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Abstract

This study investigates the unsteady, two-dimensional flow and heat transfer past a rotationally oscillating
circular cylinder in linear shear flow. A higher order compact (HOC) finite difference scheme is used to solve
the governing Navier-Stokes equations coupled with the energy equation on a non-uniform grid in polar
coordinates. The hydrodynamic and thermal features of the flow are mainly influenced by the shear rate
(K), Reynolds number (Re), Prandtl number (Pr) and the cylinder oscillation parameters i.e. oscillation
amplitude (), the frequency ratio (f,). The simulations are performed for Re = 100, Pr = 0.5 — 1.0,
0.0 < K <0.15 and 0.5 < a,;, < 2.0. The numerical scheme is validated with the existing literature studies.
Partial and full vortex suppression is observed for certain values of shear parameter K. The connection
between heat transfer and vortex shedding phenomenon is examined where a pronounced increase in the
heat transfer is observed for certain values of oscillation parameter, relative to the non-shear flow case.

Keywords: Circular cylinder; rotational oscillation; Heat transfer; Shear flow; Finite difference; Navier-
Stokes equations.

1 Introduction

Fluid flow and heat transfer around bluff bodies like circular cylinders have been a subject of great impor-
tance. Consequently, this subject is well-studied due to its practical applications and theoretical consider-
ations [1-7]. Major applications encompass several industrial processes like tube-tank heat exchangers [8],
aeolian tones [9], flow control [10,11], mooring lines [12], off-shore oil platforms [13,14] etc. Further applica-
tions are in the chips of various shapes and cooling of electronic components [15,16].

Most of the literature studies consider non-shear flows around circular cylinders for their experiments
[13,17-24] and references therein. However, in reality, the nature of these flows is not exactly non-shear.
Thus, they can be better demonstrated by considering their shear nature. An efficient way of simulating
such flows is by considering a linear velocity profile with a constant shear at the inlet. For instance, a typical
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structure in the atmospheric boundary layer where a velocity gradient exists in the free stream. In fact,
when the inflow free stream is a shear flow, it causes a troublesome interaction of the free shear layer with
the boundary layer of the cylinder. This is due to the background vorticity in the free stream which further
alters the wake structure, vortex shedding pattern and the aerodynamic forces in a significant way. It is
known that in the case of shear flows, vortex shedding is suppressed beyond a critical shear parameter value.
This causes significant reduction in the drag force [25]. Such flows also furnish details of new observations
which help to understand the heat transfer mechanism in the case of heated cylinders. It is well established
that there is a strong coupling between the vortex shedding and heat transfer. A significant enhancement
of heat transfer has been observed under certain forcing conditions, in the case of oscillating cylinders in
non-shear flows. Saxena and Laird [26] reported that the forced oscillation of the cylinder results in a
significant enhancement of heat transfer as the oscillation frequency of the cylinder approaches the vortex
shedding frequency. Leung et al. [27] reported heat transfer enhancement with increasing either amplitude
of oscillation or frequency at higher Reynolds numbers 3000 to 50000. Childs and Mayle [28] carried out
a theoretical investigation on the effect of rotational oscillations on heat transfer for very small amplitudes
of oscillations. The results showed no enhancements in heat transfer which was attributed to the boundary
layer assumptions. Chin Hsiang et al. [29] reported that the coefficient of heat transfer can be significantly
increased by the oscillation of the cylinder for 0 < Re < 4000. Moreover, they noted that the lock-on and
turbulence effects also play important roles in the heat transfer mechanism. Mahfouz and Badr [19] studied
the forced convection from a heated cylinder with rotational oscillation placed in a non-shear stream. Their
results show the occurrence of the lock-on phenomenon within a band of frequency close to the natural
frequency. Further, the significant enhancement in the heat transfer is observed within the lock-on frequency
range. Fu and Tong [30] numerically studied the flow structures and heat transfer characteristics of a heated
cylinder oscillating transversely. They concluded that the interaction of oscillating cylinder and vortex
shedding dominates the wake leading to the periodicity of thermal fields in the lock-on regime. As a result,
the heat transfer is enhanced remarkably. Ghazanfarian and Nobari [23,24] analysed the mechanism of heat
transfer from a rotating circular cylinder performing cross and inline oscillations. The results showed that
the heat transfer is increased significantly in the lock-on regime and vortex shedding is suppressed beyond a
critical rotation speed. Also, the average Nusselt number and the drag coefficient decrease rapidly with an
increase in the rotational speed of the cylinder. Heat transfer improvement in a channel over a rotationally
oscillating cylinder was analysed by Beskok et al. [31]. They reported that the maximum heat transfer
was acquired when the oscillating frequency is 80% of the vortex shedding frequency of the fixed cylinder.
Meanwhile, the analysis of heat transfer phenomenon from a fixed heated cylinder with the circular motion
in a non-shear stream was done by AlMdallal and Mahfouz [32]. He observes significant increase in heat
transfer rate with increasing amplitude of circular motion.

