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Liquid–liquid critical point in supercooled silicon

Vishwas V. Vasisht1, Shibu Saw1 and Srikanth Sastry1*

A novel liquid–liquid phase transition has been investigated
for a wide variety of pure substances, including water,
silica and silicon. From computer simulations using the
Stillinger–Weber (SW) classical empirical potential, Sastry and
Angell1 demonstrated a first order liquid–liquid transition in
supercooled silicon at zero pressure, supported by subsequent
experimental and simulation studies. Whether the line of such
first order transitionswill terminate at a critical point, expected
to lie at negative pressures, is presently a matter of debate2.
Here we report evidence for a liquid–liquid critical point at
negative pressures, from computer simulations using the SW
potential. We identify Tc ∼ 1,120±12K, Pc ∼−0.60±0.15GPa
as the critical temperature and pressure. We construct the
phase diagram of supercooled silicon, which reveals the
interconnection between thermodynamic anomalies and the
phase behaviour of the system as suggested in previous
works3–10. We also observe a strong relationship between
local geometry (quantified by the coordination number) and
diffusivity, both of which change dramatically with decreasing
temperature and pressure.

The possibility of a phase transition between two forms of the
liquid phase in some pure substances has attracted considerable in-
terest and research activity in recent years1–10. Among the substances
investigated are water6,8,9, silica10, silicon1,11–17, germanium, carbon
and hydrogen—these substances together form a very significant
component of our natural world, living organisms and technology.
A phenomenon common to these is therefore of wide general inter-
est. Furthermore, as illustrated in ref. 18, liquid–liquid transitions
offer an avenue for interesting applications that exploit the different
properties of distinct liquid phases.

Although the liquid–liquid phase transition (LLPT) had been
discussed in the context of silicon11 earlier, the considerable
current interest stems from various proposals for understanding
the anomalies of water2,4,6–8,19,20. These scenarios have alternately
invoked the approach to a spinodal4, a liquid–liquid critical point6,8,
general thermodynamic constraints without the presence of any
singular behaviour7, and the presence of a transition without a
critical point2, in rationalizing experimentally observed behaviour.
In spite of substantial investigations, a general consensus has still
to be reached on the interpretation of the observed behaviour2,19.
In particular, recent experiments on confined water20 and issues
surrounding their interpretation2 indicate the need to ascertain the
existence of a critical point even when sufficient evidence exists for
a liquid–liquid transition.

The possibility of a transition in supercooled silicon was
suggested12 on the basis of estimates of the excessGibbs free energies
of amorphous and liquid silicon, implying an ‘amorphous-liquid’
phase transition near 1,450K (below the freezing point of the
liquid, 1,685K). Clear evidence of a transition between two
liquids in the supercooled region was shown in ref. 1 from
molecular dynamics simulations using the Stillinger–Weber (SW)
potential21. A first order transition at zero pressure was found
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at T = 1,060K, substantially below the experimental estimate.
However, recent electrostatic levitation experiments performed
down to T = 1,382K have not found evidence for a transition22.
Apart from the uncertainties in the experimental value, such a
differencemay be expected to arise from the neglect in the empirical
potential of significant changes in the electronic structure associated
with structural change16,17, although first principles simulations17

appear to confirm the transition temperature obtained from
the classical simulations. Furthermore, a recent experimental
investigation of the LLPT in silicon using femtosecond pump–
probe spectroscopy by Beye et al.23,24 observed electronic structure
features similar to those in ref. 16, although without precise
temperature measurements.

A detailed comparison of experimental data (to be described
elsewhere) indicates that the SW potential captures qualitatively,
and to a large degree quantitatively, the changes in the structure and
thermodynamics of silicon in the liquid state, albeit with noticeable
shifts in the themophysical properties (for example the density).
We therefore expect the results obtained with the SW potential
to give a good representation of the behaviour of real silicon,
but with shifts in the temperature and pressure of the transition.
Keeping this in mind, along with the large uncertainty and scarcity
of experimental data, the precise location of the transition must
be viewed as tentative at present, requiring further investigation to
determine it precisely.

