
 1 

Ligand Rebinding: Self-consistent Mean-field Theory and 

Numerical Simulations Applied to SPR Studies 

 
Manoj Gopalakrishnan¶

1
, Kimberly Forsten-Williams§*, Theresa R. Cassino§, Luz 

Padro§, Thomas E. Ryan† and Uwe C. Täuber¶ 

 
¶ Department of Physics, Virginia Polytechnic Institute and State University,  

    Blacksburg, VA 24061-0435, USA. 

§ Department of Chemical Engineering and Virginia Tech - Wake Forest University 

School of Biomedical Engineering and  Sciences, Virginia Polytechnic Institute and State 

University, Blacksburg, VA 24061-0211, USA. 

† Reichert, Inc., 3374 Walden Avenue, Depew, NY 14043, USA. 

* Corresponding Author 

 Kimberly Forsten-Williams 

Department of Chemical Engineering and Virginia Tech - Wake Forest University 

School of Biomedical Engineering and  Sciences 

Virginia Polytechnic Institute and State University 

Blacksburg, VA 24061-0211, USA. 

540-231-4851 (tel), 540-231-5022 (fax), kfw@vt.edu 
 

 

Abstract  

Rebinding of dissociated ligands from cell surface proteins can confound quantitative 

measurements of dissociation rates important for characterizing the affinity of binding 

interactions.  This can be true also for in vitro techniques such as surface plasmon 

resonance (SPR).  We present experimental results using SPR for the interaction of 

insulin-like growth factor-I (IGF-I) with one of its binding proteins, IGF binding protein-

3 (IGFBP-3), and show that the dissociation, even with the addition of soluble heparin in 

the dissociation phase, does not exhibit the expected exponential decay characteristic of a 

1:1 binding reaction. We thus consider the effect of (multiple) rebinding events and, 

within a self-consistent mean-field approximation, we derive the complete mathematical 

form for the fraction of bound ligands as a function of time. We show that, except for 

very low association rate and surface coverage, this function is non-exponential at all 

times, indicating that multiple rebinding events strongly influence dissociation even at 

early times. We compare the mean-field results with numerical simulations and find good 

agreement, although deviations are measurable in certain cases. Our analysis of the IGF-

I-IGFBP-3 data indicates that rebinding is prominent for this system and that the 

theoretical predictions fit the experimental data well.   Our results provide a means for 

analyzing SPR biosensor data where rebinding is problematic and a methodology to do so 

is presented. 

 

 

 
                                                
1 Present Address: Max Planck Institut für Physik komplexer Systeme, Nöthnitzer Stra

�
e 38, 01187 

Dresden, Germany. 



 2 

 

(i) Introduction 

 
Signal transduction via transmembrane receptor proteins is initiated by extracellular 

binding with specific proteins known as growth factors.   These interactions tend to be of 

high affinity and, in many systems, are regulated by binding proteins present in the 

extracellular environment.  Insulin-like growth factor-I (IGF-I) constitutes one prominent 

example of such a growth factor.  Cell signaling is transmitted by direct interaction with 

the IGF-I receptor but this binding can be impacted by solution and cell-associated IGF 

binding proteins (IGFBPs), of which there are at least six.  Quantification of the 

interactions of IGF-I with IGFBPs is critical if one is to understand how changes in 

expression and secretion will impact IGF-I signaling.  Surface plasmon resonance (SPR) 

is one technique amenable to such measurements.  SPR is an optical sensor technique that 

has the advantage of being able to take real-time measurements using low concentrations 

of unlabeled biologicals [reviewed in Cooper  2003].   

 

Quantification of IGF-I interactions with both cell surface receptors and IGFBPs using 

SPR has been performed as a means of evaluating and predicting the competition 

between these molecules for IGF-I.  Studies have used immobilized IGF-I [Wong et al. 

1999; Dubaquie and Lowman 1999; Galanis et al. 2001; Fong et al. 2002; Vorwerk et al. 

2002], IGF-I receptor [Jansson et al. 1997], or IGFBPs [Heding et al. 1996; Jansson et al. 

1997; Marinaro et al. 1999; Fong et al. 2002; Vorwerk et al. 2002] using amine chemistry 

to link the proteins to a carboxymethyl dextran (CMD) layer on the SPR chip.  Deviations 

from a single reversible binding model have been noted and attributed primarily to non-

uniform coupling of the ligand to the gel.  Fong et al. (2002) compared kinetic parameters 

for IGF-I and IGFBP-1 using both a CMD and a self assembled monolayer (SAM) chip 

and saw significant differences in derived binding affinities that they attributed to 

possible steric hindrance effects and transport issues. Vorwerk et al. (2002) used a CMD 

chip with coupled IGFBP-3 and measured values that differed from previous work 

[Heding et al. 1996; Wong et al. 1999; Galanis et al. 2001; Fong et al. 2002] that they 

attributed to the use of increased flow rate to assist in combating mass transport and 

rebinding effects.  However, regardless of flow rate, fitting of dissociation data for this 

system has been problematic.  

 

A phenomenon of particular interest in the quantification of ligand interactions is 

rebinding: a ligand, following dissociation from a bound protein on the surface, may 

diffuse in the extracellular fluid environment for some time and may be reabsorbed later 

at one of the free binding sites. Rebinding is believed to be an important mechanism in 

producing cellular response, especially with dilute ligand concentrations, by assisting 

receptor proteins to stay in the active state for longer periods of time. Rebinding also may 

promote co-operative behavior among clustered receptors by reducing the overall ligand 

dissociation, a phenomenon observed recently in experiments addressing the role of 

clustering in lipid rafts [Chu et al. 2004]. 

 

From a more general perspective, a quantitative characterization of the effects of 

rebinding is important in experiments like SPR, when dissociation rates of growth factors 
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(or other ligands) are measured. In such a situation, it would be ideal to eliminate 

rebinding altogether since it interferes with the measurement of intrinsic dissociation and 

might lead to imprecise and significantly reduced dissociation rates [Nieba et al.1995].  

Low surface coverage and higher flow rates are techniques used to counteract mass 

transport limitations [Schuck 1997].  Further, inclusion of specific proteins or molecules 

that may be used to bind to the released ligands or un-occupied binding sites and thus 

make them unavailable for rebinding is another technique targeted specifically at the 

rebinding problem. This technique has been used successfully for measuring the 

interaction of the SH2 domain of lck with a phosphotyrosine peptide [de Mol et al. 2000].  

However, in the absence of quantitative information on the affinity of these agents for 

binding to either the ligand or the receptor, it is difficult to estimate the general reliability 

of these methods. An alternative is to understand how much rebinding might alter the 

dissociation of ligands in a given environment, and use this information to estimate the 

intrinsic rate of dissociation.  

 

Rebinding of ligands to cell surface receptors has been extensively studied before in the 

context of isolated cells in a solution of ligands. Berg and Purcell [Berg and Purcell 1977] 

showed that the association rate of ligands in this case initially increases with the receptor 

number N (per cell), and approaches a finite value in the limit of large N (corresponding 

to a cell surface completely covered by receptors). Similarly, the effective dissociation 

rate of ligands from cell surface receptors was shown to be dependent on N, and is, in 

general, smaller than the dissociation rate from isolated receptors in solution [De Lisi and 

Wiegel 1981; Shoup and Szabo 1982; Goldstein et al. 1989; Zwanzig 1990; Goldstein et 

al. 1999]. This non-trivial effect is attributed to increased rebinding of ligands in the case 

of cell surface receptors: a dissociated ligand is likely to return to the cell surface several 

times over a small interval of time before diffusing far away from it. This causes a 

reduction in the effective dissociation rate, which increases in significance as the receptor 

density is increased.  

 

The role of rebinding is further enhanced when the effective dimensionality of the 

interaction between ligands and receptors is reduced. For instance, consider a single layer 

of cells in a tissue or in a petri dish. The ligands diffusing in the local cell vicinity will 

bind to sites in this cell layer, which is effectively a two-dimensional plane over 

sufficiently small (but non-microscopic) length scales. This feature is particularly 

relevant in experimental methods such as SPR, where the binding proteins (receptors) are 

attached to a planar surface. The rebinding phenomena in this (2+1)-dimensional 

geometry must be expected to be qualitatively different from the full three-dimensional 

situation studied by previous authors, since the return-to-the-origin characteristics of a 

random walk are strongly dimension-dependent [Feller 1966]. 