However, very few studies exist in the literature for flows past circular cylinders subject to shear flows.
For instance, fixed circular cylinders by Jordan and Fromm [33], Cao et al. [34-36], Wu and Chen [37], Lei et
al. [38], Sumner and Akosile [39], Kappler et al. [40], Singh and Mittal [25], Kim et al. [41], Kang [42], Omori
et al. [43], Zhang et al. [44], Kumar and Ray [7]; rotating circular cylinders by Yoshino and Hayashi [45],
Kurose and Komori [46], Kang [47], Rohlf and DAlessio [48], Chew et al. [49] and oscillating cylinders by
Stansby [50]. Most of these studies primarily focused on the phenomenon of vortex shedding suppression,
lift force, drag crisis, movement of stagnation etc. Partial and full vortex shedding suppression is determined
for a range of parameter values together with the nature of hydrodynamic forces acting on the cylinder. It is
worth mentioning that none of the studies discussed above considered heat convection phenomena. Only a
handful of studies existing in literature investigate heat transfer phenomena past circular cylinders subject
to shear flow. Shi et al. [51] studied the heat transfer characteristics of shear flow past fixed cylinders placed
near a wall. Their results show a significant effect of shear rate on local Nusselt number and almost no effect
on the value of average Nusselt number. Abdella and Nalitolela [52] studied heat transfer past a rotating
circular cylinder in shear flow. They observed significant variation in local Nusselt number distribution with
the shear rate for a fixed rotation speed of the cylinder. The problem of heat transfer past a rotating circular
cylinder in shear flow is also investigated by Nemati et al. [53]. Their results show that the local Nusselt
number at the surface of the cylinder tends to shift in the direction of rotation. But the maximum value
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remains fixed at the front stagnation point (§ = 7). To the best of our knowledge, no study has considered
heat transfer past a rotationally oscillating circular cylinder subject to shear flow, which is investigated
in the present work. The effect of incoming shear on the heat transfer mechanism around the cylinder is
investigated by analysing local Nusselt number plots, average Nusselt number plots, isotherm contours for
a wide range of numerical parameters. The modes of vortex shedding in the lock-on regions are presented
and classified for Re = 100, f, = 1.0, Pr = 0.5 — 1.0, a,,, € [0.5,2.0], K € [0.0,0.15]. A thorough study
of the relationship between the above-mentioned parameters and heat transfer is done to investigate the
effect of shear flow (K = 0.05,0.1,0.15) relative to the non-shear flow cases (K = 0.0). We have described
the vortex shedding modes as per the number of vortices shed from each side of the cylinder in a lock-on
period, T, = mT (where m is a real number) following the works of Ongoren and Rockwell [54], Williamson
et al. [55], Al-Mdallal et al. [56], Mittal et al. [4]. Here, T is the period of the cylinder oscillation and T}, is
the lock-on period. For example, the nS mode per T i.e. nS(T), refers to the shedding of n vortices from
either side of the cylinder or alternate shedding counter-rotating n/2 vortices from each side of the cylinder
over one cylinder oscillating period, 7T'.

The paper is organized in the following sequence. In Section 2, we describe the governing equations
and their discretization procedure in the Section 3. Section 4 deals with validation of the numerical scheme
followed by results and discussion in Section 5. Finally, we summarize our observations in the conclusion.

