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Abstract

We study a random fiber bundle model with tips of the fibers placed

on a graph having co-ordination number 3. These fibers follow local load

sharing with uniformly distributed threshold strengths of the fibers. We

have studied the critical behaviour of the model numerically using a finite

size scaling method and the mean field critical behaviour is established.

The avalanche size distribution is also found to exhibit a mean field nature

in the asymptotic limit.

1 Introduction

Collapse of buildings, failure of networks and many other breakdown events
have resulted into a great deal of research to understand the cause of such
disasters and also forced the scientists to invent measures to prevent such
mishappenings[1]. Fiber Bundle Model (FBM) is a step towards capturing the
essential physics of breakdown phenomena [2, 3, 4].

A FBM consists of N parallel elastic fibers with identical elastic constant
but randomly distributed threshold strengths chosen from a distribution. This
random distribution of threshold strengths (σth) introduces randomness in the
model and hence the model is called Random Fiber Bundle Model (RFBM).
When the stress generated due to the externally applied force exceeds the thresh-
old strength of a given fiber, the fiber breaks. The additional load due to the
failure of fibers is distributed to the remaining intact fibers by a load sharing
rule. In a Global Load Sharing (GLS) scheme, the broken fibers redistribute
their stress to all the intact fibers. This is a mean field model with an effective
long range interaction amongst the intact fibers. The critical exponents have
been obtained for such a model[5]. We investigate here the other extreme load
sharing rule, namely Local Load Sharing (LLS)[6, 7, 8]. In a local load sharing
rule, the broken fiber gives its load only to the nearest intact fibers. Therefore,
this load sharing depends upon the dimensionality of the system concerned. As
the external force is increased, more fibers break. The redistribution of the
stress of a broken fiber for a given applied load takes place until a fixed point
is reached when no more failures take place. If the external load exceeds a par-
ticular load called critical load, the complete breakdown of the bundle takes
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Figure 1: An example of a graph with coordination number 3 and 16 sites.

place. The determination of this critical load and the study of the associated
phase transition are of prime interest.

It is well established that the fibers with LLS in a one-dimensional regular
lattice do not show any critical behaviour and the critical stress σc (=criti-
cal load per fiber) goes to zero in the thermodynamic limit[6]. Models with
load sharing rule interpolating between GLS and LLS have also been studied
[9]. Kim, Kim and Jeong[10] studied fibers placed on different network models:
namely, the Erdos-Renyi model of random network, Watts-Strogatz network
and the static model of a scale free network with LLS. They established the
mean field (GLS) critical behaviour of fiber bundles residing on these networks.
In Ref.[11] the instability introduced in a large scale free network by the trig-
gering of node-breaking avalanches is analyzed using fiber bundle model as the
framework. It should be noted that FBM can be related to a fuse model where
breakdown of a fuse is caused due to a large applied voltage and the system
is eventually driven to a completely broken state as the external voltage is in-
creased beyond the critical voltage. The breaking profiles of such a model has
also been studied on a scale free network[12]. Under certain load modes, this
breaking profile resembles the stress-strain curve of the dynamics of the fibers.

In this paper we look at the dynamics of fibers following local load sharing
rule when placed on a graph with co-ordination number 3. We will point out
how our model is different from the above models later in this paper.

2 The model

Dhar, Shukla and Sethna [13] studied a Random Field Ising Model on a Bethe
lattice using a particular random graph[14] for simulating the Bethe lattice
structure. We have used the same approach to generate a geometry which has
connections as described below.
• Label the sites by integers from 1 to N where N is even.
• Connect site i to i+1 for all i such that site N is connected to site 1 (periodic
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boundary condition). We call this connection a direct connection. Thus we have
a ring of N sites.
• Now connect each site i randomly to a unique site other than i+ 1 and i− 1
thus forming N/2 pairs of sites. This connection is called random connection.

