which may be empty. In the first phase, the fitness is strictly less than

m. In the second phase, the fitness is at least m, but strictly smaller than 2n − m. In

the third phase, the fitness is at least 2n − m.

We claim that the problem of leaving the first phase is strictly easier than the

problem of maximizing ONEMAX. In fact, consider the auxiliary problem where all

search points x with 0 < ONEMAX(x) < m have the same fitness as in JUMP, but all

other search points have fitness 2n. Then the problem of leaving the first phase for

JUMPm is the same as finding a global maximum of the auxiliary problem. On the

other hand, the auxiliary problem is identical with the problem ONEMAX except that

a larger sets of points are global maxima.

So the problem of leaving the first phase is indeed easier than ONEMAX. By The-

orem 6.2, the (1+1) QEA and the (1+1) QEA∗ will both spend in expectation at most

linear time in the first phase.

Similarly, it is easy to see that again both, the (1+1) QEA and the (1+1) QEA∗,

will spend in expectation at most linear time in the second phase.

For the third phase, we distinguish between the (1+1) QEA and the (1+1) QEA∗.

First we look at the (1+1) QEA∗. Given a search point x ∈ {0,1}n of fitness 2n − m,

it will accept only the optimum as its next search point. Thus, the expected optimiza-

tion time for the third phase is exactly rQSH(x). Since its Hamming weight is m, the

progress probability pRSH(x) of the corresponding (1+1) EA∗ is n−m (independently

of the choice of x). Thus, the runtime of the third phase is

rQSH(x) ∈ Θ
((

rRSH(x)
) 1

2
)
= Θ

((
pRSH(x)

)− 1
2
)
= Θ

(
n

m
2
)
.

Since the other phases took at most linear time, for m > 1 the runtime of the

(1+1) QEA∗ is dominated by the third phase and is in Θ(n
m
2 ).

We now turn to the (1+1) QEA. Again, let x ∈ {0,1}n be a search point of

Hamming weight m. This time, the situation is slightly more complicated since the

(1+1) QEA may accept any other search point of Hamming weight m. We therefore

again consider the corresponding (1+1) EA. The probability that the mutation opera-

tor produces another search point of Hamming weight m is in Θ(m/n) = Θ(1/n) by

Lemma 6.13, since m is a constant. On the other hand, the probability that the muta-

tion operator yields the optimum is in Θ(n−m). Therefore, the probability to jump to

the optimum subject to the condition that we accept the search point is

Pr
(

MUT(x) = (0, . . . ,0) | JUMPm

(
MUT(x)

)
≤ m

)
∈ Θ

(
n−(m−1)

)
.
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So we expect to visit Θ(nm−1) search points in the third phase. Moreover, for

all search points x of Hamming weight m, the progress probability pRSH(x) of the

(1+1) EA is in Θ(1/n). Therefore, by Theorem 5.11, the optimization time T
(3)

QSH for

the third phase of the (1+1) QEA satisfies

E
[
T (3)

QSH

]
∈ Θ

(
μ(3)

QSH

)

with

μ(3)
QSH

=
∑

x : |x|1=m

m(x)
(
rRSH(x)

) 1
2 .

We have already seen that

(
rRSH(x)

) 1
2 ∈ Θ

(
n

1
2
)

and that
∑

x : |x|1=m

m(x) ∈ Θ
(
nm−1

)
.

Therefore, E[T (3)
QSH ] is in Θ(nm−1/2). �

6.6 TinyTrap

Let d := 3n
2 log2 n

be an integer4 and let TINYTRAP be the pseudo-Boolean function

that maps x ∈ {0,1}n to

TINYTRAP(x) :=

{
ONEMAX(x), if ONEMAX(x) ≤ d − 1

−1, else.
(6.7)

RLS and QLS with either selection strategy have unbounded runtime minimizing

TINYTRAP, since the initial search point might be the local minimum (0, . . . ,0). We

therefore restrict ourselves to the different variants of the (1 + 1)-EA.

Theorem 6.14 The runtime of the (1+1) EA and the (1+1) EA∗ minimizing TINY-

TRAP is at least 2
n
4 .

Proof The following argument holds for both selection strategies. Consider the event

where the (1+1) EA starts in the local minimum (0, . . . ,0). To leave this point, at

least d of the bits have to be flipped which (by the union bound) happens with prob-

ability at most

(
n

d

)
·
(

1

n

)d

≤
(

en

d

)d

·
(

1

n

)d

=
(

d

e

)−d

≤ n− 5d
6 = 2− 5n

4

4For values of n where d is non-integral we can round d and obtain the same asymptotic results.
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since d/e ≥ n
5
6 for sufficiently large n (and thus, sufficiently large d). Therefore,

conditioned on the event to start in (0, . . . ,0), the runtime of the (1+1) EA is at

least 2
5n
4 and since the probability to start in (0, . . . ,0) is 2−n, the unconditional

runtime is at least 2
n
4 by the law of total expectation. �

Theorem 6.15 The runtime of the (1+1) QEA and the (1+1) QEA∗ minimizing TINY-

TRAP is in O(1).