Nomenclature
K shear rate
At time step
Ry radius of the circular cylinder
R radius of the circular far-field boundary
U free stream velocity
U, space-averaged center line velocity at inlet
a dimensionless oscillatory velocity (= Rod/Us)
a dimensional oscillatory velocity
QO dimensionless oscillation amplitude (= Ry /Uso)
Om dimensional oscillation amplitude
f dimensionless oscillation frequency (= Rof/Uso)
f dimensional oscillation frequency
fo natural frequency of vortex shedding i.e. vortex shedding frequency
for fixed circular cylinder(a,, = 0) in non-shear flow(K = 0)
Ir frequency ratio (= f/ fo)
t dimensionless time (= 7Us/Ro)
Re Reynolds number (= 2RyUs /V)
T oscillation period of the cylinder
v kinematic viscosity of the fluid
r,0 Polar coordinates
z,Yy Cartesian coordinates
P dimensionless stream function
w dimensionless vorticity
U dimensionless radial velocity
v dimensionless tangential velocity
Pr Prandt]l number
k thermal conductivity
T temperature of the surface of the cylinder
h,h local and average heat transfer coefficient
Nu, Nu local and average Nusselt number
Nu time averaged Nusselt number
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2 Governing equations

The problem of unsteady, incompressible, viscous, shear flow of constant property Newtonian fluid past an
infinitely long circular cylinder of radius R, is considered in the present study. Fig. 1 sketches the two-
dimensional schematic diagram of the problem domain together with a photograph of the computational
grid. The fluid flow advances towards the cylinder with a linear shear velocity v = U, + Ky, v = 0, which is
in polar coordinates can be written as

u= (U, + Krsinf)cos,v = —(U, + Krsinf)sin 6 (1)

and uniform temperature T, where U, is the space-averaged centerline velocity of inflow and K is the shear
parameter. Notice that the cylinder performs rotational oscillations around its axis with velocity, a(t), such
that

a(t) = ap, sin(27 ft) (2)

The conservation equations that govern the two-dimensional flow motion are the continuity and momentum
equations. The analysis of heat transfer is based on the two-dimensional unsteady thermal energy conser-
vation principle. The dimensionless form of these governing equations in cylindrical polar coordinates (r, )
can be written as ( [20])

Po 10w 1P Ref o vds O
o2 " ror "roer 2 \“or Troe ot

% 10y  109%

o7 Trar TrEae T @
82_@+18_@+i82_®—R€PT u8_®+38_®+8_® (5)
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Here w represents vorticity and v for stream function, v and v represents the radial and transverse com-
ponents of velocity respectively. The velocity components u, v in terms of stream function ¢ can be written as

1oy 0y
SRt ar (©)
and vorticity w is
1[0 ou
w = ; [E(’UT‘) - %:| (7)

Now, the boundary conditions correlated with equations (3- 5) are explained. On the surface of the
cylinder, the boundary conditions for velocity components are those of no-slip, impermeability and isothermal
conditions, i.e.

N
u=0,v=0, 1/):0,8—:—a and 0=1 when r=1 (8)
r
The surface vorticity condition can be approximated by using equation 4 together with the condition (8) is
given as

32
w:%—a—rgj when r=1 (9)
The far-field circular boundary is divided into inlet and outlet boundaries, i.e. < 0 and x > 0, respectively.
The origin is at the center of the cylinder. At the inlet, a linear shear flow condition

u= (U, + Krsinf)cos,v = —(U, + Krsinf)sin 6 (10)

is applied whereas the convective boundary condition

9¢ 99 _
5 TUog, =0 (11)
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Figure 1: (a) Schematic diagram of the flow domain, here ¢ = u,v,®, or w (b) Non-uniform polar mesh
around the cylinder, (¢) Close up view of the cylinder.

for all variables i.e. ¢ = u,v,, or w in the radial direction is applied at outlet. The inlet boundary condition
for stream function is approximated by using equation 6 given below,

1 K /1 K
Y= (r—-— sin9—|—Z——1 ——(r
r

r 2 (12)

while the vorticity at the inlet is obtained by the kinematic definition of vorticity given in equation 4 as
(Milne-Thomson [57])

-K (13)

and
=0 (14)
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Since the fully developed flow is independent of initial conditions, all the simulations may be started with
arbitrary initial conditions. Also, the periodic characteristic of the solution requires that

wlo—o = Wlo=2x,  V|o=0 = V|p=2x,  Olo=0 = Olg=2r (15)

2.1 Heat transfer parameters

Initially, constant temperature cylinder surface conducts heat to the adjacent layer of fluid followed by its
convection with the fluid motion in the wake. The heat conduction from the surface occurs only in the radial
direction which affects the radial temperature gradient at the surface followed by its effect on the local radial
heat flux. The dimensionless local heat flux in the radial direction is estimated in terms of the local Nusselt

number, Nu, defined as
2hR, 2R
k k(Ts — Two)
where h is the local heat transfer coefficient, k£ represents the thermal conductivity of the fluid and v
represents the surface local radial heat flux defined as v = —k‘g—f

