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Abstract. We study the diffusion of gas molecules through a two-dimensional

network of polymers with the help of Monte Carlo simulations. The polymers are

modeled as non-interacting random walks on the bonds of a two-dimensional square

lattice, while the gas particles occupy the lattice cells. When a particle attempts to

jump to a nearest-neighbor empty cell, it has to overcome an energy barrier which is

determined by the number of polymer segments on the bond separating the two cells.

We investigate the gas current J as a function of the mean segment density ρ, the

polymer length ℓ and the probability qm for hopping across m segments. Whereas J

decreases monotonically with ρ for fixed ℓ, its behavior for fixed ρ and increasing ℓ

depends strongly on q. For small, non-zero q, J appears to increase slowly with ℓ. In

contrast, for q = 0, it is dominated by the underlying percolation problem and can be

non-monotonic. We provide heuristic arguments to put these interesting phenomena

into context.

PACS numbers: 05.40.Fb, 64.60.Ak, 61.41.+e

1. Introduction

Permeation of gas molecules through an amorphous polymer film is a problem of

considerable scientific interest, as well as industrial significance [1]. For example, the

selective permeability of certain types of polymeric materials is often used for gas

separation. It is therefore of primary importance to understand how the diffusivity

of different gases depend on various factors, such as the temperature, the size of the

penetrant molecule, and the total amount and distribution of accessible free volume

inside the polymer matrix [2]. In a typical gas permeation experiment, a polymer film,

formed by cooling the polymer from the rubbery state below the glass transition, is

subjected to a pressure gradient across the film, so that gas molecules permeate the

film. After a time lag τ , the pressure on the low-pressure side starts to increase, and

eventually, a stationary gas current across the membrane is established. For very long

times, the pressures on both sides of the film equilibrate; this late stage is not of interest

here. The important parameters which are often used to describe the permation process

are (i) the solubility S, which gives the total amount of gas trapped in the membrane

‡ e-mail: schmittm@vt.edu
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and (ii) the diffusion coefficient D of a gas molecule inside the network. To determine

the latter, one approximates the late-time dependence of the pressure by a straight line

and obtains its intercept, to, with the zero pressure axis. The diffusion coefficient then

follows from the relation to = L2/6D, where L is the thickness of the film. The product

of the solubility and diffusion coefficient is referred to as the permeability P = DS, and

is a direct measure of the efficiency of the permeation process.

From a slightly different point of view, the gas permeation problem may be discussed

in the language of (electric) resistor networks. The pressure gradient set up across the

membrane is analogous to a fixed voltage difference. Local configurational fluctuations

inside the polymer matrix allow gas molecules to jump across energy barriers between

voids, forming a connected set of “resistors” which control the flow of the gas current.

In fact, passage of (electric) current through a set of randomly distributed resistors

is a problem that has been extensively studied in statistical physics [3]. From this

perspective, gas diffusion through a polymer network is quite intriguing since the matrix

of energy barriers and voids can hardly be considered random or uncorrelated.

It is therefore natural to explore the role of these correlations in the transport

process. The primary objective of this paper is to introduce a lattice-gas model with

correlated, quenched energy barriers to study the transport of gas molecules through

the polymer network. While we simplify the description significantly, by reducing it

to two dimensions, and modeling polymers as simple non-interacting random walks, we

nevertheless retain an essential feature of the original problem, namely, the effect of

correlations induced by the polymer connectivity. We find that the currents through

this network depend very sensitively on (i) whether particle motion can be completely

blocked by certain energy barriers; and (ii) whether these spatially correlated barriers

can percolate across the lattice. Our discussion draws on an earlier study [4] in which

we investigated the percolation properties of random walks of varying length.

The remainder of this paper is divided into three sections: Section II contains the

model description, Section III discusses the Monte Carlo simulation results and Section

IV outlines our conclusions.