Random connection is unique for a given site. For example, in Fig. 1 where
we show a particular configuration, site number 14 is directly connected to 13, 15
and randomly connected to 11 which is unique for site number 14. At the same
time, random connection of site 11 then becomes 14. Thus any site will have two
directly connected neighbours and one unique random neighbour making the co-
ordination number of each site to be three at the beginning of the dynamics.
In this construction, all sites are on the same footing. The graph resembles a
Newman-Watts (NW) model where nearest neighbour connections are retained
and each site is randomly connected to another site with a probability p[15]. But
there is no condition of uniqueness of random connection in NW model as in our
case. We do not allow the possibility of two random connections emerging from
the same site. More technically speaking, it is a regular graph as each vertex
has three incident edges. However, two of these edges are nearest and the third
is random though unique.

The tips of the fibers are now placed on these N sites and are associated
with a threshold strength chosen randomly from a uniform distribution. If p is
the density of threshold strength of fibers, then a uniform distribution implies:

p = 1 0 ≤ σth ≤ 1

= 0 otherwise.

In the passing, let us comment that a graph as generated above resembles
Bethe lattice in the thermodynamic limit (N → ∞) [13, 16, 17]. The similarity
arises due to the loopless structure of both, the Bethe lattice and the above
construction as N → ∞. Although our construction has loops, it can be shown
that there are typically very few small loops as N → ∞. But there is a crucial
difference between the dynamics of Random Field Ising Model (RFIM) studied
by Dhar et.al and that of RFBM. In the RFIM, no connection is lost in the
course of dynamics whereas in RFBM, random connections disappear as the
fibers start to fail under an external load (as explained below).

When an external force is applied, fibers with threshold smaller than the
stress generated due to the external force break. The broken fibers have to
redistribute the stress carried by them to the nearest intact fibers. We have
implemented the following algorithm in this work:
(i) The system is exposed to a total load Nσ such that fiber at each site i carries
a stress σ(i) = σ. If σth(i) < σ(i) at any site i, the fiber breaks and its stress
is equally distributed to its surviving neighbours (both directly and randomly
connected). The breaking condition is examined for each site and is repeated
until there is no more breaking for this particular external load.
(ii) The total load is now increased from Nσ to N(σ+ dσ). The new total load
is then shared by the remaining unbroken fibers and once again the breaking
condition is checked for each intact fiber.
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Figure 2: The variation of ρ with σ for different values of N . Here, N =
213, 214, 215, 216, 105, 217, 2∗105, 218. The lower σc corresponds to a higher value
of N .

(iii) It may so happen that during the failure dynamics a fiber encounters a
situation where all its nearest neighbours are broken. This situation can be
treated in two ways. One approach assumes that the stress carried by such a
fiber is lost i.e., the total load is not conserved [18]. On the other hand, we
study a FBM with total external load being strictly conserved. To ensure this
conservation, we propose the following: if a fiber encounters a situation in which
one of its directly connected neighbours (in clockwise or anticlockwise direction)
is broken, it gives its stress to the next nearest surviving neighbour in that
direction. This rule however is not applicable to the randomly connected fiber
i.e., if the randomly connected neighbour of a broken fiber is already broken,
the stress then is given only to its directly connected neighbours.
(iv) Once again, the load is increased and the process is repeated till the com-
plete breakdown of the system.

It is clear from the above load sharing rule that even if the tips of fibers when
placed on a graph as mentioned before resemble a Bethe lattice, this resemblance
is valid only at time t = 0. The broken randomly connected neighbour of site
i will reduce the co-ordination number of site i deviating the lattice from its
initial geometry. We illustrate the third point of the algorithm with an example
from Fig. 1. Let us assume that the fiber at the site 14 is the weakest among all
the fibers connected to it. At any instant of time t, fiber at site 14 breaks. The
additional load is shared equally among fibers at sites 11, 13 and 15. Consider
a situation where at some higher load, fiber at site 11 also breaks; the load
carried by 11 is equally shared only between the two directly connected fibers
(at sites 10 and 12) if they are intact. Otherwise, the load is given to the next
intact fiber along the direction of the broken directly connected fiber. Therefore
effectively the long range random connection between 11 and 14 disappears as
soon as 14 breaks.
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Figure 3: The dependence of critical stress σc on the system size N .