Nu

. T‘:R() :
Average Nusselt number, Nu, represents the dimensionless heat transfer from the surface of the cylinder,

defined as:

2hR, 1 [*
= Nud§. 17

Nu =

_ _ 1 27
Here, h is the average heat transfer coeflicient defined as h = o / hdf. The time averaged Nusselt number
T Jo

is obtained from:

S 1 ta
Nu = / Nudt, (18)
to —t1 Jyy

where the time period between ¢; = 200 and ¢ = 400 is taken after the flow reaches the periodic state and
covers more than one cycle.

3 Numerical Scheme

The numerical scheme relies on the higher order compact (HOC) finite difference discretization of the gov-
erning equations of motion and energy on non-uniform polar grids, similar to the one employed in the work
of [7,20]. To discretize the governing equations (3)-(5), an uniform grid spacing is used along the §—direction
and non-uniform grid spacing in the r—direction. To get non-uniform grid spacing along the r—direction,
we have used the following stretching functions:

9 .
0; = il and rl-_exp<,)\m>

jmax Zmax

and the grid resolution adjusts by varying the value of the stretching parameter (A). The HOC discretization
of equations (3)-(4) is the same as given in Kumar and Ray [7] and is not repeated here for the sake of
conciseness. So, it is sufficient to discuss the numerical discretization of the energy equation (5). At any
grid point (r;,6,), the HOC discretization of equation (5) can be given as

[C11;;02 4+ C12;03 + C13,;6, + C14;;69 + C15;;6,69 +

C164;6,65 + C17;;6709 + C18;50.65]01+!

= [C21;02 + C22;;0% + C23,;0, + C24;06 + C25;;6,00 +
C26,;0,05 + C27;;6289 + C28,;6203107; (19)

The detailed expression of the coefficients C11;;, C12;5, ..., C18;; and C21;;, C22;5, ..., C28;; are presented in
the Appendix 1. The detailed expressions of ¢, 7y, ¢, 6, and the non-uniform difference operators 6,., 62, dg, 63
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Figure 2: Variation of local Nusselt number distribution, Nwu, over surface of the cylinder computed by
present scheme for three different grid sizes 151 x 151, 181 x 181 and 221 x 221 for Re = 100, a,,, = 0.5 and
K =0.1.

are given in Appendix 2. The discretization and numerical implementation of the boundary conditions for
Y, u,v,w and O are discussed in [5,7,20]. The heat transfer characteristics and flow physics is determined
from the distributions of evolution of dimensionless stream function, vorticity and isotherm contours.

4 Validation

The accuracy and reliability of the scheme on the present model have already been ascertained in the
previous works of authors [4-7,20]. Investigation is done to determine the optimal choice of grid size, time
step size and far-field boundary by doing the computation of Nusselt number on three different grid sizes
151 x 151,181 x 181 and 221 x 221 as shown in Fig. 2. No significant variation in the Nu distribution curves
is noticed by varying the grid size. Further the time average value of Nusselt number (Nu) is shown for three
different time steps At as 0.0025,0.005,0.01 (see Table 1). It is found that the maximum relative deviation

in Nu is about 0.9% by varying the time step from 0.0025 to 0.01. Following the same far-field distance [7],
we found that the optimal choice of parameters as grid size 181 x 181, time step At = 0.01 and far-field
Ro = 25R, are sufficient to capture the flow phenomenon accurately.

Further, comparisons have been made with analytical and numerical data available in the literature.
Fig. 3 shows the comparison between the present result of steadily rotating circular cylinder in shear flow
and the corresponding results of Abdella and Nalitolela [52] for the time variation of average Nusselt number,
Nu at Re = 100, = 0.5 and K = 0.1. The present results agree well with the numerical and analytical
results.

Table 1: The values of Nu for Re = 100, ai,, = 0.5 and K = 0.1 by using three different time steps, At.

At Nu
0.0025 4.0318
0.0050 4.0176
0.0100 4.0019
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Figure 3: Distribution of surface averaged Nusselt number with time at Re = 100, « = 0.25 and K = 0.1.