2. The model

We consider a polymer network whose large scale structure is static over the time scale of

the simulations. This is a reasonable simplification since typical permeation experiments

use polymers in the glassy state: Such membranes offer better selectivity than those in

a rubbery state. Small local rearrangements – which let gas molecules pass from one

void to another – do occur and will be modeled via a distribution of energy barriers

which the molecules need to overcome. The polymer network is generated by placing N

non-interacting random walks of length ℓ (referred to as “ℓ-mers”) on a two-dimensional

square lattice with L2 sites. Each bond of the lattice can carry one or more segments (i.e.,

steps of the random walk), with an average segment density per bond of ρ = Nℓ/2L2.

The gas molecules are modeled as hard-core particles which occupy the cells of the
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lattice, and no more than one particle is allowed per cell.

While modeling polymers as non-interacting (rather than self-avoiding) walks is

almost certainly an oversimplification, we can offer two motivations for such a simple

description. First, real membranes are produced by rapid cooling of a rubbery melt;

hence, typical polymer configurations are “frozen” high-temperature states for which

interactions are less important. Second, when discretizing a real network, it is natural

to choose the lattice spacing to be comparable to the polymer persistence length. In

this case, a polymer “segment” contains many monomers. Since the persistence length

is typically much larger than the size of a monomer unit, we have in effect adopted a

coarse-grained description. On this length scale, self-avoidance and other complications

may be neglected.

Each polymer segment constitutes an energy barrier in the path of a gas molecule.

The dynamics of the molecules is modeled as activated hopping over these barriers.

Once a particle-hole pair, separated by such a barrier, is chosen, the probability for

them to exchange is qm, where m is the number of segments in the barrier and q is

just e−βǫ, with ǫ being an energy scale and β = 1/kBT being the inverse temperature.

As an alternate view, one may consider the particle motion as resulting from the short

time scale segmental motion of the polymer. If the probability of displacement of a

single segment is q, then qm would be the probability of simultaneously displacing all m

segments.

To model the pressure gradient, the cells in the first row (y = 0) of the lattice are

kept filled at all times. At the beginning of the simulation (time t = 0), the remainder

of the lattice is empty. At times t > 0, each particle randomly selects a direction of

motion with probability 1/4, and attempts to cross the barrier between its originating

and target cells. Provided the target cell is empty, the particle will be moved with

probability qm. After every particle in the system has attempted a move (on average), t

is incremented by one Monte Carlo step (MCS). When a particle arrives in a cell within

the last row (y = L), it is removed instantaneously from the lattice. Clearly, this sets up

a density gradient across the system which drives a particle current in the y-direction.

In the simulations, we measure the following quantities:

(i) The number of particles which have entered the system up to time t, denoted by

M1(t)

(ii) The number of particles which have exited the system up to time t, denoted by

M2(t).

(iii) The mean first passage time, τ , for the arrival of the first particle at the far

boundary y = L.

At any time t, therefore, the number of particles absorbed by the polymer network

is given by M(t) = M1(t) −M2(t). At sufficiently late times, the system approaches a

steady state, which is characterized by a time-independent solubility

M(ρ, ℓ; q) ≡ lim
t→∞

M(t) (1)
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and a constant particle current, or permeability, J(ρ, ℓ; q), defined via

J(ρ, ℓ; q) ≡ lim
t→∞

∂tM2(t) (2)

To give a reference point, the current through an empty lattice would be 1/2. The

mean first-passage time provides information about the typical path length travelled by

a particle, and how quickly it hops over the barriers encountered along that path.

The numerical simulations were carried out for various values of the segment density

ρ and polymer length ℓ. We choose a lattice with 128 × 128 sites for the simulations,

which was also the largest lattice simulated in [4]. We choose polymer lengths in powers

of 4: ℓ = 4n with n = 0, 1, 2, 3, 4. The typical span of even the longest polymer (ℓ = 256)

is much smaller than the lattice dimension, so that a single polymer only very rarely

extends across the whole lattice. Our choices for the segment density ρ were guided by

the phase diagram of the q = 0 system which we will summarize in the next section. The

smallest value of ρ was 0.5 and the largest was 1.0. Intermediate values (e.g. ρ = 0.71)

are controlled by N , the (integer) number of polymers of length ℓ placed in the system.