In the present work, we carry out molecular dynamics (MD)
simulations using the SW potential for silicon to locate the liquid–
liquid critical point, and show that it lies at negative pressures. We
perform constant pressure and temperature (NPT) and constant
volume and temperature (NVT) simulations of 512 atoms, using the
protocols described in Methods. Pressure versus density isotherms
generated in the temperature range 1,070–1,510K, and the pressure
range −3.8GPa to +3.8GPa using NPT simulations are shown
in Fig. 1a. The isotherms for temperatures above T = 1,133K are
continuous, but develop an inflection below T = 1,259K, which
becomes more pronounced as the temperature is lowered. The
compressibility develops a maximum in this temperature range,
which grows as the temperature is lowered. Below T = 1,108K,
careful constant pressure simulations always result in a jump
in the density as the pressure is varied, suggesting a first order
transition. To verify this further, we perform NVT simulations for
T = 1,108K,1,082K and 1,070K in the density range where NPT
simulations show a jump. These results are shown in Fig. 1b. We
find that at these temperatures, the isotherms are non-monotonic.
Such non-monotonicity in the simulations arises, on the one hand,
from metastability, and on the other hand, from incomplete phase
separation owing to finite sample sizes in the unstable region, and
constitutes a clear indication of a first order transition. Thus, our
equation of state data show isotherms with growing compressibility
maxima as the temperature is decreased (above T = 1,133K) and
first order transitions (below T = 1,108K) between two liquids,
the high density liquid (HDL) and the low density liquid (LDL).
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Figure 1 | Equation of state. a, Pressure versus density isotherms from NPT

simulations. Isotherms for T≥ 1,133 K are continuous, and the lines through

the data points are polynomial fits used to obtain the compressibility. For

1,133 K≤ T≤ 1,259K, the isotherms show an inflection, corresponding to a

compressibility maximum. For T< 1,133 K, the isotherms show a density

discontinuity, signalling a first order transition. The crossing of isotherms at

positive pressures reflects the presence of density maxima. b, Pressure

versus density below the critical point from NPT (open symbols) and NVT

(filled symbols) simulations. Pressures from NVT simulations below

T= 1,133 K exhibit non-monotonic behaviour at intermediate densities,

indicating a phase transition, although matching with pressures from NPT

simulation at high and low densities. The critical temperature lies between

T= 1,133 K and T= 1,108K. (Error bars in all figures are calculated from (a

minimum of three) independent samples, as σ/(n1/2), where σ is the

standard deviation and n is the number of samples.)

We thus deduce that the critical point is located between these
temperatures. Inspection of Fig. 1b also makes it clear that the
critical pressure must be negative. Based on the above data at the
temperatures simulated, we estimate the location of the critical
point to be at Tc ∼ 1,120± 12K, Pc ∼ −0.6± 0.15GPa. A more
precise estimation of the critical parameters requires an analysis,
including finite-size scaling, that is beyond the scope of the present
paper, but is being pursued as an extension of the present work.
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Figure 2 | Compressibility maxima increase with decrease in temperature.

Compressibilities KT versus pressure for different temperatures from NPT

simulations. The lines show KT calculated from the derivative of the

pressure along isotherms and the symbols show KT calculated from volume

fluctuations. The maximum value of KT increases as temperature

decreases, indicating an approach to a critical point.

Approaching the critical point from above leads to increased
density fluctuations. In addition to evaluating the compressibility
from the equation of state (EOS), we also calculate it directly from
density fluctuations. These are shown in Fig. 2 for temperatures
above T = 1,133K and show good agreement with EOS estimates
for the high density liquid, but poorer agreement for the low density
liquid. The high crystallization rates observed near, and at lower
pressures than, the compressibility maxima hamper improved
sampling (however we report results only from equilibrated runs).
The influence of fluctuations and local structure (see below)
on nucleation rates25,26 is an interesting issue that is being
investigated at present.

Next we describe briefly the temperature and density depen-
dence of diffusivities D and average coordination number (the
number of neighbouring atoms in the first coordination shell; see
Methods) Nn, which captures important information regarding
structural change. In Fig. 3a, Nn is shown as a function of pres-
sure. At high temperatures and pressures, Nn is approximately 5,
and decreases as temperature and pressure are lowered, showing
a discontinuous change below 1,133K, with values close to the
tetrahedral value of 4 (∼4.1) in the LDL, similar to the observation
at zero pressure in ref. 1.