5 Results and discussion

The results are presented for different parameter values such as Prandtl number, Pr = 0.7; shear rate,
K = 0.0 — 0.15; oscillation amplitude, a,, = 0.5 — 2.0 and frequency ratio f. = 1.0 for a fixed value of
Reynolds number, Re = 100. Fig. 4 exhibits the isotherm contours superimposed with vorticity contours at
two different time steps for «a,, = 0.5, K = 0.1, f, = 1.0 and Re = 100. It can be seen that the contour of
isotherms almost overlaps with the vorticity contours. This indicates that the thermal energy and vorticity
generation mechanism experience similar convection and diffusion phenomenon in the flow. The heat is
advected from the cylinder wall in the near wake, which is similar to the way vorticity is advected from
the cylinder wall. The frequency of vortex shedding and the size of vortices significantly affects the heat
convection process because every vortex carries a certain amount of heat [19,20].

Figure 4: Isotherm contours superimposed with vorticity contours at times (left) ¢ = 380 and (right)
t = 395 for Re = 100, o, = 0.5, K = 0.1 and f,, = 1.0. Coloured contours represent isotherm contours while
black lines represent vorticity contours.

Fig. 5 displays the isotherm contours and local Nusselt number distribution plots along surface of the
cylinder over one period of cylinder oscillation for K = 0.05, o, = 0.5 and Re = 100. Here the vortex shed-
ding modes are locked-on over one period of cylinder oscillation and the vortex shedding mode is identified
as 15(T). Initial investigation of these isotherm contours show developing vortices like chunks of heated
fluid being convected downstream, asymmetrically about x—axis. The phenomenon of heat transfer is clear
from high concentrations of isotherms close to the cylinder surface and low concentrations away from it.
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This indicates a very thin thermal boundary layer and hence large temperature gradients near the cylinder
surface. Interestingly, the vortices are shed only from the upper surface of the cylinder with one vortex shed
per one period of cylinder oscillation which is significantly different from the non-shear case ( [20]). The
size of the vortices shed is bigger than the non-shear case. This phenomenon is due to the combined effect
of the shear rate and oscillations of the cylinder. Further, the wake flow is deflected upwards because of
the addition of vorticity generated by rotational oscillations of a cylinder and background negative vorticity
due to inlet shear (w = —K). Fig. 5 shows that local Nusselt number distribution at the cylinder surface
have the maximum values near the front stagnation point (¢ ~ 180°). The locations of maximum values in
Nusselt number distribution also change during cylinder oscillation period in the range 175° < 6 < 198°.
This is due to the combined effect of the oscillation amplitude and shear rate. However, the location of
maximum peaks in Nusselt number distribution does not show a substantial change in the case of non-shear
flow ( [20]). The Nusselt number distribution becomes asymmetric around the front stagnation point because
of the asymmetric wall shear gradient. This reveals that the heat transfer mechanism at the upper surface
of the cylinder is different from the heat transfer mechanism at the lower surface of the cylinder. Indeed,
similar observations were quoted by Nemati et al. [53] for the case of shear flow past a rotating cylinder. An
additional local maximum peak in the local Nusselt number distribution curve in the range 20° < 6 < 50°
is observed in Fig. 5. This means the vortex shedding phenomenon causes some enhancement in the heat
transfer process in the vicinity of the rear stagnation point similar to the non-shear case.

When the shear rate, K, increases to 0.1, as shown in Fig. 6, the vortex shedding is locked-on over two
periods of cylinder oscillation. Here, the vortex shedding mode is identified as 25(2T"). The size of the
vortices shed is bigger than the size at K = 0.05. The value of the maximum peak in the Nusselt number
distribution decreases as compared to the case when K = 0.05. There is no vortex shedding at the front
stagnation point. A lower peak value of the Nusselt number at the front stagnation indicates that more and
more heat is being transferred through conduction. The location of this maximum peak shifts to 8 ~ 204°
as compare to @ ~ 180° (corresponding to K = 0.05). The distribution of the Nusselt number curve at the
lower half surface of the cylinder (180° < 6 < 360°) is significantly different from the distribution of the
Nusselt number curve at the upper half (0° < § < 180°). It is observed that the lower half generates more
heat than the upper half which can be attributed to relatively lesser fluid velocity near the lower half than
the upper half. Therefore shear rate can significantly alter the dynamics of the heat transfer mechanism.