For different ℓ’s, we selected N ’s to be within less than a percent of 2ρL2/ℓ. So far,

we considered just two values of the bond-crossing probability: q = 0.0 and q = 0.1.

Due to computational limitations, we generated between 15 and 48 different polymer

configurations for each set of parameters (ρ, ℓ, q). M(t) and M2(t) are collected for

2× 106 MCS for each configuration and then averaged.

Let us comment briefly on statistical errors, which can be estimated by comparing

currents for different configurations at the same (ρ, ℓ, q). They are smallest (below 5%)

for the shortest polymers and q = 0.1. As ℓ increases, the errors also become larger,

reaching about 20% for ℓ = 256 at this q. For q = 0.0 and especially ρ = 0.71, finite-size

effects allow for both blocked and open configurations at the same (ρ, ℓ, q), making it

difficult to assign error bars reliably. A conservative estimate would give errors as large

as the currents themselves, so that our conclusions can only be preliminary until better

statistics are available.

3. Numerical Results

3.1. The q = 0 case: Percolation of occupied bonds

When the bond-crossing probability q vanishes (or, equivalently, the zero temperature

limit), bonds carrying one or more segments become completely impenetrable. As a

consequence, the gas current must vanish if the occupied bonds form a connected path (a

“spanning cluster”) transverse to the density gradient. The problem, therefore, reduces

to bond percolation of N ℓ-mers on a square lattice. We studied this problem in [4],

and summarize only the salient results here.

With the segment density (per bond) given by ρ = Nℓ/(2L2), the fraction of

occupied bonds, p(ρ, ℓ), approaches a well-defined value in the thermodynamic limit. In

our simulations, we found that p decreases with ℓ for fixed ρ and increases with ρ for

fixed ℓ. While the latter behavior is obvious, the former needs some explanation. To
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make it more intuitive, let us consider two situations where the density ρ is kept fixed,

but the polymer lengths (and hence, their numbers) are different. Configurations with

few, long polymers are likely to exhibit numerous bonds which are multiply occupied

since a simple random walk retraces any given step with probability 1/4. In contrast,

such multiple bond crossings are far less likely for short polymers, even at the same ρ,

resulting in a larger p. To rephrase, single segments leave far fewer bonds unoccupied

(“free”) than longer polymers.

With a qualitative understanding of p(ρ, ℓ), it is natural to ask how the percolation

threshold, pc(ℓ), is crossed as one increases ρ at given ℓ. From simulations, we find

that pc(ℓ) is a monotonically decreasing function of ℓ, i.e., when ℓ is large, a smaller

number of occupied bonds already suffices to ensure the presence of a spanning cluster.

We believe that this is primarily due to long polymers forming extended cigar-shaped

objects [5] which percolate more easily [6] than single occupied bonds or short polymers.

Clearly, two consequences of polymerization compete with one another: the

elongated shape of the polymers tends to lower, while the presence of multiple

occupancies tends to increase, the percolation threshold. Due to this competition, the

critical segment density per bond, ρc(ℓ), is a non-monotonic function of ℓ, shown in

Fig. 1 for a 128 × 128 square lattice. We see that ρc(ℓ) increases from ln 2 = 0.692 for

ℓ = 1 to 0.744 for ℓ = 4 but decreases beyond that to 0.724 (ℓ = 16) and 0.703 for

ℓ = 64. For shorter polymers, ρc(ℓ) is dominated by the effect of multiple occupancies

(which increase with ℓ), but for longer ones, their tendency to form extended objects

which percolate more easily, takes over. When ℓ becomes comparable to L, finite-size

effects become noticeable, causing ρc(ℓ) to increase again: ρc(256) = 0.718 for L = 128.