Proof The following argument holds for both selection strategies. With very high

probability the first search point has Hamming weight at least d in which case the

runtime is 1. However, since en/d ≤ n
1

12 for sufficiently large n, there are at most

d−1∑

i=0

(
n

i

)
≤ n

(
n

d

)
≤ n

(
en

d

)d

≤ n · n
d
12 = n2

n
8

search points of Hamming weight at most d − 1. Hence, the probability that the

initial search point is one of them is at most n2− 7n
8 . Next, we give an upper bound

on the runtime of the (1+1) QEA conditioned on the event that it is indeed initialized

with one of these points. In this case, we consider two phases, where the first phase

ends when the (1+1) QEA has either found the local minimum (0, . . . ,0) or a global

optimum. Like in the proof of Theorem 6.12, the length of this phase is dominated

by the runtime of the (1+1) QEA on ONEMAX which is in Θ(n).

At the beginning of the second phase, the (1+1) QEA either found a global op-

timum (in this case we are done) or the current search point is the local mini-

mum (0, . . . ,0). For the corresponding (1+1) EA, the probability to leave the local

minimum (0, . . . ,0) is at least the probability to flip exactly d of the zero-bits, that is

(
n

d

)
·
(

1

n

)d

(1 − 1/n)n−d ≥
1

e
·
(

n

d

)d

·
(

1

n

)d

≥
1

e
· n−d =

1

e
· 2− 3n

2 .

Thus, the expected progress time rRSH((0, . . . ,0)) of the (1+1) EA is in O(2
3n
2 ). Now,

we recall that we are actually looking at the (1+1) QEA. By Lemma 5.5, the expected

progress time rQSH((0, . . . ,0)) of the (1+1) QEA is at most O(2
3n
4 ). Note that this dif-

ference is the reason why the following argument does not give runtime Θ(1) for the

classical (1 + 1) EA as well. However, for the (1 + 1) QEA we have just seen that the

runtime, conditioned on the event that the Hamming weight of the initial search point

is at most d − 1, is in O(2
3n
4 ) (the runtime of the second phase dominates the run-

time of the first phase). Recall that the probability of the initial search point actually

satisfying this condition is only O(n2− 7n
8 ). Hence, the total (unconditional) runtime

of the (1+1) QEA is in O(1 +n2− 7n
8 · 2

3n
4 ) = O(1) by the law of total expectation. �

7 Conclusion

In this paper, we have presented an approach to evolutionary algorithms on a quan-

tum computer where we keep the mutation and selection process from the classical
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setting and use quantum probability amplification (Grover search) in order to find an

acceptable offspring more quickly. We show that this does not affect the trajectory

the algorithm takes on its way to an optimal solution, the quantum amplification only

speeds it up. Furthermore our approach is universal, that is, it works for any mutation

operator. We also provide tools for estimating the runtime using parameters of the

classical heuristic.

For five of the six problems we investigated we encountered that using quantum

search gave at most a quadratic improvement over the corresponding classical heuris-

tic. This is similar to other general settings like unordered search [6, 26] or query

complexity of local search on a graph [1], in which it is proven or conjectured that

quantum computers can give at most a quadratic speedup.

On the example of the function TINYTRAP we saw that an exponential runtime of

a RSH may drop to polynomial, even to Θ(1) for the corresponding QSH. However,

keep in mind that this is due to the occurrence of an highly unlikely event (starting

in the trap region) and will hardly be observed in a typical run. It is an interesting

question whether such an improvement from exponential to polynomial runtime can

also occur in less artificial problems and in a typical run of a QSH.

The other analyzed examples ONEMAX, LEADINGONES, DISCREPANCY, NEE-

DLE, and JUMPm show that a substantial speedup is possible (as for LEADINGONES)

but is not guaranteed (as for DISCREPANCY). The harder it is for the classical search

heuristic to make progress, the better will quantum acceleration work.

We have also seen that it is important to choose the selection strategy carefully,

since not only the runtime in the classical setting but also the speedup due to quan-

tum acceleration depends on the choice of the selection strategy. The reason for the

different results is that by allowing equality of the objective functions we increase the

number of valid successor states and thus we increase the probability to find such a

state. But quantum enhancement is more powerful if these probabilities are small, as

is illustrated by Corollary 5.13. However, we believe there are ways to keep quantum

enhancement powerful and still allow the algorithm to move to a successor state with

unchanged objective value.

To conclude, we demonstrated a wide range of different behaviors of the progres-

sive and conservative versions of the (1+1) QEA and QLS on a number of well-

studied basic pseudo-Boolean functions. In the line of this research, the next step

would be to analyze the effects of quantum acceleration on classical problems in

combinatorial optimization.
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