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Molecular motors are specialized proteins which perform active, directed transport of cellular
cargoes on cytoskeletal filaments. In many cases, cargo motion powered by motor proteins is found
to be bidirectional, and may be viewed as a biased random walk with fast unidirectional runs
interspersed with slow ‘tug-of-war’ states. The statistical properties of this walk are not known in
detail, and here, we study memory and bias, as well as directional correlations between successive
runs in bidirectional transport. We show, based on a study of the direction reversal probabilities of
the cargo using a purely stochastic (tug-of-war) model, that bidirectional motion of cellular cargoes
is, in general, a correlated random walk. In particular, while the motion of a cargo driven by two
oppositely pulling motors is a Markovian random walk, memory of direction appears when multiple
motors haul the cargo in one or both directions. In the latter case, the Markovian nature of the
underlying single motor processes is hidden by internal transitions between degenerate run and pause
states of the cargo. Interestingly, memory is found to be a non-monotonic function of the number of
motors. Stochastic numerical simulations of the tug-of-war model support our mathematical results
and extend them to biologically relevant situations.

PACS numbers: 05.40.Fb,05.40.-a,87.16.Nn

I. INTRODUCTION

Motor proteins are enzymes that convert chemical en-
ergy derived from hydrolysis of adenosine tri-phosphate
(ATP) to mechanical work. Dynein and kinesin are two
such proteins which perform directed motion on micro-
tubules, in opposite directions. While a complete under-
standing of the process remains an open question, vari-
ous plausible mechanisms leading to the directed trans-
port have been discussed in the literature[1–12]. Motor-
driven cargo transport on cytoskeletal network interests
biologists and physicists alike because of its relevance in
understanding spatial organization of various organelles
inside eukaryotic cells and because of the opportunities
it provides for detailed quantitative modeling[13–17]. Al-
though the primary purpose of molecular motors would
appear to be fast unidirectional transport, many mo-
tor driven cargoes on microtubule filaments are found
to move in bidirectional fashion[18, 19]. While tug-of-
war (TOW) model explains bidirectional transport as a
natural consequence of motors of opposite polarity (eg.,
kinesin and dynein) being simultaneously active and ex-
erting forces on the cargo[16, 18, 19], regulated coordi-
nation model presumes the presence of a coordinating
complex in the cargo which permits only one set of mo-
tors to be active at any point of time.
A typical bidirectional cargo is hauled by several mo-

tors of opposite directionality, and would have a definite
drift towards the plus or minus end of the filament. A
characteristic trajectory of bidirectional cargo hauled by
five dyneins and a kinesin, generated in our simulations
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is shown in Fig. 1(a) (see ref.[20] for details). Such a
motion may be visualized as a biased random walk [21],
with unidirectional runs separated by pause states. In a
recent in vitro experimental study, presence of memory
in bidirectional motion was observed [22], wherein a bidi-
rectional cargo stalled by an optical trap while moving
was found to move preferentially in the pre-stall direction
after detachment from the filament under the influence
of the trap. While a detailed study of this experiment
is outside the scope of the present paper, it is pertinent
to ask: is motor protein-powered bidirectional organelle
transport a Markovian random walk?

In the present paper, we study the history dependence
of bidirectional cargo motion powered by molecular mo-
tors within the framework of the stochastic TOW model.
Our rigorous mathematical calculations, supported by
stochastic simulations, show that bidirectional motor-
mediated transport is a non-Markovian random walk,
characterized by multi-exponential waiting time distri-
butions. Interestingly, a recent theoretical work [23] has
studied the effects of pre-assigned memory in transition
rates on bidirectional cargo transport, but does not dis-
cuss its origins. By contrast, our work shows explicitly
how memory emerges as a consequence of the degeneracy
of the states of motion of the cargo, when hauled by mul-
tiple motor teams. We also find that correlation between
run directions is likely to extend to several TOW events
in typical experimental situations.

Several examples of persistent (correlated) random
walks are known in biology, e.g., bacterial chemotaxis[24]
and locomotion of slime mold amoeba D. discoideum[25].
However, typically in such cases, the underlying mech-
anism behind persistence of direction is not precisely
known. Bidirectional cargo transport by molecular mo-
tors, on the other hand, can be reconstituted in vitro
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FIG. 1. (color online) (a) A typical trajectory of a bidirec-
tionally moving cargo, as generated in our simulations (see
[20] for details). (b) State representation of a cargo driven
by a dynein and a kinesin, two dyneins and a kinesin. Here,
motility states of the cargo are non-degenerate in the first
case, but degenerate in the second.

and the number of cargo-bound motors estimated using
optical trap; therefore, it is a much more controllable
system compared to the previous examples. Further, the
underlying fundamental processes (binding and unbind-
ing of individual motors) are Markovian, and therefore,
the present system constitutes a fine illustration of how
apparent non-Markovian behavior emerges from purely
Markovian state transitions underneath.

II. MODEL AND FORMALISM

The stochastic TOW model [16], assumes a fixed num-
ber of minus-moving dyneins (D) and plus-moving ki-
nesins (K) on a cargo. Each motor on the cargo binds
to and unbinds from the microtubule stochastically with
rates π± and ǫ± respectively, with + subscript for ki-
nesin and − for dynein, while it is assumed that the mo-
tors always remain bound to the cargo. When opposite-
polarity motors engage simultaneously with the track,
each filament-bound motor exerts force on the cargo in
their respective direction, resulting in a net force on
the cargo in one of the directions. This net force ex-
perienced by both sets of motors is called ‘load’ and
is generally assumed to be shared equally among all
the motors which move in same direction. It is now
well-established that the detachment rates ǫ± depend
on the load per motor, while the attachment rates are
generally found to be independent of load. Based on
Kramers rate theory, it is generally assumed that this
load-dependence of detachment rates is exponential, i.e.,
ǫ±(f) = ǫ±(0) exp(f/f