Here, multiple occupancies dominate again, this time due to large sections of different

polymers overlapping one another. Not surprisingly, this effect is more pronounced on

smaller lattices, making it difficult to extrapolate the behavior of ρc(ℓ). Whatever the

eventual resolution of these finite-size effects, in the thermodynamic limit ρc(ℓ) plays

the role of a phase boundary: a gas current can flow only if ρ < ρc(ℓ).

3.2. The gas current J

Our earlier findings [4] provide an answer to a simple “yes/no” question: Will a gas

current flow or not? We now turn to a much more detailed question: If a current does

flow, what are its quantitative characteristics? By measuring currents, we are probing

not only the mere existence of open channels, but also their number and their length:

How many distinct paths are there for a gas molecule to travel from one edge of the

system to the other, and how many cells will it visit along a given path? Again, we use a

combination of simulations and simple intuitive arguments to explore the answers. We

begin with systems in the low temperature limit q = 0.0, i.e., occupied bonds cannot

be crossed at all, and then consider the effects of softening this constraint by having

non-zero q.

Our numerical results for the steady-state particle current J(ρ, ℓ; q) are presented
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Figure 1. The critical segment density ρc(ℓ) vs. polymer length ℓ at the percolation

threshold for system size 128× 128 [4].

in Figs. 2 and 3. In Fig. 2, we show J plotted vs. polymer length ℓ, for fixed ρ = 0.5

and q = 0.0. According to the results summarized in the previous section, this value of

ρ is well below the percolation density ρc(ℓ) for all ℓ considered here; hence the current

is non-zero for these ℓ. In contrast, the inset shows J vs. ℓ at a higher density, ρ = 0.71,

which is within a few percent of the critical ρc(ℓ). In fact, for ℓ = 1, ρ lies slightly above

the critical ρc(1) = ln 2, and consequently, no current should flow for this ℓ. As one

might anticipate, the absolute values for the currents are much smaller (by at least a

factor of 10) for the larger ρ, since more bonds are blocked in that case. On a more

quantitative level, we observe very different behaviors at the two densities. For ρ = 0.5,

J decreases with ℓ, for all but the smallest ℓ. In contrast, at ρ = 0.71, the current

first increases, then drops off again to a minimum at ℓ = 64, after which it recovers.

Thus, polymerization has very different effects on the current, at low and high segment

density.

We now attempt to interpret these findings, in the light of our percolation study

summarized above. Considering, first, ρ = 0.5, we note that this value is well below ρc(ℓ)

for all ℓ considered. In other words, a typical configuration exhibits only finite clusters

of occupied bonds, allowing for numerous current-carrying channels with a length of

O(L). Polymerizing single segments (ℓ = 1) into short polymers (say, ℓ = 4) frees some

occupied bonds (by increasing multiple occupancies) but has little effect on the number

or the length of the conducting channels. Thus, the current for ℓ = 4 is, at best, slightly

enhanced over the current at ℓ = 1. However, as the polymers become longer, they

also extend further, forcing particles to flow around them. Moreover, longer polymers

begin to form “loops” which enclose a fair fraction of free, but now inaccessible, bonds.

Hence, having a few long polymers in the system can increase the effective length of the
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Figure 2. The gas current J(ρ, ℓ; q), integrated over 100 MCS, vs. polymer length ℓ

for ρ = 0.5 and ρ = 0.71 (inset), at q = 0.0 for an 128× 128 system.

conducting channels significantly and thus decrease the current, as illustrated by Fig. 2.

Turning to the inset of Fig. 2, the picture changes drastically. This density

(ρ = 0.71) is within a few percent of the percolation threshold, ρc(ℓ); if any open

channels exist, they are rare and fractal. Even minor rearrangements of occupied bonds

suffice to open a new channel, or block an existing one. Turning to specific ℓ’s, we

recall that ρ = 0.71 is slightly above the percolation threshold for single segments:

ρc(1) = 0.692. Hence, for ℓ = 1 no current should flow, at least in the thermodynamic

limit. However, finite-size effects wash out a sharp percolation threshold, so that a

very small current is observed: a few of the simulated polymer configurations did not

percolate.