Further increase in K to 0.15 in Fig. 7 leads to a full vortex shedding suppression. The isotherm contours
are elongated in the stream-wise direction showing nil development of vortex. Vortex shedding suppression is
also been observed for the case of rotating cylinder by [49], [58], [22,59], [23,24], [21]. The value of maximum
peaks in the Nusselt number distribution plot is observed to oscillate in the range 180° < 6 < 270°. The
value of this maximum peak is the highest amongst K = 0.05 and K = 0.1 cases. The distribution of Nu
curves in the lower half is different from that in the upper half, similar to the case when K = 0.1. However,
the elongation of the wake causes some increment in the heat transfer at the surface of the cylinder in
40° < 0 < 70°, which is apparent from the additional local maximum peak there. No such vortex shedding
suppression is observed for the case of non-shear flow ( [20]) corresponding to the same set of numerical
parameter values.

In Fig. 8, when the oscillation amplitude, «,,, increases to 1.0, the vortex shedding modes are identified as
15(T), 25(2T) corresponding to K = 0.05, 0.1 respectively. In this case also, the size of the vortices increases
with an increase in K value upto 0.1. Interestingly, it is observed from the isotherm contours corresponding to
K = 0.05 that the vortex that begins to develop from the lower surface of the cylinder eventually merges into
the wake without getting detached. The development of vortices from the lower surface (180° < 6 < 360°)
of the cylinder tend to cease with increasing K till K = 0.1 leading to nil generation of vortices from both
sides when K = 0.15. Similar partial vortex shedding suppression is observed by Chew et al. [49] for the case
of rotating circular cylinder. The phenomenon of heat transfer has a similar description to that obtained at
o, = 0.5. However, the value of the maximum peak in the Nusselt number distribution plot increases for
oy, = 1.0 relative to a,, = 0.5 case, corresponding to all considered K values.

With further increase in a,, to 2.0 (Fig. 9), the vortex shedding modes are identified as 1.5(T),25(2T),25(T)

corresponding to K = 0.05,0.1,0.15 respectively. A first inspection of the isotherm contours reveals that
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Figure 5: The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours
over one period of cylinder oscillation, T', for Re = 100, o, = 0.5 and f, = 1.0, at K = 0.05.

vortices are shed only from the upper surface of the cylinder, for all K values. It is observed that the size
of the vortices decreases with increasing K continuously as opposite to the previous values of «,, where
the size first increases upto K = 0.1 and then decreases. As K increases, the vortex development length in
the stream-wise direction shortens where more number of vortices are seen in the wake. This is due to the
combined effect of large K value and high rotation rates leading to complex flow structure. Similar shorten-
ing of the vortex development length is observed by Mittal and Al-Mdallal [20] for non-shear flow case with
increasing the frequency ratio f.. The values of maximum peaks in Nu plots for a,, = 2.0 are minimum
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Figure 6: The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours
over two periods of cylinder oscillation, 27", for Re = 100, a.,, = 0.5 and f. = 1.0, at K =0.1.

amongst a.,, = 0.5 and 1.0 cases corresponding to all considered K values. Significant fluctuations in the
maximum-minimum peaks in Nu plots are seen during the cylinder oscillation period at a high shear rate
K = 0.15. The locations and values of the maximum peaks show a substantial change during the cylinder
oscillation period for K = 0.15. Maximum peak is observed at 6 ~ 324° when the cylinder completes half
of its oscillation period. This observation is attributed to both the high shear rate and large oscillation
amplitude of the cylinder oscillation which will definitely affect the structure of the fluid attached to the
cylinder.
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Figure 7: The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours
over one period of cylinder oscillation, T', for Re = 100, o, = 0.5 and f, = 1.0, at K = 0.15.

Fig. 10 summarizes the locked-on vortex shedding modes for f, = 1.0, K € [0.0,0.15] and «, € [0.5,2.0]
at Re = 100. When the inflow free stream is a shear flow, the vortex shedding from the surface of the
cylinder over one period of cylinder oscillation gets delayed relative to the non-shear case. For instance, two
vortices are shed from the surface of the cylinder over one oscillation period for non-shear case (K = 0.0)
while one vortex is shed during one oscillation period for shear flow. The number of vortices that are being
shed during one oscillation period does not change with «,, for the fixed value of K. Full vortex shedding
suppression is observed for K = 0.15 and «,, < 2.0. The vortex shedding mode for K = 0.15, a, = 2.0 is
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Figure 8: The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours
over (a) one period of cylinder oscillation, T, for K = 0.05, (b) two periods of oscillation, 27T for K = 0.1
and (c) one period of oscillation, T, for K = 0.15; at Re = 100, o, = 1.0 and f, = 1.0.

similar to the non-shear case (0.5 < a,, < 2.0).