d
±), where f

d
± is usually called the

detachment force and f is the load per motor. How-
ever, recent investigations[20, 26, 27] have shown that
the load-dependence of the dissociation rate of dynein
(but not kinesin[27]) deviates significantly from expo-
nential behavior in the super-stall regime. Therefore,
we adopt the exponential load-dependence for kinesin’s
detachment rate, whereas for dynein, we assume expo-
nential dependence up to the stall force, beyond which
the rate is insensitive to load[20]. This model is roughly

consistent with in vitro experimental observations[26],
and has been attributed to a catch-bond situation in
the motor-filament interaction[26]. Further details of the
model, especially regarding its implementation in numer-
ical simulations may be found in [16], as well as our earlier
paper[20].
The load-dependence of the detachment rates signif-

icantly affects the properties of bidirectional cargo mo-
tion, and is a necessary feature in the model so as to re-
produce experimentally observed features of the saltatory
motion of cargoes, e.g., lipid droplets in Drosophila[16].
Nevertheless, it turns out from our study that it is not
crucial to understand the origin of memory in bidirec-
tional transport. For this reason, we first develop our
formalism with load-independent detachment rates and
include load dependence in numerical simulations in the
later stages, where we study biologically relevant situa-
tions. As it turns out, load-dependence of motor detach-
ment rate introduces only a quantitative modification of
the parameters of interest in this context.
In the stochastic TOW model, with the elapse of time,

the number d(k) of actively hauling dyneins (kinesins)
change, such that 0 ≤ d ≤ D and 0 ≤ k ≤ K. It
may be noted that for a given source state (d, k) of
the cargo, there are between two to four possible tar-
get states: (d, k±1) and (d±1, k), subject to the bounds
above. Consequently, the cargo switches between differ-
ent states: plus-moving state(s) when only kinesins are
active, minus-moving state(s) when only dyneins are ac-
tive, TOW state(s) when both kind of motors are active
together and finally, the detached state when all the mo-
tors are inactive on the cargo[14–17]. In fig.1(b) corre-
sponding motility states of cargo are shown for two simple
cases (D = 1,K = 1) and (D = 2,K = 1). We should
notice that, when two dyneins and a kinesin are hauling
a cargo, both minus-run (m1 and m2) and TOW state
(τ1 and τ2) become degenerate. In general, both run and
pause states of the cargo become degenerate when more
than one motor is used in one or either directions.
Let m = {mi} represent the set of all minus-moving

states of the cargo, p = {pi} represent all plus-moving
states, τ = {τi} represent all TOW states and {o} rep-
resent the completely detached state. Let φ(m, τ |p) be
the probability that a cargo in plus-run enters a TOW
(without detaching from the filament) and then switches
direction, with unspecified durations spent in plus run
and TOW; this may hence be defined as the direction re-
versal probability for the plus state, while φ(p, τ |m) gives
the same for the minus state. Then, direction preserving
probabilities are given by the normalization conditions

φ(p, τ |p) + φ(m, τ |p) = 1 = φ(m, τ |m) + φ(p, τ |m). (1)

Given these probabilities, we define the memory
parameter[28]

µ ≡ φ(p, τ |p) − φ(p, τ |m) = φ(m, τ |m) − φ(m, τ |p), (2)

such that µ = 0 means no memory, while µ 6= 0 means
that the probability of finding the cargo in a certain
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run state is dependent on its run direction preceding the
TOW. Memory of direction, as defined above, is distinct
from a possible overall bias in the motion of cargo to-
wards plus or minus directions. The bias parameter may
be defined as

ν ≡ γp − γm, (3)

where γp = Σiγpi
and γm = Σiγmi

give the proba-
bilities for a TOW to terminate in plus and minus run,
respectively. Intuitively, it appears likely that memory
must affect the bias in transport, however no general
relation between the two is known, to the best of our
knowledge. Nevertheless, it can be shown that, if the
probability of cargo dissociating completely from micro-
tubule is very small, ν ≃ η/(1− µ) (see Eq.15 later, and
also Appendix B), where we define

η ≡ φ(p, τ |p) − φ(m, τ |m), (4)

as the asymmetry coefficient in the transport. In the
present problem, however, there is a non-zero probabil-
ity for the cargo to completely detach from the filament,
and therefore the above relation holds only in situations
where this can be neglected.
If the plus and minus run lengths are constants and

have the same value, then ν alone determines the aver-
age direction of motion of the cargo, i.e., the sign of the
drift velocity vd ≡ limt→∞ t−1〈x〉. This is a standard
assumption in most mathematical studies of the persis-
tent random walk, but is unrealistic in our case, as the
plus and minus run durations are strongly dependent on
the binding and unbinding rates of the motors[20], which
also determine µ and ν. In the present paper, we fo-
cus on memory, bias and directional correlations as ap-
propriate to a random walk-like picture of the motion; a
complete characterization of bidirectional motion also re-
quires identification of the different regimes of transport
as well as a detailed study of drift and diffusion coeffi-
cients of the walk. We certainly hope to address these
issues in a later publication.
We now develop the mathematical formalism required

to derive explicit expressions for the memory parame-
ter. From a state α of a cargo, the probability of tran-
sition to another state β at a time between t and t + dt
is Fαβ(t)dt = rαβψα(t)dt, where rαβ is the (constant)

rate for the α → β transition and ψα(t) = e
−t

∑

β
rαβ is

the survival probability, defined as the probability for the
cargo to stay in state α during the interval [0 : t]. Because
the active/inactive configuration of cargo-bound motors
determine the state α, ψα(t) can be expressed in terms
of survival probability of a motor in active state, i.e.,
e−ǫ±t and inactive state, i.e., e−π±t, on the cargo. The

probability of the transition is Φ(β|α; t) =
∫ t

0
Fαβ(τ)dτ ,

and its steady state limit Φ(β|α; t → ∞) ≡ Φ(β|α), is
a two-point Green function (‘bare’ propagator), which

is fundamental to our analysis. One may, similarly, de-
fine a 3-point Green function Φ(γ, β|α; t) in the prob-
lem, i.e., the probability for the system to trace a cer-
tain a history of states (α, β, γ) during a time interval
[0 : t], having started from α at t = 0. Given the
Markovian nature of the underlying process, this proba-
bility is expressed in the form of a convolution in time:

Φ(γ, β|α; t) =
∫ t

0 dτ1Fαβ(τ1)
∫ t−τ1

0 dτ2Fβγ(τ2). It follows
that, in the long time limit, the steady state probability
Φ(γ, β|α; t → ∞) ≡ Φ(γ, β|α) is expressed as the prod-
uct:

Φ(γ, β|α) = Φ(γ|β)Φ(β|α). (5)

It is now important to define a set of generalized two-
point Green functions G(β|α), which, for ease of distinc-
tion, we shall refer to as ‘dressed’ propagators. The dif-
ference between the bare and dressed propagators may
be explained with an example: whereas Φ(τj |mi) is the
probability for the cargo to be in a TOW state τj , af-
ter having spent an unspecified duration of time in the
minus-moving state mi (with no other state transitions
in between), G(τj |mi) includes an indefinite number of
cyclic transitions between the various (degenerate) {mi}
states, but fixed initial and final states mi and τj . From
both types of propagators, higher order Green functions
may be constructed using Eq.5; see examples below.

III. MEMORY IN CARGO TRANSPORT

A. Exact results

Case(i) D = 1 K = 1: Fig. 1(b) (panel 1) shows list
of four possible states of cargo (o, p1,m1 and τ1), when it
is driven by a kinesin and a dynein. The corresponding
survival probabilities are ψm1

(t) = e−(ǫ−+π+)t, ψp1
(t) =

e−(ǫ++π−)t, ψτ1(t) = e−tΣǫ and ψo(t) = e−tΣπ respec-
tively, where, for later convenience, we have introduced
the compact notations Σǫ ≡ ǫ+ + ǫ− and Σπ ≡ π+ + π−.
The two-point Green functions immediately follow:

Φ(τ1|m1) =
π+

π+ + ǫ−
; Φ(τ1|p1) =

π−
π− + ǫ+

;

Φ(m1|τ1) =
ǫ+
Σǫ

= 1− Φ(p1|τ1). (6)

The direction reversal of plus-run through a TOW corre-
sponds to the transition path p1 → τ1 → m1 while that of
minus-run corresponds to the path m1 → τ1 → p1, with
Φ(m1, τ1|p1) and Φ(p1, τ1|m1) being the respective three-
point Green functions representing the processes. On the
other hand, p1 → τ1 → p1 and m1 → τ1 → m1 paths
correspond to direction preserving transitions through a
TOW of a plus and minus run respectively (with Green
functions Φ(p1, τ1|p1) and Φ(m1, τ1|m1)). It is convenient
to normalize the three point functions as below:

φ(m, τ |p) =
Φ(m1, τ1|p1)

∑

α Φ(α, τ1|p1)
;φ(p, τ |m) =

Φ(p1, τ1|m1)
∑

α Φ(α, τ1|m1)
,

(7)
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where α = {p1,m1}. After carrying out the required
calculations using Eq. 5-7 we find that

φ(p, τ |p) =
ǫ−
Σǫ

= φ(p, τ |m), (8)

and by normalization (Eq. 1) we can write φ(m, τ |m) =
φ(m, τ |p). Therefore, by definition cargo motion is mem-
oryless (µ = 0) and hence, random walk exhibited by
a cargo driven by a dynein and a kinesin is Markovian.
Note, however, that if ǫ− < ǫ+, η < 0 so cargo is biased
towards minus direction, on the other hand if ǫ− > ǫ+,
then η > 0 so cargo is biased towards plus direction lo-
cally.
Case(ii) D = 2 K = 1: As shown in Fig. 1(b) (panel

2), cargo driven by two dyneins and a kinesin has two
minus-moving states (m1 and m2), two TOW states (τ1
and τ2), a single plus-moving state (p1) and a detached
state (o). The corresponding survival probabilities are
ψm1

(t) = e−(ǫ−+Σπ)t, ψm2
(t) = e−(2ǫ−+π+)t, ψτ1(t) =

e−(π−+Σǫ)t, ψτ2(t) = e−(ǫ−+Σǫ)t, ψp1
(t) = e−(ǫ++2π−)t

and ψo(t) = e−(π−+Σπ)t. From these probabilities, and
with the identification of the relevant rates, the bare
propagators follow:

Φ(m2|m1) =
π−

ǫ− +Σπ

; Φ(τ1|m1) =
π+

ǫ− +Σπ

;

Φ(m1|m2) =
2ǫ−

2ǫ− + π+
= 1− Φ(τ2|m2);

Φ(τ2|τ1) =
π−

π− +Σǫ

; Φ(m1|τ1) =
ǫ+

π− +Σǫ

;

Φ(p1|τ1) =
ǫ−

π− +Σǫ

; Φ(τ1|p1) =
2π−

ǫ+ + 2π−
;

Φ(m2|τ2) =
ǫ+

ǫ− +Σǫ

= 1− Φ(τ1|τ2). (9)

However, because of the possibility of cyclic transi-
tions between degenerate states, in the present case,
the dressed propagators G(β|α) are more useful, which
are related to their bare counterparts through equa-
tions analogous to Dyson’s equation in quantum field
theory. For example, it is easily seen that, for j =
1, 2, G(τj |mj) = Φ(τj |mj)(1 + Ωm + Ω2

m + .....), where
Ωm = Φ(m1|m2)Φ(m2|m1) is the probability for the
cyclic transition m1 → m2 → m1. We may similarly

define Ωτ = Φ(τ1|τ2)Φ(τ2|τ1) as the probability for the
τ1 → τ2 → τ1 cyclic transition. The complete set of such
relations are given below:

G(τj |mj) =
Φ(τj |mj)

1− Ωm

; G(τi|mj) =
Φ(τi|mi)Φ(mi|mj)

1− Ωm

;

G(mj |τj) =
Φ(mj |τj)

1− Ωτ

; G(mi|τj) =
Φ(mi|τi)Φ(τi|τj)

1− Ωτ

;

G(p1|τ1) =
Φ(p1|τ1)

1− Ωτ

; G(p1|τ2) =
Φ(p1|τ1)Φ(τ1|τ2)

1− Ωτ

,(10)

where i, j = 1, 2 and i 6= j. However,G(τ1|p1) = Φ(τ1|p1)
while G(τ2|p1) = 0 (A slightly different, and alternative
method for computing the propagators is described in
Appendix A).
The complete set of (dressed) three-point Green func-

tions are then constructed from these propagators as
G(γ, β|α) = G(γ|β)G(β|α), following Eq.5. It is then
easily seen that the direction reversal probabilities for
the plus and minus states are given by

φ(m, τ |p) =

∑

ℓG(mℓ, τ1|p1)
∑

ℓG(mℓ, τ1|p1) +G(p1, τ1|p1)
, (11)

φ(p, τ |m) =

∑

i,j γmi
G(p1, τj |mi)

∑

i γmi

[

∑

j G(p1, τj |mi) +
∑

j,ℓG(mℓ, τj |mi)

] ,(12)

where all the indices i, j, ℓ = 1, 2 and γmi
is the prob-

ability to find the system in state mi after TOW. It
is convenient to define the ratios ηi = γmi

/γp1
, where

γp1
= 1 −

∑

i=1,2 γmi
is the probability to be in plus-

moving state after a TOW. The coefficients ηi are now
determined using the self-consistency conditions

∑

i,j

ηiG(mℓ, τj |mi)+G(mℓ, τ1|p1) = ηℓ ; ℓ = 1, 2. (13)

Eq. 11 and Eq.12 reduce to Eq.7 when there is no
degeneracy in m and τ states. The direction preserving
probabilities are then found from normalization (Eq. 1).
Using Eq. 9-13, we obtain the following explicit expres-
sions for φ(p, τ |p) and φ(p, τ |m), analogous to Eq. 8:

φ(p, τ |p) =
ǫ−(ǫ+ + 2ǫ−)

ǫ2+ + (3ǫ− + π−)ǫ+ + 2ǫ2−
,

φ(p, τ |m) =
2ǫ2−

[

(ǫ+ + 2ǫ− + π−)(ǫ+ + π+ + 2ǫ− + π−) + ǫ−π−

]

[

(2ǫ− + π−)(ǫ+ + π+ + 2ǫ− + π−) + ǫ−π−

][

ǫ2+ + (3ǫ− + π−)ǫ+ + 2ǫ2−

] . (14)

Clearly, µ is non-zero in this case, indicating that the
random walk is non-Markovian in nature. Here, although
the survival probability in each individual motor state is

an exponentially decaying function, the survival proba-
bility of the cargo in minus-run or TOW is modified by
internal transitions between degenerate states (m1 and
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FIG. 2. (color online) Non-zero value of µ when it is plotted
as a function of (a) the unbinding rate ǫ− and (b) the binding
rate π− of dynein shows the presence of memory in the cargo
transport. The dashed line represents the theoretical curve
for (D = 2,K = 1) case (Eq. 14) while the symbols are
numerical results for (D = 2,K = 1) and (D = 5, K = 1)
cases. The parameters π+ = 0.904s−1, ǫ+ = 0.314s−1 and
π− = 2.74s−1 in (a) and ǫ− = 0.667s−1 in (b) are fixed using
in vitro experimental data given in TableI.

m2 or τ1 and τ2). By constructing the master equa-
tion for these degenerate states, one can show that the
waiting time distribution in minus-run/TOW is a multi-
exponential function[29]. This is similar to the recent
discovery of non-Markovian behavior in enzyme kinetics
characterized by multi-exponential waiting time distribu-
tions, when more than one enzyme is present in the sys-
tem [30]. Because memory originates from degeneracy of
states, it is natural to expect that µ will be non-zero in
the more general K > 1, D > 1 cases also.

B. Numerical simulations

To support our mathematical results, to explore higher
values of D and K and to consider the effects of load-
dependence of detachment rates, we next performed nu-
merical simulations using a Gillespie algorithm [31] for
several cases of multiple motor transport (D ≤ 20,K ≤
2). For details of the simulations including the fixing of
binding and unbinding rates and determination of the ve-
locity of cargo motion, the reader is referred to our earlier
paper[20].
Memory with load-independent detachment rates: For

(D = 2,K = 1) and (D = 5,K = 1) cases, µ is plotted as
a function of dynein unbinding rate ǫ− and binding rate
π− in Fig. 2(a) and (b) respectively. For large and very
small values of ǫ− or π−, the cargo stays mostly in one of
the extreme degenerate states thereby reducing the effect
of degeneracy and hence, the memory is smaller. For
intermediate values, on the other hand, the transitions
between the degenerate states of minus-run or TOW are
much more frequent, and this leads to maximization of
memory.
To investigate the memory effect more extensively, we

studied the memory parameter as a function of the motor
numbers (see Fig.3(a)), keeping the binding/unbinding

Molecular motor ǫ± (s−1) π± (s−1) fd

± (pN)

Kinesin(+) 0.314 0.904 5.169

Dynein(−) 0.667 2.740 0.546

TABLE I. List of single-molecule parameters extracted from
a previous in vitro study[32]. A detailed discussion is to be
found in [20]. However, other studies have reported different
binding and unbinding rates for dynein and kinesin [22, 27,
33–39].