 

Ligand rebinding in the case of receptors on a planar surface has been addressed in a few 

previous studies [reviewed in Goldstein et al. 1999].  For example, competition between 

convective and diffusive aspects of transport in the Biacore biosensor was studied by 

Edwards et al. [Edwards et al. 1999] in the limit of large flow velocity. Wolfsy and 

Goldstein [Wolfsy and Goldstein 2002] studied the effective rate coefficients in a Biacore 

experiment where the receptors are attached to polymers immobilized on the sensor 
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surface. A rigorous mathematical study of ligand rebinding to receptors attached on a 

planar surface (in the absence of flow and solution receptors) was presented by 

Lagerholm and Thompson [Lagerholm and Thompson 1998]. In this work, coupled 

partial differential equations were used to study the time evolution of the probability of 

rebinding with appropriate boundary conditions at the surface. Although various 

quantities such as the rebinding probability of a released molecule could be calculated 

within this formalism, these expressions could not be directly compared to existing 

experimental results, where typically only the bound fraction of ligands is measured.  

 

In this paper, we present an alternative formalism to study ligand dissociation from 

receptors attached to a planar surface in the limit of vanishing flow velocity, i.e., fully 

diffusion-limited transport. In contrast to most previous approaches, we describe the 

rebinding dynamics in terms of Brownian trajectories of individual ligand molecules 

dissociating from and re-attaching to the surface, with possibly multiple visits to the 

surface in between. Within a mean-field approximation, this approach yields a self-

consistent integral equation for the fraction of bound receptors as a function of time, 

whose general solution is a slowly decaying non-exponential function. Monte Carlo 

simulations confirm the non-exponential nature of the decay. Experimental results of SPR 

experiments designed to measure dissociation of IGFBP-3 from IGF-I are presented, 

which are performed (i) in both the presence and absence of flow,  (ii) with and without 

addition of soluble heparin in the dissociation phase to bind released IGFBP-3 in 

solution, and (iii) with varying surface coverage of IGF-I. The theoretical dissociation 

function is checked against the experimental curves, both in the presence and absence of 

exogenous heparin (that binds to IGFBP-3 but not IGF-I [Forsten et al. 2001]). The 

agreement is found to be very good, in the presence and absence of flow, up to time 

scales ~ 200-300 s at which time other features, perhaps the finite height of the 

experimental system, appear to become significant and further slowing down of the 

dissociation is evident. Our results therefore indicate that a proper assessment of 

rebinding effects is crucial in the analysis of SPR dissociation data, which might 

otherwise lead to erroneous estimation of rate constants.  

 

This paper is divided into the following sections. In (ii), we describe the SPR 

experimental setup and results.  In (iii), our self-consistent mean-field theory is presented 

in detail and the mathematical form for the full dissociation curve is obtained in that 

framework. We then analyze the data by means of the mean-field function. Sec. (iv) is 

concerned with the simulation model and the numerical results. We summarize this work 

and our findings in (v). 
 

 

(ii) Experimental 
 

Growth factor signaling is regulated by both association and dissociation with cell 

signaling receptors with both rates impacting the persistence of the interaction 

[Lauffenburger and Lindermann 1993].  Measurement of these kinetic rates in vivo is 

difficult and confounded by potential alternative binding partners leading 

experimentalists to use techniques such as SPR to measure the isolated interactions.  The 
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ratio of the dissociation rate and association rate constants for a 1:1 binding reaction at 

equilibrium is referred to as the equilibrium dissociation constant (KD), and it can be used 

in conjunction with either the dissociation or association rate to determine the other rate 

constant.  Measurement of KD, however, can be time-consuming using SPR and 

independent measurement of the rate constants would be preferable.  This is the approach 

used in the experiments reported in this paper. 

 
2.1 Surface preparation 
The surfaces used for these studies were composed of a mixed self assembled monolayer 

(mSAM) on gold (500 nm) coated slides (EMF Corporation, Ithaca, N.Y.) prepared as 

previously described [Lahiri et al. 1999]. Briefly, the gold coated slides were immersed in 

a mixture of 0.2 mM carboxylic acid-terminated thiol and 1.8 mM tri(ethylene glycol)-

terminated thiol (Toronto Research Chemicals, Toronto, Canada)  for 12 hours.  The 

surfaces were then rinsed with ethanol and dried under nitrogen.  The resulting surface 

had free carboxyl groups for amine coupling and polyethylene glycol to minimize non-

specific binding (Fig. 1).   

 
2.2 Activation and immobilization 

Activation of the surface was achieved using N-ethyl-N-(3-diethylaminopropyl) 

carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. Immobilization was 

done both on-line and off-line. Briefly, off-line immobilization was initiated by washing 

the chip surface with 20 mM NaOH and rinsing with phosphate buffered saline with 

0.005% Tween, pH 7.4 (PBST) (Sigma-Aldrich Corp., St. Louis, MO).  A fresh solution 

of 0.2 M EDC (Pierce, Rockford, IL) and 5 mM NHS (Aldrich Chemical Co., 

Milwaukee, WI) was placed on the surface of the slide and allowed to react for 12 min at 

room temperature.  The chip was then rinsed with 20 mM sodium acetate, pH 5.5.   IGF-I 

(PeproTech, Inc., Rocky Hill, New Jersey) was then immobilized by placing 0.2 ml of 3.3 

µM IGF-I in 20 mM sodium acetate solution onto the surface and incubated overnight in 

a container sealed under nitrogen at 4 ºC.  Following a wash with PBST, the slide was 

rinsed with 1M ethanolamine and then deactivated by surface exposure to 1M 

ethanolamine for 10 min at room temperature.  The surface was then washed several 

times with PBST and dried with nitrogen prior to placing on the SPR unit.  

 

On-line immobilization was performed in a similar fashion.  Briefly, after placing the 

chip on the sensor surface, on-line immobilization was initiated by washing the chip 

surface with deionized water and then switching to PBST for ~5 min. until a stable 

baseline SPR signal was obtained. EDC/NHS solution (0.2 

M EDC and 5 mM NHS in deionized water) was then injected into the system to activate 

the surface and allowed to react for 10 min.  20 mM sodium acetate buffer (pH 5.5) was 

then run over the sensor surface for ~ 5 min. until a stable baseline was obtained.  IGF-I 

was then immobilized by running 3.3 µM IGF-I in 20 mM sodium acetate solution over 

the surface for a particular amount of time to obtain the amount of IGF-I desired on the 

surface. PBST was then run for 4 min. to wash the surface. Following the PBST wash, 

1M ethanolamine was run for 10 min. to deactivate the surface and prevent covalent 

binding of other proteins to the slide. The surface was then washed with 20 mM 

HCl and 20 mM NaOH for 5 minutes each before switching to PBST for the binding 
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experiments. The entire procedure was carried out at 25°C (controlled by the SPR 

instrument).  

 
2.3 Dissociation experiments 

Dissociation experiments were performed on a Reichert, Inc. SR 7000 Alpha instrument 

(Buffalo, New York) following either off-line immobilization of IGF-I and chip 

placement on the unit or on-line immobilization of IGF-I.  PBST was run over the sensor 

surface and then followed by washes with 20mM HCl and 20 mM NaOH for 5 min each.  

The system was returned to PBST until a stable baseline was obtained (< 10 minutes) at a 

flow rate of ~0.8 ml/min.  IGFBP-3 (Upstate Biotechnology, Lake Placid, NY) was 

pumped over the surface for 15 min to allow association.  Following the association 

phase, PBST or PBST with heparin sodium from porcine intestinal mucosa (Celsus, 

Cincinnati, OH) was pumped over the surface to promote dissociation of the bound 

IGFBP-3.  The surface was regenerated using 5 min washes of 2M NaCl in PBST, 20 

mM HCl, and 20 mM NaOH.  This procedure was repeated for each sample.  Verification 

that the heparin sodium did not bind the IGF-I surface at the concentrations used for 

dissociation was performed.   
 