Diffusivities versus pressure for the temperatures studied are
shown in Fig. 3b, which increase with pressure for all the
temperatures shown, in analogy with the well-known anomaly
in water. Similar to coordination number, diffusivities show a
discontinuity belowT =1,133K, with a jump of roughly two orders
of magnitude from the HDL to the LDL. The diffusivities span a
range of over four orders of magnitude.

In Fig. 4, we show the diffusivitiesD plotted against coordination
number Nn. Except at the highest temperature studied, we find the
dependence of D on Nn to be remarkably similar irrespective of
temperature, including those below the critical temperature. There-
fore, the mobility of atoms is very strongly determined by the local
structure. This observation is consistent with a previous analysis of
the role of ‘bifurcated bonds’ or the ‘fifth neighbour’ in determining
molecular mobility in water27. It is tempting to speculate that, apart
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Figure 3 | Coordination number and diffusivity. a, Coordination number Nn

against pressure for different temperatures as obtained from NPT

simulations. In the HDL, Nn is approximately five. In the LDL, Nn approaches

four, corresponding to a tetrahedral local structure. b, Diffusivity D against

pressure for different temperatures. D is calculated from the mean square

displacement, and shows a dramatic drop of over two orders of magnitude

as the liquid transforms from the HDL to the LDL.

from trivial thermal effects, a universal dependence exists for atomic
mobility on the average number of neighbours in excess of the
tetrahedral value of 4. To test this possibility, we show in the inset of
Fig. 4 a scaled plot of D, by normalizing to its value at a fixed Nn in
the HDL phase for all temperatures. The remarkable data collapse,
not previously demonstrated, spans two distinct phases, a wide
range of temperature and pressure, and four decades of change in
diffusivity. The resulting master curve can be fitted well to a Vogel–
Fulcher–Tammann (VFT) form,D(n)=D0exp(−A/(n−n0)), with
n0 = 3.86, and also to a power law D(n)= (n−n0)

3, with n0 = 4.06.
Further analysis of this interesting observation is in progress.

Previous studies of the phase behaviour of water and other
liquids exhibiting density anomalies have analysed the interplay of
various loci of extremal behaviour, namely the spinodal, lines of
densitymaxima (TMD; ref. 4), densityminima (TMinD; refs 28,29),
and compressibility minima (TMinC) and maxima (TMC). To
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Figure 4 | Relationship between structure and dynamics. Diffusivity D

against coordination number Nn at different temperatures. Lines through

the data points are guides to the eye, and highlight the remarkably similar

dependence of D on Nn at all temperatures, including those below the

critical temperature, where both D and Nn change discontinuously. (Inset)

Plot of D (scaled to match at Nn =4.8) versus Nn, showing data collapse.

The solid line is a Vogel–Fulcher–Tammann (VFT) fit, with a coordination

number of vanishing diffusivity= 3.86. The dashed line is a power law fit,

with a coordination number of vanishing diffusivity =4.06.

obtain a comprehensive picture of the phase behaviour of liquid
silicon, we have evaluated these loci, employing, in addition to the
MD simulations, parallel tempering (PT) and restricted ensemble
(REMC) Monte Carlo simulations to locate the spinodal (details
and data are provided in the Supplementary Information) at low
temperatures. As shown in Fig. 5, the spinodal we estimate is
monotonic in pressure versus temperature T , meaning that it is not
‘reentrant’, as predicted to be the case4 if it intersects with the TMD.
The TMD, however, changes slope on intersection with the TMinC,
as analysed in ref. 7. Evaluating the relevant equation of state data
is particularly challenging in this case, as the TMD approaches the
spinodal very closely, but does not intersect it. From available data,
it appears that the TMinC will join smoothly with the TMC (line
of compressibility maxima) that emanates from the liquid–liquid
critical point. Interestingly, we find from PT simulations below
the critical temperature and pressure that there exists also a line
of density minima, very recently observed in the case of water
in experiments and computer simulations28,29. The TMD and the
TMinD appear to join smoothly with each other, as required by
thermodynamic consistency.