rates of dynein and kinesin at fixed values which are given
in TableI. An increase in the number of dyneins increases
the number of degenerate states and hence µ increases
initially. However, for large number of bound dyneins,
the central limit theorem comes into play, and the cargo
is now found with overwhelmingly large probability in
one of the degenerate states, corresponding to the aver-
age number of bound motors. Therefore, the effective
number of degenerate states is now smaller, leading to a
reduction in µ.
Memory with load-dependent detachment rates: We

will now address the question of how the load-dependence
of detachment rates of the motors affect the memory pa-
rameter. Simulations show that, here, the dependence
of µ on the number of dyneins (see Fig.3(b)) is qualita-
tively the same as in the load-independent case studied
in Sec.III B. However, for the present choice of param-
eters, the memory parameter is almost two-fold larger
while the maximum is shifted to larger dynein numbers.
In Fig.4(a) and Fig.4(b), we have plotted the direction

reversal and direction preserving probabilities individu-
ally, as a function of the number of dyneins D, and fixing
K = 1. For D = 6, 7 and 8 (Fig.4(b), inside the box),
both plus and minus-directed cargoes are more likely to
continue moving in the same direction after a TOW i.e.
φ(p, τ |p) > φ(m, τ |p) and φ(m, τ |m) > φ(p, τ |m), there-
fore the bidirectional motion becomes a persistent ran-
dom walk. Persistence in cargo motion was observed in
the experiments of Leidel et al.[22] suggesting the pres-
ence of memory in transport; however the reasons are
likely to be different because of the presence of the trap.
Bias in cargo transport: Local preference towards one

of the directions after a TOW is quantified by the differ-
ence between the probability that the TOW terminates
in plus and minus directions and is characterized by the
bias parameter ν, defined in Sec.II. An approximate re-
lation can be shown to exist between the bias ν, memory
parameter µ and the coefficient of asymmetry η, under
conditions where the probability of complete detachment
of the cargo from the filament is small. This is derived
in Appendix B (for the special case D = 2,K = 1), and
the final result is

ν ≃
η

1− µ
, (15)

Two features are noteworthy in the above expres-
sion:(i) bias has the same sign as the asymmetry coef-
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FIG. 3. (color online) Memory parameter (µ) as a function
of number of dyneins is plotted in (a) with load independent
and in (b) with load dependent detachment rates for motors.
In both cases, the memory appears to vanish for very large
and very small number of bound dyneins. But µ is two-fold
larger when detachment rates are load dependent (details in
text).

ficient and (ii) for fixed η, bias is enhanced by positive
memory of direction (µ > 0) and suppressed by negative
memory (µ < 0).

Fig. 5 shows ν, as defined in Eq.3, computed using the
probabilities γp and γm measured in simulations, plotted
as a function of the number of dyneins, when detachment
rates of motors are assumed to be load-independent (a)
and load-dependent (b). Not surprisingly, an increase in
the number of attached dyneins, with fixed number of
kinesins, leads to eventual reversal in the sign of the bias
parameter from plus to minus; with load-dependence of
detachment rates, this reversal occurs at higher dynein
numbers. A comparison with the approximate expression
in Eq.15 is also shown in each figure. Here, the values
of η and µ are computed numerically using the direction
reversal probabilities determined from simulations. In
both cases, the approximate relation in Eq.15 manages to
capture the observed variation very well, and it therefore
appears that it is of general validity, beyond the specific
motor number combination for which it was derived.

In the present context, is also important to note that a
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FIG. 4. (color online) Direction reversal and preserving prob-
abilities of cargo as a function of number of dyneins, with
K = 1 is shown here, when detachment rates of motors are
assumed to be load independent (a) and load dependent (b).
In (b), inside the box, for D = 6, 7 and 8, general persistence
of direction is observed, i.e., both plus and minus-directed car-
goes are more likely to continue moving in the same direction
after a TOW.

non-zero bias is not necessary for net drift of the cargo in
one direction because the run durations can be different
in each direction. For example (under no-detachment
conditions for the cargo), in the (D = 1,K = 1) case,
we find that ν = (ǫ− − ǫ+)/(ǫ− + ǫ+) exactly, which is
independent of the binding rates π±. Therefore, when
ǫ+ = ǫ−, the cargo shows unbiased motion (ν = 0)
whereas, from symmetry reasons, it will clearly have non-
zero average velocity (drift) if π+ 6= π−. In this case,
although plus and minus directions are equally favored
after a TOW, the time durations spent by the cargo in
plus or minus run depend on π±[40], which in turn leads
to non-zero drift.

C. Correlation in run directions

A direct measure of correlations between the directions
of runs, separated by one or more TOW events, is the
directional correlation function C(n), which we define as
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FIG. 5. (color online) Symbols (black square and red plus)
show the directly measured bias parameter ν (Eq.3) as a func-
tion of number of dyneins (a) without and (b) with load de-
pendent detachment rates for motors, as measured in simula-
tions. The lines give the predicted values using Eq.15, with η

and µ measured separately in simulations.

follows:

C(n) = lim
i→∞

〈SiSi+n〉 − 〈Si〉〈Si+n〉

〈S2
i 〉 − 〈Si〉2

; n ≥ 0, (16)

where Si = 1 if the cargo runs in the plus direction
after the i’th TOW event, and Si = −1 if it runs in
the minus direction. The second term in the numerator
takes out the effect of the bias, and the denominator
is a normalization factor, introduced such that C(0) =
1. The directional correlation function is analogous to
the standard velocity autocorrelation function, but with
certain important differences. A detailed treatment of
the latter is not the subject of this paper, but a brief
discussion is given in the supplementary material[29].
We now make a conjecture that the directional corre-

lation function decays exponentially with the number of
TOWs, i.e., C(n) = ρn where 0 < ρ < 1[41]. In Appendix
C, we have shown for (D = 2,K = 1) case that, under
conditions where complete detachment of the cargo from
the filament is neglected, C(1) = µ exactly. However,
this can be generalized to other cases i.e., (D ≥ 2,K ≥ 2)