2.4 Experimental results 

Introduction of IGFBP-3 into the flow chamber over immobilized IGF-I led to the 

anticipated increase in binding characterized by a change in refractive index which is 

measured as pixels for the SR7000 Alpha unit, a similar unit to the RU commonly 

reported for the Biacore system (Fig. 1).  The data was fit well by a 1:1 binding model 

with R
2
 values of ~0.99 suggesting that heterogeneity of immobilized IGF-I was not a 

significant issue. However, the dissociation phase did not reflect the exponential decay 

one would expect for a 1:1 binding interaction and global fitting using CLAMP [Myszka 

and Morton, 1998] either with or without mass transport did not provide a good fit (data 

not shown).  Similar dissociation phase data were collected whether the system was under 

high flow or not (Fig. 2) despite some differences in the kinetics of association (data not 

shown) suggesting that rebinding might be a more prominent issue in the deviation from 

expected results for the dissociation phase.  

 

We have shown previously that IGFBP-3 and heparin interact strongly and negligible 

binding affinity exists between IGF-I and heparin, suggesting heparin might be a good 

rebinding inhibitor [Forsten et al. 2001, Goldstein 1989].  Inclusion of heparin in the 

association phase significantly reduced IGFBP-3 binding levels while no change in pixels 

was observed when heparin was introduced to the IGF-I flow cell in the absence of 

IGFBP-3 (Fig. 2B).  We therefore investigated whether inclusion of heparin in the 

dissociation phase fluid would impact the dissociation rate.  A significant reduction was 

observed (Fig. 3) and was repeatable for both multiple runs on the same and on different 

chips and in the presence and absence of flow.  A heparin dose dependence effect was 

seen (data not shown).  The reduction, however, still did not reflect exponential decay 

over the entire time regime.  We emphasize that these experiments were all done with 

off-line coupling of IGF-I to obtain high coverage, and consequently good signal-to-

noise, for our system.   
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The SAM is designed with only 10% of sites available for binding, although, depending 

on the radius of the protein, higher overall surface densities/coverage are possible [Lahiri 

et al. 1999].  We, therefore, used on-line coupling to reduce coverage to see if that might 

impact dissociation.  Ligand loading has been shown previously with CMD surfaces to 

impact interaction kinetic measurements [Edwards et al. 1997].  A reduction in IGF-I 

surface coverage did result in somewhat faster dissociation particularly in the presence of 

high heparin concentrations but exponential decay was still not observed (Fig. 4).  

Normalized association curves, moreover, were not significantly different for the reduced 

coverage chips (data not shown).   

 

To summarize, the SPR experiments with IGF-I and IGFBP-3 provide strong evidence 

that rebinding of ligands can significantly affect the dissociation data.  Rebinding was 

found to be important even in the presence of flow conditions as well as high heparin 

concentrations. In the following section, we present a systematic theoretical treatment of 

this system which accounts for the observed non-exponential decay of the dissociation 

curve.  

 

 

(iii) Theory  
 

3.1 Self-consistent mean-field theory of ligand rebinding 

In this section, we outline the mathematical theory of ligand dissociation and the 

consequent (multiple) rebinding to the binding sites on the surface. We attempt to 

simulate the SPR experimental set-up (Fig. 1) and model the immobilized surface 

proteins (receptors or binding sites) as being homogeneously distributed on a two-

dimensional surface (Fig. 5). We employ a self-consistent mean-field approximation that 

takes into account the full binding-dissociation-rebinding history of a given ligand, yet 

ignores the details of the spatial organization of the receptors. This means that a ligand 

molecule infinitesimally close to the surface binds to it with a space-independent 

probability, which depends only on the mean fractional surface coverage and the 

association rate. By construction, this approximation works better when the fractional 

coverage of receptors is low, so that the probability of occurrence of regions with surface 

coverage significantly larger than the mean value is small. Our numerical simulations 

show that the approximation works reasonably well up to about 10% of fractional 

coverage, but the deviation  is more significant at 50% coverage (ref. Fig. 6 below). 

 

To simplify the analysis, we neglect the flow conditions in the system, i.e., our model is 

strictly valid only in the limit where the flow velocity vanishes. However, it is possible 

that this is not a serious limitation since, on account of the viscous drag, the flow velocity 

decreases towards the substrate, and vanishes altogether at the surface. This presumably 

would lead to the formation of a diffusion-limited zone close to the sensor surface, where 

mass transport is controlled by diffusion rather than convection. Our theory should 

describe well such a system, and we further note that the experimental results did not 

show any significant difference in dissociation between the flow and no-flow situations, 

further justifying this approximation. 
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We define ( )tp  to be the fraction of binding sites which are bound to ligands at time t, so 

that p(0) is the  fraction  bound   immediately following association. The dissociation and 

association rates are denoted −k  and +k  respectively. The most general equation 

describing the time evolution of ( )tp  is then 

                                                                             

 ( ) ( )[ ]tptkp(t)k
dt

dp(t) −+−= +− 1,
�✁   ,                               (1) 

 

where ( )t,z✂   denotes the ligand concentration (throughout this paper, we define 

concentration as number of molecules per unit volume, rather than the more conventional 

number of moles per unit volume noting that a simple conversion factor can be used to 

interconvert between the two units) as a function of the perpendicular distance z from the 

surface and time t. The length scale ✄  is a microscopic length scale (defined more 

precisely in the following paragraph and section 3.3), and ( )t,☎✆
 is the ligand 

concentration within a thin slab of thickness ✄  above the surface. The first term in Eq.1 

corresponds to dissociation and the second term represents the rebinding events.  

 

We now propose a lattice formulation of the problem, whereby the ligand diffusion is 

modeled as a discrete random walk in three-dimensional space. For simplicity, we ignore 

the detailed three-dimensional structure of the receptors (and ligands). Instead, the two-

dimensional substrate surface is modeled as a (square) lattice of randomly mixed 

potential binding sites (depending on occupancy) and non-binding sites. The lattice 

spacing for the full three-dimensional lattice is defined to be✄ , which may be interpreted 

as the typical distance traversed by a ligand molecule in solution without appreciable 

change in its direction (defined more precisely in Sec.3.3). The fraction of binding sites 

in the substrate lattice is denoted by ✝  and is proportional to the surface coverage of the 

receptors. However, since the binding process is not necessarily diffusion-limited, it 

would be more accurate to regard ✝  as an effective parameter which is a function of the 

association rate +k . The relation between the two quantities (✝  and +k ) is crucial to our 

analysis, and will be discussed in detail in Appendix A. A glossary of the important 

parameters and symbols used in this paper is provided in Table 1. 

 

Let us define the rebinding rate ( ) ( )t,kt ✞✟✠
+= , which we will now compute within the 

lattice model. The basic stochastic event contributing to the rate ✡(t)  is the dissociation of 

a ligand at a certain bound receptor during a given time interval [ ]τττ d+; , where t<☛ , 

and its subsequent adsorption at the reference site at time t. In the lattice formulation, this 

process is a random walk starting at the point ( )☞,y,x  and ending at the origin, with 

possibly multiple visits to the surface in between. We have also assumed here that the 

vertical separation between a ligand and the substrate surface immediately following 

dissociation is of the order of ✄ .  

 

Within the mean-field approximation we employ here, the spatial fluctuations in receptor 

density are ignored. The rebinding probability in this case may be expressed as  
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�
−= −

t
)t;(C)(pdk)t(

0

✁✂✁✁✄ ☎  ,               (2) 

where )T;(C ✆✝  is the probability that a diffusing particle starting at the point z = ✞ at 

time t = 0 is adsorbed at z = 0 at  t = T (see Appendix B for details). Combined with 

Eq.1, we thus have a self-consistent equation for p(t). From Eq.2, we also note that the 

ligand concentration close to the surface is given by ( ) ( ) ( )
✟

−=∆
t

D tCpdKt
0

, τττρ θ  where 

+−= kkK D /  is the standard equilibrium dissociation constant, with units of M. A more 

complete discussion of the density profile of the ligands in solution is presented in 

Appendix C. 

 

A note on the boundary conditions of the problem is required at this point. A potential 

binding site would become non-binding after adsorbing a ligand, and would become a 

binding site again after releasing this ligand. This means that , within the mean-field 

formulation, the probability of adsorption and reflection are time-dependent: the plane 

z=0 absorbs the particle with probability [ ])t(p−1
✠

 and reflects it with probability 

)t(p
✡✡

+−1 .  Our problem is similar to that addressed previously by Agmon [Agmon 

1984]): however, there are important differences. Agmon studied the ‘survival 

probability’ of ligands (in our language) rather than the occupancy of receptors. Further, 

a trial solution linear in the reaction probability was used, which could only be solved for 

specific cases. Our formulation is more general and not restricted to specific cases. 