If single segments are tied together into longer polymers with, say ℓ = 4, the number

of occupied bonds is lowered significantly, since higher occupancies will be generated.

As a result, a much larger segment density is required for percolation: ρc(4) = 0.744.

Translated into currents, this implies that the ℓ = 4 system will carry a significant

current at ρ = 0.71, as borne out by the data shown in the inset. Yet, the tendency

of polymers to form extended objects competes with this trend. We believe that the

minimum, observed at ℓ = 64, is genuine (even though it lies well within the error

bars) due to the fact that this system is extremely close to the percolation threshold:

ρc(64) = 0.703. If it were not for finite-size effects, we would expect the current to vanish

here. To summarize, J(0.71, ℓ; 0.0) is dominated by the behavior of ρc(ℓ): J vanishes if

ρ > ρc(ℓ), and otherwise roughly follows ρc(ℓ): the distance to the percolation threshold

ρc(ℓ) controls the number of open channels which, in turn, control the current. Of

course, there is no need to simulate systems with densities ρ > ρc(ℓ) since the currents

are expected to vanish.
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Figure 3. The gas current J(ρ, ℓ; q), integrated over 100 MCS, vs. polymer length ℓ

for ρ = 0.5 and ρ = 1.0 (inset), at q = 0.1 for an 128× 128 system.

Let us now compare these findings to currents measured in systems with finite

energy barriers. Specifically, we choose q = 0.1 for the rate with which a singly occupied

bond is crossed by a gas molecule. For a bond occupied by m segments, this rate drops

to qm. Fig. 3 shows the corresponding currents for ρ = 0.5 and ρ = 1.0 (inset). Both

data sets show currents J(ρ, ℓ; 0.1) which appear to increase gently with ℓ. In terms

of absolute values, J(0.5, ℓ; 0.1) is larger than J(1.0, ℓ; 0.1) because fewer bonds are

occupied at the lower density. Of course, J(0.5, ℓ; 0.1) is also larger than J(0.5, ℓ; 0.0):

even though both cases have (on average) the same number of occupied bonds, these

are blocked completely in the latter, but not the former case.

For q = 0.1, a singly occupied bond allows gas molecules to cross in one out of 10

attempts. In order to block efficiently, a bond should carry, say, three or more segments,

so that the rate of crossing is reduced to 10−3 or less. While such “highly occupied”

bonds exist, of course, they are extremely unlikely to form large connected clusters, even

for the largest ℓ: they constitute less than about 10% of bonds for ρ = 0.5, and less than

about 15% for ρ = 1.0. As a result, there are no extended objects that might impede

the flow of particles; instead, the currents are dominated by the number of completely

free (m = 0) and singly occupied (m = 1) bonds. Unlike the q = 0.0 case, domains

of unoccupied bonds inside polymer loops can now be accessed and contribute to the

currents. This effect is particularly stark for systems above the percolation threshold:

e.g., at density ρ = 1.0 with q = 0, all currents would vanish.

Regarding the small dip observed in the ρ = 0.5 data, we have no convincing

explanation to offer at this stage. With statistical errors of about 10%, it seems hardly

significant. Yet, it is conceivable that the J(ρ, ℓ; q) data reflect, in some very loose

sense, the “sum” of a residual current flowing only across connected free bonds (given
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by J(ρ, ℓ; 0.0)), plus a contribution carried by the remaining (isolated) free bonds and

singly occupied ones. Since the latter is likely to increase monotonically with ℓ, while

J(0.5, ℓ; 0.0) is monotonically decreasing, one might interpret the dip in J(0.5, ℓ; 0.1)

as being the result of “adding” the two trends. Better data are needed before these

questions can be settled satisfactorily.

3.3. Solubility M and first passage time τ

In very general terms, the current J may be thought of as dependent on two major

factors: how many particles are present inside the matrix at any given time, and how

fast they move across barriers, on average. In order to quantify these, we measured the

particle ‘solubility’ M(ρ, ℓ; q) in the steady state and the mean ‘first passage time’ τ ,

which is the time it takes for the first particle to emerge out of the network at its far

end. If we adopt a simplistic view and imagine that the (barrier-hopping) motion of a

single particle inside the polymer network is simply diffusion with an effective diffusion

coefficient D, then the first passage time τ provides a measure ofD: longer time intervals

τ imply lower D.