motor configuration µ n C(n) (sim) Eq.17

1 0.00041 0

(D=1,K=1) 0 2 0.00003 0

3 -0.00004 0

1 0.14192 0.14213

(D=5,K=1) 0.14213 2 0.02196 0.02020

3 0.00350 0.00287

1 0.20359 0.20592

(D=10,K=1) 0.20592 2 0.04333 0.04240

3 0.00925 0.00873

1 0.15860 0.16026

(D=15,K=1) 0.16026 2 0.02639 0.02568

3 0.00434 0.00411

1 0.11047 0.11234

(D=20,K=1) 0.11234 2 0.01342 0.01262

3 0.00129 0.00141

TABLE II. The table shows the directional correlation func-
tion, defined in Eq.16, as measured in simulations, compared
to the prediction of Eq.17, when detachment rates of motors
are load dependent. The µ values were separately found in
simulations (data plotted in Fig.3b). The reported values of
C(n) were obtained by averaging over 5 × 107 independent
cargo trajectories.

also. Therefore, under this approximation, we arrive at
the simple and interesting result that ρ = µ, and hence

C(n) ≃ µn = e−
n
nc n ≥ 0. (17)

where nc = −(lnµ)−1 is the equivalent of a correla-
tion time, and gives the mean number of TOWs over
which directional correlation between runs persists. This
is indeed an intuitively pleasing relation as this clearly
shows that the number of TOWs over which the direc-
tional correlations are appreciable increases with µ (For
µ = 0, C(n) = 0 for all n ≥ 1).
Table II gives a comparison between C(n) directly

measured in simulations versus the prediction in Eq.17
for 1 ≤ n ≤ 3, and varying dynein numbers D (keeping
K = 1). It is clear that Eq.17 approximates the simula-
tion data rather well.

IV. CONCLUSIONS AND DISCUSSION

Random walk models have found a large number of ap-
plications in modeling various kinds of biological trans-
port phenomena (see e.g., [42] for a review). The bidi-
rectional transport of cargoes like mitochondria, lipid
droplets, endosomes, phagosomes etc in eukaryotic cells
is also akin to a random walk on microtubule filaments.
It is clear that for functional reasons, this walk is likely
to be biased; certain cargoes need to be moved to the
interior of the cell, while certain others may need to be
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transported to the outer cell membrane. The underly-
ing molecular mechanisms of bidirectional transport have
been studied in a great deal of detail, both experimen-
tally and via biophysical modeling. However, barring a
few papers, much less attention has been paid to the sta-
tistical properties of the walk itself, which motivated us
to undertake this study.
Our focus here was on understanding correlations be-

tween successive run directions of a cargo moving bidi-
rectionally, being transported by two opposing teams of
kinesins and dyneins. By studying a memory parame-
ter constructed using direction reversal probabilities, we
showed that memory in direction is a generic property
of this motion, which appears when at least one team of
motors has more than one member. TOW between two
single motors on either side, however, results in a biased
random walk of the cargo without memory. Interestingly,
the memory parameter is found to be a non-monotonic
function of the number of motors and, for fixed bind-
ing/unbinding rates, is maximized for a certain motor
number. We also find that the effective interaction be-
tween the opposing motor teams which emerges out of
the load-dependence of the individual unbinding rates,
enhances this memory. For one set of experimentally
measured binding and unbinding rates for dynein and
kinesin (in vitro studies using motor proteins from D.
discoideum, see Table I), we estimated that the correla-
tion in run direction could persist up to 2-3 TOW events
for typical motor numbers (in this case, the upper limit
corresponds to 1-2 kinesins and 8-12 dyneins).
Correlated random walks with memory and persistence

have been the subject of a large number of mathemati-
cal studies[28, 43–48]. In the models studied in these
papers, at each instant, the walker takes a step of fixed
size in a certain direction, the probability for which de-
pends on one (usually) or more previous steps that have
been taken. It has been shown that, in one dimension,
after appropriate limiting procedures, the equation that
describes the asymptotic properties of such a walk is the
telegraphers equation[28, 46], which reduces to (a) the
standard diffusion equation in the long-time limit, and
(b) the wave equation in the short-time limit. The de-
marcation of these regimes is determined by the time
scale over which the steps remain correlated. The bidirec-
tional transport model studied in this paper, clearly falls
under the class of a correlated random walk, but with

some additional and unique features: (a) the run dura-
tion, equivalent to the step size of the random walk, is
not a constant, but determined by binding and unbinding
rates of the motors (b) the TOW/pause state can have a
non-zero velocity (but small compared to run states) de-
pending on the number of opposing motors (c) the cargo
may detach as a whole from the filament, which rules out
steady state behavior of the Green functions, even in the
long-time limit. It would be interesting to see if a con-
tinuum equation, analogous to the telegraphers equation,
could be constructed for the present problem in the long-
time limit, taking into account these modifications, and
to study its properties. It is also pertinent to note that
given the finite size of the cell, the biologically relevant
time regime need not necessarily be the long-time limit
mentioned above, but could be the memory-dominated
short-time limit. If this is true, the presence of multiple
motors in a team could function as a mechanism to pro-
vide a semi-deterministic character to the cargo motion.
The implications of this conjecture, as well as its system-
atic verification remain to be done and are among our
future goals.

The mathematical and computational results in this
paper should be verifiable in experiments. Detailed
time-traces of cargo trajectories in bidirectional motion
have been obtained from both in vitro and in vivo
experiments[22, 26, 32, 49]. By analyzing such trajec-
tories, it should be possible to measure the memory pa-
rameter µ and correlate it with the number of motors
estimated by other means (eg. optical trap stalls). In in
vivo situations, our results and methods may be found
useful in the estimation of the number of motors involved
in the transport process. Above all, we believe that our
study will stimulate further interest in understanding the
statistical properties of bidirectional cargo motion.
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[13] M. Badoual, F. Jülicher and J. Prost, Proc. Natl. Acad.