 

In order to further simplify the setup, we assume that the initial bound fraction p(0) << 1, 

(see, however, the discussion at the end of Appendix D) so that the absorption and 

reflection probabilities are effectively time-independent. In this limit, rebinding of 

ligands is effectively reduced to a well-defined one-dimensional random walk problem. 

Note that, in contrast to previous approaches to the rebinding problem, we do not need to 

take into account the density profile of the ligands in solution (see Appendix C, 

however). Rather, by describing the dynamics in terms of trajectories of individual 

Brownian particles, we arrive at an elegant non-Markovian effective equation for the 

dissociation curve itself with a minimum of assumptions. In particular, the need for non-

trivial boundary conditions at the surface is eliminated. 
 

Equations 1 and 2 combined are formally solved using Laplace transforms. Let us define 

the Laplace-transformed variables dte)t(p)s(p~ st☛
=

∞
−

0

 and dte)t;(C)s(C
~ st☞

=
∞

−

0 ✌✍✍ . In terms of 

these variables, Eq. 1, after substituting Eq. 2, becomes 

 

( ) ( ) ( ) ( )[ ]sC
~

sp~kpsp~s ✎−−=− − 10   ,              (3) 

 

which leads to  
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( ) ( )
( )[ ]sC

~
ks

p
sp~ �

−+
=

− 1

0
  .                (4) 

 

The next step in our calculation is to compute )s(C
~✁ , which we accomplish as follows: 

Let us consider a one-dimensional random walk on the semi-infinite line 0 < z < ∞  and 

define )t,(q
✂

 as the probability that a random walker, starting at position ✄=z  at time t = 

0, will visit the origin again for the first time at instant t.  The probability of absorption of 

the random walker at the origin at time is )t,(C ☎✆ , which may be expressed in terms of 

)t,(q ✝  via the following self-consistent equation: 

 

)t,(C),(qd)()t,(q)t,(C
t ✞✟✞✟✞✠✟✠✟ ✡✡

−
☛

−+=
0

1  .           (5) 

 

The first term in this expression gives the probability that the ligand will be re-absorbed 

at its first attempt to make contact with the surface. The second term is the sum of the 

probabilities of all the other events where the ligand is reflected at the first attempt (either 

because the surface site is non-binding or is already bound to another ligand), which may 

happen at any intermediate time ☞ ,  but is adsorbed at one of the subsequent attempts at  

time t. Using Laplace transforms as before, this expression becomes 

)(
~

)(~)1()(~)(
~

sCsqsqsC θθ θθ −+= , from which we infer 

 

)s(q~)(

)s(q~
)s(C

~ ✌
✌

✍
−−

=
11

  .                (6) 

 

The first passage probability for a random walker in one dimension is a well-studied 

problem with known result, namely: Dt

z

e
Dtt

z
)t,z(q 4

2

4

1 −
= ✎   [Feller 1966] for any 0>z  

where D  represents the diffusion coefficient for the three-dimensional random walk.. 

Upon performing the Laplace transform of this expression, we find that   
 

se)s(q~ ✏2−=  ,                (7) 

  

where we have introduced the quantity 
 

D4

2✑✒
=   ,                 (8) 

 
which constitutes a microscopic time scale in the problem, which is computed in Sec.3.3. 

After substituting Eq. 7 into 6, we arrive at 
 

s

s

e)(

e
)s(C

~ ✓
✓

✔ ✕
✕

2

2

11 −

−

−−
=   .                (9)  
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Note that this quantity vanishes in the limit 0→
�

 since adsorption becomes rare in this 

case. This means that, in principle, rebinding can be effectively prevented and 

exponential dissociation recovered at sufficiently small times in the case of low surface 

coverage of receptors. This case is discussed in detail in Appendix D. For the rest of this 

section, we assume that ✁ is sufficiently large so that rebinding is significant. 

 

With Eq. 9, we have, in principle, solved the rebinding problem under the mean-field 

approximation. However, the resulting general expression obtained after substituting Eq. 

9 into Eq. 4 is too complicated to invert to find the rebinding probability. Fortunately, 

without much loss of generality, we can assume that the microscopic time scale ✂ is 

sufficiently small (in comparison with 
1−

−k ) so that the approximation 
se
✄

2−
 s

☎
21−≈  

can be used. With this simplification, we find that ( ) s/)s(C
~ ✆✝✞ 21 ≈−  (when s is 

sufficiently small, see Appendix D ). After substituting this expression into Eq. 4, we 

arrive at the final result 

 

s
k

s

)(p
)s(p~ ✟✠−+

=
2

0
   .             (10) 

 

We note from this expression that the readsorption events have strongly modified the 

dissociation curve. In the absence of rebinding, this expression would simply read 

( ) ( ) ( )−+= ks/psp~ 0 , which is just the Laplace transform of an exponential decay curve, 

( ) ( ) tkeptp −−= 0 . In other words, the effect of rebinding is not simply a reduction of the 

effective dissociation rate, but rather leads to a non-exponential temporal decay of the 

bound fraction. This is explicitly seen after inverting Eq. 10, which yields 

 

( ) ( ) ( )cterfceptp ct0=  ,   where  
2

2
4✡ ☛−= k

c    and   dxe)z(erfc
z

x☞
=

∞
− 22✌   .       (11) 

 

This final expression is thus characterized by a single effective time scale 1/c, which is 

proportional to the inverse of the square of the dissociation rate. We also note that 

dimensional consistency is ensured by the introduction of ✍ , which is essentially the 

smallest time scale over which a rebinding event takes place. The rebinding processes, 

therefore, alter the temporal behavior of the dissociation curve in a fundamental way.  

 

Within the limitations of the mean-field approximation and the assumptions used so far, 

Eq. 11 constitutes a complete solution of the rebinding problem, over sufficiently large 

time scales. Over very small time scales, the solution displays exponential decay (ref. Eq. 

D2), whereas over intermediate time scales, c/tte 1<<<< the decay is an expanded 

stretched exponential, as seen by applying the small-argument expansion of the 

complementary error function [Abramowitz and Stegun 1970]: 

)z(oz)/()z(erfc 221 +−≅ ✎ ), leading to ( ) ( )[ ]...)/4(10 +−≈ − tkptp δπθ . The combination of 

the exponential and stretched exponential decay at early times suggests that naïvely 

fitting the initial part of the decay curve to an exponential is likely to significantly under-
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estimate the dissociation rate. For very late times (t>>1/c), the decay becomes a power 

law, i.e., ( ) t/~tp 1 . This regime is indeed observed in numerical simulations when a 

very low value of the coverage � is used (c.f. Figs. 8 and 9 below). 

 

We would also like to add a note on finite-size effects here, keeping in mind that our goal 

is a direct comparison with experimental results (to be discussed in Sec. iv). The 

experimental system has a finite ‘height’, so that dissociated ligands which wander too 

far from the adsorption surface are eventually reflected back under no-flow conditions. 

This effect of the boundary will be seen in the dissociation curve after a certain crossover 

time scale, which we estimate as typically D/H~H
2✁ , where H is the sample chamber 

height. The presence of the boundary thus leads to additional rebinding events (as 

compared with the idealized case of infinite H studied so far), and slows down 

dissociation even more relative to our mean-field prediction over times 
Ht ✂>> . This 

deviation from the infinite-height mean-field prediction is indeed observed in the 

experiments (Sec. iv). An extension of the present study that takes the finite height of the 

experimental system into account is currently in progress.  

 

 

3.2 Lattice model of ligand-receptor binding 

We next describe a discrete lattice model amenable for simulating the rebinding problem.  