Fig. 11(a) shows the effect of K on the variation of local Nusselt number over cylinder surface for
am = 0.5, f, = 1.0 at Re = 100. For non-shear flow, the variation of local Nusselt number shows the
maximum peak at § =~ 180°. For shear flow, the value of the maximum peak decreases with increasing K
upto K < 0.1 and increases again for K = 0.15, where it attains the maximum value. The location of the
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Figure 9: The variation of local Nusselt number, Nu, along surface of the cylinder and the isotherm contours
over (a) one period of cylinder oscillation, T, for K = 0.05, (b) two periods of oscillation, 27T for K = 0.1
and (c) one period of oscillation, T, for K = 0.15; at Re = 100, o, = 2.0 and f, = 1.0.

maximum peak for K = 0.0,0.05 and 0.1 is nearly the same but a significant shift in the location of the
maximum peak along the cylinder surface is observed for K = 0.15. Similar observations are documented
by Yan and Zu [60] for the cylinder rotating in a non-shear flow and by Nemati et al. [53] for the cylinder
rotating in a shear flow. The effect of rotational parameter «,, on the average heat transfer rate can be
observed from Fig. 11(b) for different values of K. a, plays a significant role in the heat transfer phenomenon
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Figure 10: A summary of the locked-on vortex shedding modes for f, = 1.0, K € [0.0,0.15] and ., € [0.5,2.0]
for Re = 100.

for the higher shear rate K = 0.15. When K = 0.15, heat transfer rate increases significantly from 6.5071
(o, = 0.5) to 7.3052 (v, = 1.0) followed by a sudden drop to 5.5650 (a;, = 2.0). Extraordinary fluctuating
behaviour is attributed to a very high shear rate and the oscillation of the cylinder surface. This may be
due to the fact that the background vorticity in the free stream dominates the vorticity generated from the
cylinder surface which is unlikely for the low shear rate.

In order to describe the effect of Prandtl number, Pr, on heat transfer, the variation of local Nusselt
number on the surface of cylinder for different values of Pr and a,, = 2.0, f, = 1.0 at K = 0.1 in Fig. 12(a).
With increase in Pr, Nu plot shows a translation towards positive y—axis, similar to the non-shear flow case
( [20], [24]) and the locations of maximum peaks are also the same. The effect of Pr on the overall heat
transfer can be seen from Fig. 12(b) for both shear and non-shear flows. The time averaged values of heat
transfer rate for «a,, = 1.0, f, = 1.0 and K = 0.1 are 4.4052,5.4085 and 5.8653 for Pr = 0.5,0.7 and 1.0,
respectively. The values increase by 22.77% when Pr increases from 0.5 to 0.7 and 8.45% when Pr increases
from 0.7 to 1.0. However, for the non-shear flow case the change are 19.17% when Pr increases from 0.5 to
0.7, 19.84% when Pr increases from 0.7 to 1.0.

Conclusion

This study numerically investigates the heat transfer from a two-dimensional isothermal circular cylinder
rotational oscillations in a linear shear flow. The coupled governing equations of flow and heat transfer are
solved by using higher order compact finite difference scheme. The simulations are performed for Re =
100, Pr = 0.5 — 1.0, o, € [0.5,2.0], fr = 1.0 and K € [0.0,0.15] to address an increase or decrease in the
heat transfer rate relative to non-shear flow. The introduction of shear at the inlet causes a troublesome
interaction of the free shear layer with the boundary layer of the cylinder due to background vorticity in the
free stream. This phenomenon alters the wake structure, vortex shedding and heat transfer mechanism in a
significant way. The numerical results reveal that shearing of the inlet free stream can lead to partial or full
vortex shedding suppression from the surface of the cylinder for a fixed rotational speed. New findings are
uncovered at high shear rates where a pronounced increase in the heat transfer rate is reported at certain
values of rotational speed (a,, = 0.5,1.0), relative to the non-shear flow. A reduction in the heat transfer
rate is reported at a low shear rate (K = 0.05) for all considered values of a;,,, relative to the non-shear flow