Sci. USA 99 6696 (2002).
[14] S. Klumpp and R. Lipowsky, Proc. Natl. Acad. Sci. USA

102 17284 (2005).
[15] M. J. I. Müller, S. Klumpp and R. Lipowsky, J. Stat.

Phys. 133 1059 (2008).
[16] M. J. I. Müller , S. Klumpp and R. Lipowsky, Proc. Natl.

Acad. Sci. USA 105 4609 (2008).
[17] M. J. I. Müller, S. Klumpp and R. Lipowsky, Biophys. J.

98 2610 (2010).
[18] S. P. Gross, Phys. Biol. 1 R1 (2004).
[19] M. A. Welte, Curr. Biol. 14 R525 (2004).
[20] D. Bhat and M. Gopalakrishnan, Phys. Biol. 9 046003

(2012).
[21] I. V. Maly and I. A. Vorobjev, Cell Biol. Int. 26 791

(2002).
[22] C. Leidel, R. A. Longoria, F. M. Gutierrez, and G. T.

Shubeita, Biophys. J. 103 492 (2012).
[23] Y. Zhang, Phys. Rev. E 87 052705 (2013).
[24] M. J. Schnitzer, Phys. Rev. E 48 2553 (1993).
[25] R. Sambeth and A. Baumgaertner, Phys. Rev. Lett. 86

5196 (2001).
[26] A. Kunwar et al, Proc. Natl. Acad. Sci. USA 108 18960

(2011).
[27] A. K. Rai, A. Rai, A. J. Ramaiya, R. Jha, and R. Mallik,

Cell 152 1 (2013).
[28] S. Goldstein, Quart. J. Mech. Appl. Math. 4 129 (1951).
[29] See Supplemental Material at [URL will be inserted by

publisher] for calculations of waiting time distribution
as well as simulation results for velocity autocorrelation
function.

[30] S. Saha, S. Ghose, R. Adhikari, and A. Dua, Phys. Rev.
Lett. 107 218301 (2011).

[31] D. T. Gillespie, J. Phys. Chem. 81 2340 (1977).
[32] V. Soppina, A. K. Rai, A. J. Ramaiya, P. Barak, and R.

Mallik, Proc. Natl. Acad. Sci. USA 106 19381 (2009).
[33] K. Svoboda and S. M. Block, Cell 77 773 (1994).
[34] R. D. Vale, T. S. Funatsu, D. W. Pierce, L. Romberg, Y.

Harada and T. Yanagida, Nature 380 451 (1996).
[35] C. M. Coppin, D. W. Pierce, L. Hsu and R. D. Vale,

Proc. Natl. Acad. Sci. USA 94 8539 (1997).
[36] M. A. Welte, S. P. Gross, M. Postner, S. M. Block and

E. F. Wieschaus, Cell 92 547 (1998).
[37] M. J. Schnitzer, K. Visscher and S. M. Block, Nat. Cell.

Biol. 2 718 (2000).
[38] S. Toba, T. M. Watanabe, L. Yamaguchi-Okimoto, Y. Y.

Toyoshima and H. Higuchi, Proc. Natl. Acad. Sci. USA
103 5741 (2006).

[39] V. Ananthanarayanan, M. Schattat, S. K. Vogel, A.
Krull, N. Pavin, and I. M. Tolic̀-Nørrelykke, Cell 153

1526 (2013).
[40] D. Bhat and M. Gopalakrishnan, AIP Conf. Proc. 1512,

140 (2012).
[41] An analogy may be made with the spin correlation func-

tion in the 1D Ising model, which decays exponentially
with the number of sites, see e.g., P.M. Chaikin and T.C.
Lubensky, Principles of condensed matter physics (Cam-
bridge University Press, 1995).

[42] E. A. Codling, M. J. Plank and S. Benhamou, J. R. Soc.
Interface 5 813 (2008).

[43] R. Fürth, Schwankungserscheinungen in der Physik,
Sammlung Vieweg, Braunschweig (1920).

[44] G.I. Taylor, Proc. London Math. Soc. 20 196 (1921/22).
[45] C. S. Patlak, Bull. Math. Biophys. 15 311 (1953).
[46] G. H. Weiss, Physica A 311 381 (2002).
[47] R. Garcia-Pelayo, Physica A 384 143 (2007).
[48] S. Hermann and P. Vallois, e-print arXiv:0810.0650v1

[math.PR] (2008).
[49] A. G. Hendricks, E. Perlson, J. L. Ross, H. W. Schroeder

III, M. Tokito, and E. L. F. Holzbaur, Curr. Biol. 20 697
(2010).

[50] N. G. van Kampen, Stochastic Processes in Physics

and Chemistry (Elsevier Science Publishers B.V., North-
Holland, Amsterdam, 1997), Chap. XII.

Appendix A: Derivation of dressed propagators by

the method of ‘splitting probabilities’

The calculation of direction reversal or direction pre-
serving probabilities (φ(γ, β|α)) in this paper utilizes the
concept of dressed propagators G(β|α), which we had
constructed using the more fundamental bare propaga-
tors Φ(β|α). The dressed propagator G(β|α) includes
infinite cyclic transitions between degenerate α states
({αi}) of the cargo, for given initial and final states. In
the present formalism, the modification of the bare prop-
agators by these cyclic transitions involved summing a
geometric series. However, this method is not the unique;
G(β|α) can be also determined using a somewhat differ-
ent method called ‘method of splitting probabilities’ [50].
Let us consider a stochastic process with more than

one absorbing state. The splitting probability for a cer-
tain absorbing state is defined as the probability that
the system reaches it before reaching the others. In other
words, it is the transition probability to one of its absorb-
ing states. As the system has to be absorbed in one of
these states in the long-time limit, the sum of all splitting
probabilities is equal to unity.
The bare propagators Φ(β|α), defined in (D = 1,K =