These simulations are done in order to check the validity of the self-consistent mean-field 

assumption employed in the analytical treatment above. As mentioned in the introduction 

to the last section, we imagine the SPR slide surface as a two-dimensional square lattice 

of dimensions LL × . A fraction ✄  of the lattice sites are occupied by receptor proteins, 

i.e., they serve as potential binding sites for the ligand. The remainder of the sites are 

non-binding: the ligands, upon contact with one of these, will be reflected back to the 

solution. The ligands themselves are modeled as Brownian particles (random walkers) 

diffusing in the semi-infinite three-dimensional space of which the cell surface forms one 

(partially absorbing) boundary. Periodic boundary conditions are imposed on all four 

borders of the two-dimensional lattice so that a ligand that exits at one boundary will 

reenter the system from the opposite one. The direction perpendicular to the plane of the 

lattice shall be referred to as the z-axis, and the surface itself is positioned at 0=z  (c.f. 

Fig. 5). Ligand diffusion in the z-direction is not bounded. As the receptor proteins are 

covalently attached to the surface, we treat them as static in this study ignoring any 

position fluctuations or movements. The lattice dimension is fixed at L=100 for all the 

simulations reported in this paper. 

 

At the beginning of the dynamics, a fraction p(0) of all the binding sites are bound to a 

single ligand each, i.e., the total number of ligands in the system is ( )02 pLN ☎= , and is 

conserved throughout the simulation. There are three main dynamical processes in the 

simulation: 

  

(i) Dissociation of a ligand from a bound receptor: this process takes place with 

probability ✆~  per time step. This move updates the position of the ligand from z = 0 to z 
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= 2. (We set z = 2 instead of z = 1 in order to prevent immediate rebinding to the same 

receptor.) 

 
(ii) Diffusion of a released ligand in solution: a free ligand moves a distance equal to one 

lattice spacing in one of the six possible directions (i.e., to nearest-neighbor sites in the 

cubic lattice) with probability D
~

=1/6 per time step. 

 

(iii) Readsorption of free ligand to a free receptor: A free ligand at z = 1 (or 

correspondingly, z = �  in the continuum theory of last section) is absorbed by a free 

receptor below it, if there is one present at that site, with probability unity, i.e., the ligand-

receptor binding is assumed to be purely diffusion-limited: the binding reaction always 

occurs when possible.  

 

 

3.3 Parameters in the lattice model 
In order to establish a close connection between the lattice model in our simulations and 

the underlying experimental system, it is necessary to put our choice of parameters on a 

firm footing. We begin with the microscopic length scale � , which we define as the 

distance moved by a ligand following dissociation, before a significant change in its 

direction of motion takes place. The time taken by the ligand to travel this distance is 

then simply equal to D/ 22
2✁✂

= . For a Brownian particle of mass m moving in a fluid 

of viscosity ✄ , the velocity correlations decay exponentially fast: ( ) ( ) ☎/.0 tetvv −∝
✆✆

, with 

 

kT/Dma/m 66 == ✝✞✟  ,             (12) 

 

where we have used the Stokes-Einstein formula a/TkD B ✠✡=  to eliminate the ‘radius’ 

of the ligand molecule a in favor of the diffusion coefficient D. Over a time scale ☛10~ , 

the directional correlation in the motion of the ligand is lost. Following our previous 

argument, this time scale is simply ☞2 . Such an operational definition would yield ✌✍
5≈  

(Combined with Eq.8, this expression also defines the length scale ✎ ). The mass of an 

IGFBP-3 molecule is about 47kDa. The diffusion coefficient can be estimated from the 

finite-size effect observed in the experimental dissociation curve and here we simply 

quote the value obtained: 129
1051

−−×≈ sm.D  (Eq. 14 - see Sec iv. for calculation). 

Since the experiments are done at room temperature, T ~ 300K. After substitution of 

these values in Eq.12, we find 

 

s11
10

−≈
✏

 .               (13)  

 

 In the simulations, we also chose a dissociation rate per unit time step, tk
~ ✑✒

−≈ , where 

3262 /D/t ✓✔✓ ==  is the diffusion time scale. ‘Typical’ dissociation rates reported in the 

literature are quite small on the scale of ✕/1 - for example, Vorwerk et al. estimated −k  

for IGF-I-IGFBP-3 using SPR to be ~0.01 min
1−
[Vorwerk et al. 2002]: this means that 

we may expect 1<<
✖~  generally, since ✗  is a microscopic time scale. In the simulations 
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reported here, we have chosen 5
10

−=
�~

 to limit computational time (the value of ✁~  

matching experimental conditions is likely to be smaller by several orders of magnitude). 

For the simulations, starting from a randomly distributed set of receptors, the dynamics is 

carried out up to 10
7

Monte Carlo (MC) time steps (i.e., up to 100 times 1/ ✁~ ). The bound 

fraction p(t) is measured every 100 MC steps. The resulting dissociation curve is then 

averaged over 20 different starting configurations. 

 

 

3.4 Simulation results 

In Fig. 6, we show the (normalized) dissociation curve as obtained from the Monte Carlo 

simulations, for two values of ✂, 0.1 and 0.5 respectively, plotted against the ‘scaled time’ 

t
~

T ✄=  where t is the number of MC steps. The fraction of surface proteins initially 

bound to diffusible ligand was fixed at p(0) = 0.25. We find that, everything else being 

the same, larger ☎  results in stronger rebinding and hence slower dissociation. Since time 

is measured in units of 1−
−k , the effective fitting parameter becomes 22

64 ✆✝✆✞
/

~
/kc == − . 

For ☎  = 0.1 and 0.5, respectively, the theoretical fitting parameters are thus 0.006 and 

0.00024. The measured values found using the best fits to the simulation data are close, 

but somewhat larger than these theoretical values.  This slight discrepancy could be due 

to two factors: (i) the mean-field calculation assumes that all the surface proteins are 

available for rebinding at any given time, whereas in the simulations only free receptors 

are available; (ii) a systematic deviation from the mean-field prediction might exist, since 

(especially for high surface protein densities), local density fluctuations are likely to 

become important in the rebinding.  

 

In Fig. 7, we show how the dissociation curves behave in the case of an extremely small 

fraction of binding sites ( ☎=0.01) on the surface, when the dissociation rate is varied. In 

this situation, two regimes are observed. When the dissociation rate ✁~  is small, then 

between two dissociation events, the ligand has enough time to span the surface for 

binding sites. The dissociation curve is thus dominated by rebinding, and a very slow 

decay in accordance with Eq. 11 is observed. Alternatively, when dissociation is very 

fast, rebinding is very inefficient in competing with dissociation because the number of 

binding sites available is very small. The dissociation curve is, in this case, closer to the 

pure exponential dissociation curve in the absence of rebinding (see the discussion in 

Appendix D).  

 

In Figs. 8 and 9, the dissociation curves are depicted for two small values of the coverage 

fraction: ☎=0.005 and 0.01, holding ✁~  fixed at 10
5−
. The logarithmic plots in Fig.8 show 

a crossover to the power-law decay ( ) t/~tp 1  discussed in the previous section. While 

we would expect that such a crossover should occur in our experimental system, this 

might be difficult to observe because finite-size effects could disrupt and mask the entry 

into this regime.  

 

 

 



 15 

(iv) Results - Fitting the experimental data to the mean-field result 

 
Having found good agreement between theory and simulations, we next investigated if 

the theory would also fit the experimental data to provide rationale for the lack of 

agreement between dissociation data and a 1:1 fit. We observe that, except for very late 

times, all the SPR data sets for IGF-I:IGFBP-3 were fit well by the theoretical prediction 

given by Eq. 11, with the parameter c suitably tuned (Figs. 10 and 11). Our next step was 

to determine how this could be used to analyze the experimental data.  Namely, we 

wanted to estimate the intrinsic dissociation rate −k  from the parameter c, and from 

Eq.11, this requires us to know the microscopic time scale �  (estimated in Sec. 3.3) and 

the effective surface coverage ✁ . The latter is related to the association rate +k  of ligands 

(when measured in exactly the same experimental setup), and could be estimated from 

the experimentally measured association rate and the actual surface coverage in the 

device (Appendix A). However, from Eq. A4 (Appendix A), this requires knowledge of 

the microscopic lattice length scale ✂✄
D4=   (Eq. 8): it is therefore crucial to have a 

reliable estimate of the diffusion coefficient, which we now attempt to obtain from the 

dissociation data themselves. 