In our numerical simulations, dσ is taken to be 0.0001 and the average is
taken over 104 to 105 configurations. The variation of fraction of unbroken fibers
ρ, with the applied stress is shown in Fig. 2. Also shown is the dependence of
critical stress σc on N in Fig. 3. Clearly, there exist a non-zero value of σc

for large N whereas in the case of pure local load sharing in a one-dimensional
lattice, σc goes to zero in the thermodynamic limit[6]. Here, ρ behaves as the
order parameter of the system which vanishes at the critical point.

To determine σc precisely, we use the standard finite size scaling method [19]
with the scaling assumption

ρ(σ,N) = N−af((σ − σc)N
1

ν ) (1)

where f(x) is the scaling function and the exponent ν describes the divergence of
the correlation length ξ near the critical point, i.e., ξ ∝ |σ− σc|

−ν . Demanding
that the order parameter ρ scales as ρ ∝ (σc − σ)β , we arrive at the relation
a = β/ν. The plots of ρNa with σ for different N crosses through a unique
point σ = σc=0.173 with the exponent a = 0.5 (See Fig. 4).

With this value of σc and a, one can again use the scaling relation (1) to
determine the exponent ν by making the data points to collapse to an almost
single smooth curve near the critical point as displayed in Fig. (5). The value of
the exponent ν obtained in this manner is equal to unity which automatically
gives the value of the other exponent β=0.5. These matches with the mean
field exponents derived analytically[5]. It should be noted that in Fig. (5), the
collapse of data is better for higher system size. The results therefore establish
the existence of a sharp thermodynamic transition with mean field (GLS) expo-
nents eventhough the load sharing rule is local apart from random connections.

An important quantity associated with any breakdown process is the avalanche
size distribution. An avalanche is defined as the number of fibers broken be-
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Figure 4: Precise determination of σc from the finite size scaling form (1). The
σc at which the curves intersect is 0.173. a = 0.5.
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Figure 5: Data collapse with a=0.5, ν = 1
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Figure 6: Avalanche size distribution of fibers placed on a random graph. Also
drawn is a straight line with slope 5/2. Clearly, the exponent ξ takes the mean
field value 5/2 for large ∆.

tween two successive external loadings. For RFBM with GLS, the distribution
D(∆) of an avalanche of size ∆ follows a power law given as [20]

D(∆) ∝ ∆−ζ ,where ζ = 5/2. (2)

when ∆ is large.
To study the avalanche size distribution in the present model, we have ap-

plied the weakest fiber failure approach. In this approach, an external force
is increased quasistatically such that only the weakest surviving fiber present
in the bundle breaks. The failure of this weakest fiber causes an avalanche of
failures of size ∆. The numerical result for the distribution of avalanche size is
shown in Fig. 6. The exponent ζ takes the mean field value 5/2 for very large
∆.

3 Conclusion

We have studied a fiber bundle model where tips of fibers are placed on a graph
with co-ordination number 3. A local load sharing mechanism is employed for
the redistribution of load of the broken fiber to the intact fibers as described in
Section II. The exact value of the critical stress and the critical exponents β and
ν are obtained using finite size scaling method. These exponents correspond to
the mean field (GLS) value as obtained in Ref.[5]. The mean field behaviour is
due to a finite fraction of infinite range connection which survive in the process
of dynamics.

The avalanche size distribution is studied using weakest fiber failure ap-
proach. We observe that the burst avalanche distribution picks up the mean

7



field value ζ = 5/2 only in the asymptotic limit (i.e., for large ∆ which occurs
near the critical point). For smaller ∆, the behaviour is clearly different from
the mean field limit. This suggests that the load sharing rule affects the be-
haviour of D(∆) in the small ∆ region. The small ∆-anomaly is not seen in
fibers placed on a complex network[10].
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