1) and (D = 2,K = 1) cases are indeed splitting prob-
abilities as they are the transition probabilities between
a starting state α and a final state β, the latter being
treated temporarily as an absorbing state. The dressed
propagators G(β|α) defined in (D = 2,K = 1) case
are higher order splitting probabilities in this sense, and
can be constructed out of the bare propagators. It is
known that the splitting probabilities follow certain iden-
tity relations[50], which are specific to each problem.
Here, we exploit this feature to determine the dressed
propagators G(β|α) for the case (D = 2,K = 1).
Let, {αi} = {mi} or {τi}, and {βi} = {mi} or {τi}

such that {αi} 6= {βi}. Then, the splitting probabilities
G(βj |αi) and G(βj |αj) (i, j = 1, 2) can be easily seen to
satisfy the identities

G(βj |αi) = Φ(αj |αi)G(βj |αj) i 6= j, (A1)

G(βj |αj) = Φ(βj |αj) + Φ(αi|αj)G(βj |αi), (A2)
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solving which, it follows that

G(βj |αi) =
Φ(αj |αi)Φ(βj |αj)

1− Φ(αj |αi)Φ(αi|αj)
i 6= j, (A3)

G(βj |αj) =
Φ(βj |αj)

1− Φ(αj |αi)Φ(αi|αj)
. (A4)

which are seen to be identical to the relations in Eq.10,
for all combinations of initial and final states.

Appendix B: Relation between Memory and Bias

parameters

Starting from the definition in Eq.3, for a (D = 2,K =
1) system, we have ν = γp1

−
∑

ℓ γmℓ
(ℓ = 1, 2). Using

the parameters ηℓ defined in Sec. III A, we arrive at the
following relation:

ν =
1−

∑

ℓ ηℓ
1 +

∑

ℓ ηℓ
. (B1)

From Eq.13, we have

∑

ℓ

ηℓ =
∑

i,j,ℓ

ηiG(mℓ, τj |mi) +
∑

ℓ

G(mℓ, τ1|p1). (B2)

The following normalization conditions clearly apply:

G(p1, τ1|p1) +
∑

ℓ

G(mℓ, τ1|p1) +G(o|p1) = 1, (B3)

∑

j,ℓ

G(mℓ, τj |mi) +
∑

j

G(p1, τj |mi) +G(o|mi) = 1, (B4)

where the terms G(o|p1) and G(o|mi) give the proba-
bility of complete detachment of the cargo, from initial
states p1 and mi respectively.

Let us now assume G(o|p1), G(o|mi) ≪ 1, and
use the identity G(p1, τ1|p1) ≡ φ(p, τ |p) in Eq.B3,
which leads to

∑

ℓG(mℓ, τ1|p1) ≃ 1 − φ(p, τ |p). Fi-
nally, using Eq.B4 in Eq.12 and using the relation
φ(m, τ |m) = 1 − φ(p, τ |m) leads to a second relation
∑

i,j,ℓ ηiG(mℓ, τj |mi) ≃ φ(m, τ |m)
∑

ℓ ηℓ. Using these
approximate relations in Eq.B2, we arrive at the equation

∑

ℓ

ηℓ ≃
1− φ(p, τ |p)

1− φ(m, τ |m)
, (B5)

the substitution of which in Eq.B1 leads to the expres-
sion in Eq.15, after realizing that φ(p, τ |p)+φ(m, τ |m) =
1 + µ and using the definition of the asymmetry coeffi-
cient η in Eq.4. Further, using the relation γp1

∑

ℓ ηℓ =

∑

ℓ γmℓ
along with the condition of normalization (γp1

+
∑

ℓ γmℓ
= 1) in Eq.B5, it can also be shown that,

γp1
≃
φ(p, τ |m)

1− µ
;

∑

ℓ

γmℓ
≃
φ(m, τ |p)

1− µ
. (B6)

Appendix C: Proof that C(1) = µ under the ‘no

detachment approximation’

In steady state conditions, 〈Si〉 = γp − γm = ν, the
bias parameter. Therefore, Eq.16 becomes

C(n) =
〈SiSi+n〉 − ν2

1− ν2
; n ≥ 0. (C1)

For n = 1, it follows from the definitions of the propa-
gators that

〈SiSi+1〉 =
∑

i,j,ℓ

γmi
G(mℓ, τj |mi)−

∑

i,j

γmi
G(p1, τj |mi) + γp1

G(p1, τ1|p1)− γp1

∑

ℓ

G(mℓ, τj |p1). (C2)

If we now assume that the probability of complete de-
tachment of the cargo is small, i.e., G(o|p1), G(o|mi) ≪
1, then from Eq.B3 and Eq.11 we can write
G(p1, τ1|p1) ≃ φ(p, τ |p) and

∑

ℓG(mℓ, τ1|p1) ≃

φ(m, τ |p). Similarly, using Eq.B4 and Eq.12 we can
write

∑

i,j,ℓ γmi
G(mℓ, τj |mi) ≃ φ(m, τ |m)

∑

i γmi
and

∑

i,j,ℓ γmi
G(p1, τj |mi) ≃ φ(p, τ |m)

∑

i γmi
. Therefore,
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Eq.C2 becomes

〈SiSi+1〉 = [φ(p, τ |p)− φ(m, τ |p)]γp1
+ [φ(m, τ |m) − φ(p, τ |m)]

∑

ℓ

γmℓ
. (C3)

Noting that φ(m, τ |p) = φ(m, τ |m)−µ and φ(p, τ |m) =
φ(p, τ |p) − µ, Eq.C3 can be rewritten as

〈SiSi+1〉 = µ+ ην, (C4)

where we have used the fact that γp1
+

∑

ℓ γmℓ
= 1,

ν = γp1
−

∑

ℓ γmℓ
and also from Eq.4, η = φ(p, τ |p) −

φ(m, τ |m). Now, using Eq.C4 in Eq.C1, we find

C(1) =
µ+ ην − ν2

1− ν2
. (C5)

Finally, substituting Eq.15 in Eq.C5, we arrive at the
simple and elegant result C(1) = µ.