 

The late-time dissociation data (e.g., the zero heparin situation in Fig. 10) show a distinct 

flattening on account of the finite thickness of the SPR device chamber, which cause 

ligands which wander too far to bounce back to the system under no-flow conditions 

(whereas we had assumed this thickness to be infinite in the theoretical calculation). If 

the thickness of the sample is H, then the effects of this constraint on the perpendicular 

diffusion will start showing around a time scale ( )D/H~H 22
2☎ , which represents the 

average time for a ligand molecule to diffuse to the boundary of the system and return to 

the surface after reflection. We may obtain an estimate of the diffusion coefficient, 

therefore, by determining H
✆  from the data, as the first instant when a significant 

deviation of the experimental curve from the theoretical fit is seen. For the Reichert 

apparatus used in our experiments, the chamber height (thickness) was H=0.19mm.  An 

estimate H
✆  from Fig. 7 is sH 230≈✝ . From these numbers, we estimate 

 
129

1051
−−×≈ sm.D .         (14)  

 

A better way to estimate D is to determine the theoretical dissociation curve in the case of 

finite H and in the presence of the flow conditions, and use it to fit the experimental data. 

This will be carried out in a future work. 

 

We now attempt to estimate the intrinsic dissociation rate −k  from our curve-fitting 

analysis, using the fit value c = 1.9×10
5−
 s

1−
 for the heparin-free case (Fig. 10). After 

combining Eqs. 8, 12 and Eq. A3 from Appendix A, we see that the parameter c is a 

function of the equilibrium dissociation constant +−= kkK D / : 
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2

316 ��✁
✂

✄✄☎
✆

=
s

DK
Dc ✝

✞
 .              (15)  

 

From Eq.12 and Eq.13, we then obtain MK D
71011.3 −×≈ . The experimental value of 

the association rate measured with a similar sensor chip was 
1322117 100531011 −−−−

+ ×=×≈ sm.minM.k , [Cassino 2002] (using the conversion 

3311 10 mNM A
−−− ×= , where AN  is the Avogadro number) with a fractional coverage 

10.s ≈
✟

. Substitution of these values results in the estimate 1min43.3 −
− ≈k . This 

number is two orders of magnitude larger than a previous estimate [~0.01 min
1−
, 

Vorwerk et al. 2002], which was obtained without taking rebinding events explicitly into 

account. Clearly, a better characterization of the experimental system would be necessary 

to obtain a more reliable quantitative estimate of the dissociation rate. Even so, our 

analysis shows that simple curve-fitting to an exponential decay might significantly 

under-estimate the dissociation rate. 

 

Our detailed analysis suggests that, rebinding, even with small coverage fractions (which 

for our apparatus we estimate in the range of 10%), may significantly affect the 

dissociation process and its inclusion is needed in the interpretation of dissociation data. 

Not unexpectedly, the coverage fraction turns out to be an important parameter in this 

problem, and likely controls the difference between exponential and non-exponential 

behavior in dissociation. This crossover is more quantitatively characterized in Appendix 

D, where we also discuss the different parameter regimes where an exponential decay 

might be observed. 

 

 The addition of heparin in the buffer leads to faster dissociation (Fig. 11, also Table 2), 

and we observe a systematic increase in the fitting parameter c as the heparin level is 

increased. However, it is worth noting that an exponential decay is not recovered even 

with high heparin concentrations (1.8, 5.4, and 10.8 ✠M). This is all the more remarkable 

because the affinity of heparin for IGFBP-3 has been measured to be ~76 nM using 

affinity co-electrophoresis [Forsten et al. 2001]. In a well-mixed solution of heparin and 

IGFBP-3, the fraction of the free ligand in the steady state would be )/1/(1 dKp ρ+= , 

where ✡  is the heparin concentration. For ✡ =1.8 ✠M and 5.4 ✠M respectively, this 

fraction is only 0.04 and 0.01 (and similar values for the other heparin concentrations). If 

a steady state were indeed reached between heparin and the free ligand, we should see a 

corresponding change in the parameter ☛  since, presumably, only the ligand not bound to 

heparin will be available for rebinding (i.e., pH ☞☞☞ =→ ).  However, the change in ✌ as 

determined from the fitting parameter c is much less than this estimate noting that even at 

10.8 ✠M heparin, about 15% of the ligand in solution are not bound to heparin and hence 

available for rebinding (Table 2).  

 

 

 

(v) Summary and Discussion  
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In this paper, we present an experimental, analytical, and computational study of the 

dissociation of ligands from a flat substrate. We have primarily focused on the role of 

potentially multiple rebinding of dissociated ligands, and how it affects the overall 

dissociation. The SPR experiments we modeled were performed with IGFBP-3 as the 

soluble ligand and IGF-I attached to a planar surface as the receptor. Porcine heparin was 

used to bind the dissociated IGFBP-3 in solution, and its effect on the dissociation at 

various concentrations was studied.    

 

The dissociation of IGFBP-3 was non-exponential in all the SPR experiments performed 

(Fig. 3) despite using a planar geometry surface (Fig. 1) to reduce mass-transport 

limitations known to be problematic with SPR experiments [Schuck 1996; Schuck 1997].  

It should be noted, however, that similar non-exponential dissociation results were found 

by us [Cassino 2002] and others [Wong et al. 1999; Dubaquie and Lowman 1999; Fong 

et al. 2002] using the more traditional carboxymethylated dextran slides with IGF-I or 

IGFBP-3 immobilized. The addition of heparin was observed to render the dissociation 

faster, presumably by binding the dissociated IGFBP-3 and preventing their rebinding to 

unbound IGF-I.  However, in no experiment did we observe actual exponential decay. 

This was true even for heparin concentrations as high as 30 ✠M (> 1000 times the 

concentration of IGFBP-3 used in the association portion of the experiment) indicating 

that equilibrium was not reached between heparin and IGFBP-3 over the experimental 

time scales (data not shown). Simple fitting of an exponential to the dissociation data is, 

in general, not appropriate and a better tool is manifestly needed to determine quantitative 

values.  

 

Our analysis, however, does not rule out the possibility of situations where an 

exponential fit to the dissociation curve might produce the right dissociation rate. As 

discussed in Appendix D, if the binding probability (i.e., the affinity of the receptor for 

the ligand) and/or surface coverage of receptors is small compared to the dissociation 

rate, the rebinding process affects dissociation only over very large times (ref. Eq. D2), 

and it may be possible to neglect it altogether. Alternatively, if the ligand has high 

affinity for an external binding agent, such as heparin in our system, then using this agent 

in sufficiently high concentrations could be successful in making rebinding insignificant 

as far as dissociation is concerned.   Many examples are available in the literature where 

a simple model has been shown to fit well.  For example, binding of interleukin-2 to a 

surface with immobilized IL-2 α-receptor on it was shown to fit well to a simple 

bimolecular model [Myszka 1999].  Alternatively, Schuck et al. [Schuck et al. 1998] use 

competitive dissociation to obtain an improved fit for binding of a specific Fab to 

immobilized whale neuraminidase.  

 

The self-consistent mean-field theory presented in this paper provides a complete 

mathematical form of the dissociation curve in the presence of un-inhibited rebinding on 

a planar surface, in terms of a single effective parameter. This effective parameter has 

been shown to depend on the intrinsic dissociation rate, the effective surface coverage by 

receptor proteins (proportional to the association rate) and the ligand diffusion coefficient 

in solution. The history dependence of the dissociation process (rebinding of ligands 
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depend on their dissociation from the surface at previous times) is rigorously taken into 

consideration by describing the ligand dynamics in terms of individual Brownian paths, 

rather than using the more conventional PDE approach [as in, e.g., Lagerholm and 

Thompson 1998]. As the formalism developed here yields the complete dissociation 

curve, we believe this to constitute a marked improvement over previous mathematical 

studies of rebinding, especially since our results could be directly compared with 

experiments. Our analysis also demarcates the different regimes in the full parameter 

space where rebinding is strong and weak and may be used in future SPR data analysis. 
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Appendix A: Effective surface coverage and association rate 
 

In this appendix, we show how the effective lattice coverage fraction �  may be related to 

the association rate +k  in the continuum formulation. For this purpose, it is convenient to 

express the effective surface coverage in the form  

 

as

✁✁✁
=  ,              (A1) 

 

where s

✂
 is the actual fraction of binding sites in the lattice, and a

✂
 is the probability 

with which a ligand which comes infinitesimally close to a receptor by diffusion will bind 

to it before diffusion takes it away again.  