We find that the solubility M(ρ, ℓ; q) roughly trails the current data: Higher

currents are associated with larger M(ρ, ℓ; q), and vice versa. Given that higher currents

imply more open channels (which can then be filled with additional particles) and fewer

(if any) inaccessible domains, this seems plausible. Our data for the mean first passage

time in q = 0.0 systems are unfortunately very noisy, so that no reliable conclusions

can be drawn. For the q = 0.1 systems, τ decreases with ℓ, indicating that particles

encounter fewer obstacles on their way through the network. Again, this broadly mirrors

the current data.

4. Conclusions

In this paper, we studied a simple model of gas transport through a polymer membrane.

The membrane is modeled as a network of non-interacting random walks, placed on the

bonds of a square lattice in two dimensions. The network is characterized by the total

segment density, ρ, and the length, ℓ, of the random walks. The gas molecules are

modeled as hard-core particles performing activated hopping from one lattice cell to

a nearest neighbor. When they cross a bond carrying m segments, they encounter an

energy barrier qm, with q = e−βǫ. At one end of the lattice, the particle density is held at

unity; at the other end, particles are immediately removed. These boundary conditions

drive particles across the network. To quantify the transport properties of the network,

we focus primarily on the gas current, J(ρ, ℓ; q), in the steady state. We explore in

particular how polymerization at fixed segment density (i.e., joining a given number of

segments into polymers of varying length) affects the currents. We also measure the

total number of particles stored in the network, as well as the mean first passage time

for the first particle to arrive at the far end of the lattice.



Gas permeation through a polymer network 10

It is immediately obvious that this problem will be most interesting, and most

difficult, in the low temperature regime, when the polymers form significant obstacles.

Considering therefore small values of q, including q = 0, our observations suggest that

the transport properties of such a polymer network are affected by a competition of

two main features. (i) When the total segment density is fixed, the fraction of multiply

occupied bonds increases since random walks frequently “retrace” their last step. As

a result, polymerization generates a larger number of completely free (m = 0) bonds

which facilitate particle motion. (ii) As the polymers increase in length, their radius of

gyration also increases, as
√
ℓ. The polymers form extended, cigar-shaped objects which

may enclose domains of unoccupied bonds and block particles very efficiently, especially

for q → 0. As a result, for q = 0, the current is controlled by the underlying polymer

percolation problem: it is strictly zero when the polymers form a connected cluster of

occupied bonds transverse to the density gradient. Exploring the associated percolation

threshold, ρc(ℓ), as a function of ℓ, we find that increasing the fraction of free bonds

tends to shift it to higher densities while creating extended objects and “loops” pushes

it towards lower densities; hence, ρc(ℓ) is actually non-monotonic in ℓ. Not surprisingly,

the behavior of the currents is very subtle: For ρ = 0.5 (well below the percolation

threshold), the current decreases with ℓ, as larger polymers block more efficiently; for

ρ = 0.71, the current is non-monotonic, reflecting the behavior of ρc(ℓ).

For nonzero q, specifically q = 0.1, the picture changes significantly. The finite

extent of the polymers becomes far less important when particles can cross occupied

bonds with nonzero probability. As a result, the dominant factor is now the number

of bonds which allow for high particle throughput, namely, m = 0 bonds. Since

their number increases with ℓ, the currents generally increase. Of course, the picture

might become more complex again when the segment density becomes excessively large,

generating a large number of “highly occupied” bonds.

To summarize, the transport properties of a random walk network are highly

nontrivial. Clearly, we have explored only a small domain of the full parameter space,

and our statistical errors are still large. Moreover, to reflect real polymers, more

sophisticated models should surely be invoked, and more surprises may well be in store.
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