15

220z 1udy /| uo Jesn (1SNVM) ABojouyoa] pue 8ousidg 104 AsIanun elinpay Bury Aq Jpd'Gy9L-12-1U/L82Z.89/0SEYSOY LIS L L L 0L/0p/APd-BjoiLE IajSUBIEaY/BI0"aWSE UONDa||00|eYBIpaLISE/:dllY WOl PaPEOjUMOQ



11; R=00 8
i = a,=0.5
- . a =10
9 vat A =20 *
7t S )
> | |=6r .
5¢ @ $
5[ *
3 E
F N 47 PR T S (NS N S E (R S SR !
10 90 lgp 270 360 0 0.05 K 0.1 0.15

(a) (b)

Figure 11: The variation of (a) the local Nusselt number, Nu, along surface of the cylinder for different K
values at a,, = 0.5 and (b) the time average Nusselt number vs. shear rate, K, of oscillating cylinder at
different values of o, for Re = 100, f, = 1.0.
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Figure 12: Effect of Pr on (a) the variation of local Nusselt number at time period ¢t = 27 for K = 0.1, o, =
2.0 and (b) the variation of time average Nusselt number for K = 0.0,0.1, ov,, = 1.0 for Re = 100, f,. = 1.0.
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case. However, the heat transfer rate increases with an increase in the values of K (K > 0) for all considered
values of a,,. For high shear rate (K = 0.15), a significant increase in the heat transfer rate is observed
when «, increases (0.5 < a,,, < 1.0) followed by a sudden drop to minimum (1.0 < a,, < 2.0).

Future work encompasses a comprehensive study of the heat transfer mechanisms for a wide range of
frequency ratios (f,), Reynolds numbers (Re) to draw more general conclusions.
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Appendix 1

011” = H12R8 - O5AtA1”, 021” = H12R8 + 05At01w,
Cl2ij = T‘Z-2K12R€ — 0.5AtA2ij, C22ij = T%KlgRe + 0.5AtC2ij,
Cl?)ij = Re(H11 — 01H12) — 0.5Atc3i]‘,

CQ?)Z'J' = RG(HH — ClH12) + 05At03”,

014” = ’I”?Re(Kll + TZ'RG’ULJ‘K12) - 05At04w,

024” = ’I”?Re(Kll + TZ'RG’ULJ‘K12) + 05At04w,

C15;; = —0.5AtC5,;, €25, = 0.5AtC5,;,

C16;; = —0.5AtC6,;, C26,; = 0.5AtC6,;,

Cl?u = —0.5AtC7ij, 0271']‘ = 05AtC7U,

C18;; = —0.5AtC8,;, C28;; = 0.5AtC8,;,

where,
Cl'j = 1 — O 501( f — Tb) — (ngc% — ClHll) — 2H12 (Re(ur)ij —+ TLQ) )
C2;j =t 0.5d1 (07 — 0p) — —(H11 — Hiscy) + 2242 6 12 — Rev;jr; (K11 + RevijriK12) — 2K12Re(vg) 573,

C3i; = c1 — (Hu1 — c1Hio) (Re(ur)ij + ;f) - H12 (Re(urr)ij — %) — Re(ug)ijr? (K11 + Revijr; K1) —
KiaRe(vgg)ijre,

C4ij = —di — (Hll - ClHl?) ((Ur)ijr Ul]) T? — Hyp ((Urr)ijriz - 2('Ur)ij7'i + 2'Uij) 5—138 - Re(vg)ijri(Ku +
RevijmKlg) — K12R6(’l}96‘)ij7°i,

C5;; = —dy(H11 — c1Hya) — 2Haa ((0r) 4575 — v4j) f—; + 172 (K11 + RevijriK12) — 2K19Re(vg)ijr?,

C6ij = (Hll - Clle)— — 4H12 + 01K12T

CTij = —d1H12 + 7 (K11 + RevwrlKlz)

Cgij - 12 + KlgT‘

Hyy = % 2 (ry —mp) +crpmy},
His = QL { rf +712 —rry) +erprp(ry — rb)} ,
Kyp=1 {%(ef —0y) — defeb}

Appendix 2
The expressions for the finite difference operators appearing in the above equations are as follows:

i1, — Pi-1,j
Srpi; = %7
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