 

Let us approximate the ligand motion as a discrete random walk with step size ✄  

(defined in text). Let D
☎

 be the rate with which the walk (projected onto the z-axis 

perpendicular to the surface) moves one lattice spacing. The unit time scale for one-

dimensional diffusion is D/ 2
2✆✝

=′ , and this move is made with probability ½. It 

follows that 

 

22

1 ✞✟✠ D
D =

′
=   .             (A2) 

   

If the volume density (number per unit volume) of ligands infinitesimally close to the 

surface at time t is ( )t,✡☛
, then the probability of finding a ligand in a volume element 

3☞=v  is just ( ) 3✌✌✍✎✏ t,= . A ligand at a ‘height’ ✄  above a receptor will then bind to 

it at a rate 

 

( ) ( ) ✑✒✑✓✒✔✔✕ ✖ Dt,t aaD ==  .           (A3)  
 
 Note that, in the continuum formulation, the rate of binding is simply ( ) ( )t,kt ✗✘✙

+=  

from Eq.1. Upon equating the two expressions, we arrive at the result 

 ✚✛
Dk a=+  ,              (A4) 

  

which defines a

✜
. This result may also be viewed as the one-dimensional analogue of the 

well-known result for diffusion-limited association rate on a spherical receptor of radius 

b  in three dimensions: ( ) Dbbk ✢4=+ [Torney and McConnell 1983]. However, there is 

an important difference. Whereas the three-dimensional result is valid for a single 

isolated receptor molecule, Eq. A4 is valid only for a distribution of binding sites on a 

plane with a non-vanishing mean density. It would be, therefore, more correct to view Eq. 

A4 as an operational definition of the effective surface coverage for the lattice model. 
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Appendix B: Calculation of the rebinding rate 

 
Let us consider the bulk diffusion of a free ligand in three dimensions, starting at the 

point )z,y,x(  at time t = 0 and arriving at (0,0,Z) at t = T. The probability density for this 

process will be denoted by )T;z,y,x(P ; it is governed by the diffusion equation modified 

by a term to account for surface adsorption, 

 

)t,r(P)]t,r(P)t,r(P[D
~

)t,r(P)tt,r(P ,Zr 0
6 �✁✁

−−′=−+ ✂ ′   ,       (B1) 

 

where t
✄

 denotes the microscopic diffusion time step, 2
☎✆

/tDD
~ =  is the effective 

diffusion coefficient for the underlying lattice (which we take to be cubic for simplicity) 

and ( )z,y,xr =   represents the position of the particle in the three-dimensional space. The 

first term in Eq. B1 is simply the diffusion of the particle away from the surface, and the 

last term represents the adsorption at the surface that occurs with probability ✝ . A 

schematic diagram of the set-up of our model is depicted in Fig. 5. 

 

Since the space coordinates are clearly statistically independent here, the solution to Eq. 

A1 can be written in the form of a product, )T;Z,z(G)T;y(G)T;x(G)T;z,y,x(P
321

= . 

Upon substitution in Eq. B1, we find, of course, that 
1

G  and 
2

G  satisfy the simple one-

dimensional diffusion equation (without any adsorption), and only 
3

G  is modified by the 

adsorption term. The complete probability distribution may then be written as 

 

)T;Z,z(G
DT

yx
exp

DT
)T;z,y,x(P 3

22

44

1 ✞✞✟
✠

✡✡☛
☞

+
−= ✌   .                     (B2) 

 

The rate of adsorption of the ligand at the surface (z=0) is simply
0=∂=

ZZ PD)T;y,x(P
~ , and 

from Eq. B2, we infer that the derivative acts only on the function 
3

G . For a dissociated 

ligand, the initial position on the z-axis is z=✍.  Hence, the absorption rate becomes   
 

)T,(C
DT

yx
exp

DT
)T;y,x(P

~ ✎✏ ✑✒
✒
✓
✔

✕✕✖
✗

+−=
44

1
22

   ,                        (B3)  

 

where 
03 =∂∂=

Z
Z/GD)T,(C ✘✙ is the  rate ( i.e., the probability per unit diffusion time step) 

that a particle diffusing in one dimension that started at ✚=z  at t = 0 is absorbed at the 

origin 0=z at a later time T  > 0. This probability is calculated in a straightforward 

manner by making use of the independence of the successive returns of a random walk to 

its starting point, as has been done in Sec. 3.1. 
 

The total probability of re-adsorption of a ligand, averaged over all space, is thus 
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 � �
−= −

t
)t;y,x(P

~
dxdy)(pdk)t(

0

✁✁✁✂    .           (B4) 

 

After substituting Eq. B3 into Eq. B4 and performing the trivial spatial averaging, we 

finally arrive at Eq. 2. 
 
 

Appendix C: Density profile of ligands in solution 
 

In this appendix, we show how the density profile of the ligands in the z-direction could 

be computed within our formalism for arbitrary times. The general expression for the 

density ( )t,z✄
 of ligands at a distance z above the surface at time t has the form 

 

( ) ( ) ( )☎
−= −

t
s t,zFpd

k
t,z

0
2 ✆✆✆✝
✞✟ ✠

  ,           (C1)  

 

where ( )T,zF✡  is the Greens function for diffusive transport of a ligand following 

dissociation at the surface at time 0=t  to the height z  at time Tt = , in the presence of 

the partially absorbing boundary at z=0. This function is expressed via the self-consistent 

equation 

 

( ) ( ) ( ) ( ) ( )☛
−−+=

t

t,zF,qdt,zFt,zF
0

0
1 ☞☞✌☞✍ ✎✎

 ,         (C2) 

 

where  

 

( ) ( )
( ) ( ) ✏✏

✑
✒

✓✓✔
✕

−=
+

−
−

−− Dt

z

Dt

z

eeDtt,zF 4410

22

4

✖✖
✗            (C3) 

 

is the probability of the ligand reaching z at time t, without ever touching the surface in 

between. Eq.(C1) and Eq.(C2) may be solved together using the Laplace transform 

method, as explained in the main text. The solution in terms of Laplace-transformed 

variables is 

 

( ) ( ) ( )
( ) ( )sq~

sp~s,zF
~k

s,z~ s ✘✙
✘

✚
−−

= −

11

0

2
 .           (C4) 

 

From Eq.C3, we find that 

 

( ) D/sz
D/sz

e
DD

s
sinh

Ds

e
s,zF

~ −
−

≈✛✛✜
✢✣✣✤

✥
=

✦✦0 ,         (C5) 
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where the last step is valid for sufficiently late times D/t 2�>> , which we assume to be 

satisfied. In order to check consistency with the previous discussions, let us compute the 

Laplace transformed concentration close to the substrate surface ( )s,~ ✁✂
, which is given 

by ( ) ( ) ( ) ( ) ( ) ( )sCspK
sq

e
sp

D
ks D

s
s ✄☎

✆✝
✆✝✞ ~~

~11

~,~
2

=
−−

=
−

− . Upon inversion, this relation 

gives ( ) ( ) ( )✟
−=

t

D tCpdKt
0

, ✠✠✠✡☛ ☞
, which is consistent with our argument in Sec.3.1, 

following Eq.2. 

 

We now combine Eq. C4 and Eq. C5 with Eq. 7 and Eq. 10. In the regime of  non-

microscopic time as mentioned above, the leading term is 

 

( ) ( ) ( )cOe
css

p
Ksz Dsz

D ✌✍ +
+

≈ − /0
,~  ,          (C6) 

 

where the constant c is given by Eq.11. The inversion of this expression (after leaving out 

the ( )cO ✎  term) gives 

 

( ) ( ) ✏✑
✒✓✔

✕
+≈

+

Dt

z
cterfceKptz

ctz
D

c

D
2

0,
22✖

 ,         (C7) 

 

which is the density profile of ligands in the bulk solution. At late times 1−>> ct , we 

obtain the asymptotic form 

 

( ) ( )
Dt

e
pctz

Dt

z

s ✗✘
✙✚ 4

2

1

2

0,

−
− ≈>>  .      (C8) 

 

Appendix D: Exponential versus non-exponential decay 

 
In this appendix, we discuss in detail the different time regimes of decay of the bound 

fraction. We consider non-microscopic times ✛>>t  (corresponding to 1<<s
✜

) so that 

the expansion se s ✢✣
212 −=−  may still be used in Eq.9. Up to ( )sO ✤ , we then have 

 

( )
( ) s

s
sC

~ ✥✦✦
✥

✧
−+

≈−
12

2
1   .            (D1) 

 

When ★  is sufficiently large, clearly the first term in the denominator dominates over the 

second. In this limit, we thus recover the form in Eq.10.  
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However, when 1<<
�

, the second term dominates for sufficiently large s ,i.e., for ✁✂
4

2 /s >>  (which corresponds to times et/t ≡<< 24 ✄☎
). In this limit, 

( ) ✆✆✝
✞✟✟✠

✡
+≈−

s
OsC

~ ☛☞✌ 11 , which, after substitution in Eq.4 gives exponential decay. In the 

opposite limit of sufficiently small s , however, the first term dominates (over times 

ett >> ), so that we recover the forms in Eq.10 and Eq.11.  