At low temperatures T (1,440K < T < 2,000K), even REMC
simulations (which restrict density fluctuations) cavitate at suffi-
ciently low pressure. In these cases, we estimate the spinodal by a
quadratic extrapolation of the isotherms. As a further check on our
spinodal estimate, we perform simulations to obtain tensile limits,
by increasing the tensile pressure on the simulation cell at constant
rates, for two different rates (0.1 and 10.0MPa ps−1). For the faster
rate, we find tensile limits that are consistent with our spinodal
estimates, whereas for the slower rate, the system cavitates at higher
pressures, remaining nevertheless monotonic versus temperature.
These simulations also extend our estimate of the spinodal to lower
temperatures, and indicate a marked downturn of the spinodal
pressure below the temperatures we have studied.
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In conclusion, we have performed extensivemolecular dynamics
and Monte Carlo simulations of supercooled liquid silicon using
the SW potential, and, for the first time, we provide evidence
for a negative pressure liquid–liquid critical point. We estimate
the location of the critical point to be at Tc ∼ 1,120 ± 12K,
Pc ∼ −0.60 ± 0.15GPa. We have computed the phase diagram
of supercooled liquid silicon. We find no retracing of the
spinodal. The phase behaviour of silicon is similar to that
observed in simulations of water and silica. The structure of the
liquid changes dramatically in going from high temperatures and
pressures to low temperatures and pressures. Diffusivities vary by
more than four orders of magnitude and exhibit an anomalous
pressure dependence. A strong relationship between local geometry,
quantified by the coordination number, and diffusivity is seen,
suggesting that atomic mobility in both low and high density
liquids can usefully be analysed in terms of defects in the
tetrahedral network structure.

Methods
We perform MD simulations, with a time step of 0.383 fs, with details as in ref. 1,
but employing an efficient algorithm30 for energy and force evaluations. NVT
simulations employ the LAAMPS (ref. 31) parallelized MD package. PT and REMC
Monte Carlo simulations are described in the Supplementary Information.

In the HDL phase, a minimum of 3–6 independent samples are simulated
for ∼100 relaxation times (∼10 ns). In the LDL phase, crystallization (monitored
by energy jumps, mean square displacement (MSD) and the pair correlation
function) rates are high. We perform around 10–50 initial runs, each of 22 ns.
Non-crystallizing samples (an average of 5) were run for up to 10 relaxation times
when possible. In all LDL cases, simulations are carried out for the time required
for the MSD to reach 1 nm2 (5σ 2, where σ is the atomic diameter) or for 100 ns
(300 millionMD steps), whichever is the larger.

Equilibration is monitored by the MSD and the overlap functionQ(t ), defined
as Q(t )=

∑N

i=1w|(ri(t0)−ri(t + t0)|), where w(r)= 1, if r ≤ 0.3σ , zero otherwise.
We evaluate relaxation times (τ ) by fittingQ(t ) to a stretched exponential function.
As an indication of its variation, τ varies at P = 0GPa in the HDL phase from
0.3 ps (T = 1,260K) to 0.01 ns (T = 1,068K). In the LDL phase at T = 1,060K the
value of τ is around 30 ns.

We calculate the compressibilityKT from the EOS using:

KT =
1

ρ

[

∂ρ

∂P

]

T

where ρ is the number density and P is the pressure. Polynomial fits to isotherms
are used in calculating the derivatives. We also calculate KT from fluctuations of
volume V (NPT simulations) using:

KT =
〈V 2〉−〈V 〉2

〈V 〉kBT

The latter method is computationally very demanding, and the comparison
between the two reveals the degree to which sampling is satisfactory. In the HDL
the two estimates of KT agree very well, but in LDL, below the KT maximum, the
deviations between the two indicate that sampling in the LDL is not sufficient to
obtain KT from fluctuations.

The coordination number, Nn, is calculated by integrating the pair correlation
function g (r) up to its first minimum. Note that in ref. 1 the integration was
performed up to the first minimum of n(r)= ρ4πr2g (r), rather than the g (r)
directly, which leads to a small underestimate in the coordination number at high
temperatures and pressures.
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