 

To summarize, therefore, the different regimes of decay for 1<<
✍

 are 

 

( ) ( ) tkeptp −−≈ 0     24 ✎✏
/tt e ≡<<   ,     (D2a) 

( ) ( ) ( )cterfceptp ct0=    ett >>   ,     (D2b)  

 

where the constant c is defined in Eq.11. 

 

We conclude that exponential decay of the bound fraction with the intrinsic dissociation 

rate may be recovered in the limit of sufficiently small surface coverage, at sufficiently 

small times. For any non-zero surface coverage, however, the long-time decay always has 

the non-exponential form in Eq.11. 

 

Another  possibility whereby one may recover exponential decay of the bound fraction is 

to start with an initial bound fraction p(0) ~ 1, so that very few sites are initially available 

for rebinding. In this case, the initial part of the dissociation curve may be expected to 

follow the purely exponential dissociation, with the intrinsic rate. However, this method 

does not always work in practice for two reasons: To reach a steady state with a high 

value of p(0), one needs to use a large (often impractically high) concentration of ligands, 

and the steady state itself may then become difficult to reach over a reasonable interval of 

time. Secondly, even if such a high initial p(0) could be attained, a reliable measurement 

of the dissociation rate would require the observation of the dissociation curve over a 

time scale ~
1−

−k , by which time a fraction 1/e~ 37% of the binding sites have released 

the ligands and rebinding is already significant, unless the association rate and the surface 

coverage  are sufficiently small. Indeed, the inadequateness of using only a part of the 

dissociation curve for data fitting has been pointed out by other authors as well [van der 

Merwe 2000]. 
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Tables: 
 

 

Quantity Symbol typical units 

Microscopic length scale �  m 

Diffusion coefficient D m 12 −s  

Microscopic time scale D4/
2✁✂

=  s 

Association rate +k  M
1−
min

1−
 

Dissociation rate −k  min
1−
 

Equilibrium dissociation 

constant 
+

−=
k

k
K D  

M 

Fractional surface coverage s

✄
 dimensionless 

Effective surface coverage 

(model parameter) ☎
✆✆

D

k
s

+=  
dimensionless 

Bound receptor fraction at 

time t 
( )tp  dimensionless 

Ligand density profile at 

time t and height z above 

the surface (z = 0) 

( )t,z✝
 Number of molecules/m

3
 

Rebinding rate ( ) ( )t,kt ✞✟✠
+=  s

1−
 

Adsorption rate ( )tC ,
✡☛  s

1−
 

Dimensionless dissociation 

rate 
D

k
6

~ 2☞✌
−=  

dimensionless 

TABLE 1: A glossary of the important quantities discussed in the paper, along with the 

corresponding units.  

 

 

 

Heparin level (✍M) Fit parameter c H  (s
1−
) 

HH c/c/
00

=
✎✎

 

0.0 1.9×10
5−
=c

0
 1.0000 

1.8 2.9×10
4−  0.2559 

3.6 4.1×10
4−  0.2140 

5.4 5.9×10
4−  0.1934 

10.8 8.0×10
4−  0.1495 

 
 

TABLE 2: Fit parameters to SPR experimental data for various heparin concentrations. 

Note that the ‘effective coverage’ decreases with the heparin concentration (since the 

ligand bound to heparin is unavailable for binding to surface proteins), but the drop is 

much less rapid than a prediction based on complete equilibration between the heparin 

and IGF concentrations would suggest.  
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Figure legends: 

 

FIG. 1: (a) A schematic diagram of the SPR experimental set-up showing the attached 

ligands (IGF-I) available for binding to the IGFBP-3 in solution. (b) Representative 

association-dissociation plot of IGFBP-3 (20 nM) for surface-coupled IGF-I under flow 

conditions (0.75 ml/min).  The arrow labeled PBST indicates when the fluid was changed 

from IGFBP-3 in PBST to only PBST, thus initiating the dissociation phase. 

 

FIG. 2. (a). Representative plot of dissociation phase data for IGFBP-3 under flow (0.75 

ml/min) and non-flow conditions, both normalized to peak value. (b) Representative plot 

of association phase data for IGFBP-3 (50 nM) +/- heparin (200 nM) or heparin alone to 

IGF-I (off-line coupling) under flow conditions (0.75 ml/min).   

 

FIG. 3. Representative data for dissociation phase of IGFBP-3 from IGF-I for PBST 

(buffer alone) or heparin (30 �M) in PBST for duplicate runs of each on the same chip 

normalized to the individual time 0 value in the absence of flow.  The data is 

representative of multiple runs performed on six independent chips. 

 

FIG. 4. Comparison of dissociation data in the presence of heparin (30 �M) for two 

different levels of surface coupled IGF-I (on-line coupling): (✁) ~ 4 pixels of surface 

coverage and (+) ~12 pixels of surface coverage. This observation is consistent with the 

mean-field calculation in Sec. 3.1 in the text. Results for other heparin concentrations, as 

well as runs without heparin, showed similar trends. 

 

FIG. 5. A schematic diagram illustrating the setup of our mean-field model. The receptors 

are modeled as point size absorbing objects on the substrate surface, and the ligands 

diffuse in the bulk solution above this surface.  

 

FIG. 6. Normalized dissociation curve from simulations of the lattice model for two 

different surface protein densities. The initial bound fraction p(0) is 0.25 in both cases, 

and the dissociation rate is 5
10

−=
✂~

. The thin lines indicate optimal fits using Eq. 11, with 

c = 0.01 for ✄ = 0.1 and c = 0.0004 for ✄ = 0.5. The corresponding theoretical values are 

c = 0.006 and c = 0.00024, respectively. The results represent averages over 20 different 

starting configurations. 

 

FIG. 7. The effect of reducing the dissociation coefficient relative to the surface coverage 

(which is fixed at 1% here) in the simulations. We observe that when the dissociation rate 

is high, the temporal decay becomes effectively exponential (compare with the dashed 

exponential curve) in accordance with the mean-field calculations in Appendix B. As −k  

is reduced, rebinding is increasingly important, and the dissociation slows down. The 

results were averaged over 20 different starting configurations. 
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FIG. 8. Simulation dissociation curves for two small coverage fractions, 0.5% and 1% of 

the surface area. The dissociation rate is 5
10

−=
✂~

. 

 

FIG. 9. The same data as in Fig. 8 is plotted on a logarithmic scale. This plot shows the 

cross-over to the power-law regime mentioned in Sec. 3.1. The straight line is a fit 

function 2/1
)(

−= TTf . 

 

FIG.10. Comparison of mean-field theory with experimental SPR data (✁) for IGFBP-3 

dissociation from IGF-I in the absence of heparin. The thin curve represents the best fit 

using Eq. 11, with c = 1.9×10
5−
 s

1−
, and the straight line is the best exponential fit, with 

a dissociation rate 10660 −
− ≈ min.k . The experimental data was averaged over two 

different runs on the same IGF-I coupled chip and is representative of averaged data from 

six separate chips. 

 

FIG.11. Comparison of mean-field theory with IGFBP-3 dissociation SPR data in the 

presence and absence of heparin (concentration of heparin indicated on figure by 

experimental values; the topmost curve is a reproduction of the zero heparin data in 

Fig.10).  The lines represent the fitting curves using Eq.(11), with fit parameters c= 

4.1×10
4−
s

1−
 and c=5.9×10

4−
 s

1−
 respectively for 3.6 �M and 5.4 �M heparin .  
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