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Minimization Problems Based on

Relative α-Entropy II: Reverse Projection
M. Ashok Kumar and Rajesh Sundaresan

Abstract

In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted
Iα) were studied. Such minimizers were called forward Iα-projections. Here, a complementary class of minimization problems
leading to the so-called reverse Iα-projections are studied. Reverse Iα-projections, particularly on log-convex or power-law
families, are of interest in robust estimation problems (α > 1) and in constrained compression settings (α < 1). Orthogonality
of the power-law family with an associated linear family is first established and is then exploited to turn a reverse Iα-projection
into a forward Iα-projection. The transformed problem is a simpler quasiconvex minimization subject to linear constraints.

Index Terms

Best approximant; exponential family; information geometry; Kullback-Leibler divergence; linear family; power-law family;
projection; Pythagorean property; relative entropy; Rényi entropy; robust estimation; Tsallis entropy.

I. INTRODUCTION

This paper is a continuation of our study of minimization problems based on a parametric generalization of relative entropies,

denoted Iα. See (12) for the definition of Iα(P,Q), where P and Q are probability measures on an alphabet set X. We say

“parametric generalization of relative entropy” because limα→1 Iα(P,Q) = I (P‖Q), the usual relative entropy or Kullback-

Leibler divergence. In part I [2], we showed how Iα arises and studied the problem of a forward Iα-projection, namely

min
P∈E

Iα(P,R),

where R is a fixed probability measure on X and E is a convex set of probability measures on X. In this paper, we shall study

reverse Iα-projection, namely

min
P∈E

Iα(R,P ).

The minimization now is with respect to the second argument of Iα. Such problems arise in robust parameter estimation

and constrained compression settings. The family E is usually a parametric family such as the exponential family, or its

generalization, called the α-power-law family.

We shall bring to light the geometric relation between the α-power-law family and a linear family1 of probability measures.

We shall turn the reverse Iα-projection problem on an α-power-law family into a forward Iα-projection problem on a linear

family. The latter turns out to be a minimization of a quasiconvex objective function subject to linear constraints.

The outline of the paper is as follows. In Section II, we motivate reverse Iα-projections for the cases α > 1 and α < 1.

In Section III, we define the required terminologies and highlight the contributions of the paper. In Section IV, we study the

existence of a reverse Iα-projection on general log-convex sets. In Section V, we provide simplified proofs of some essential

results from [2] on the forward Iα-projection. Our simplified proofs also serve the purpose of keeping this paper self-contained.

In Section VI, we explore the geometric relation between the α-power-law and the linear families, and then exploit it to study

reverse Iα-projection on α-power-law families. The paper ends with some concluding remarks in Section VII.

II. MOTIVATIONS

The purpose of this section is to motivate reverse Iα-projections. The motivation for α > 1 comes from robust statistics.

The motivation for α < 1 comes from information theory as well as from a strong similarity of the outcomes with the α = 1
(relative entropy) setting.

M. Ashok Kumar was supported by a Council for Scientific and Industrial Research (CSIR) fellowship and by the Department of Science and Technology.
R. Sundaresan was supported in part by the University Grants Commission by Grant Part (2B) UGC-CAS-(Ph.IV) and in part by the Department of Science
and Technology. A part of the material in this paper (Section V alone) was presented at the National Conference on Communication (NCC 2015), Mumbai,
India, held during February 2015 [1].

M. Ashok Kumar and R. Sundaresan are with the ECE Department, Indian Institute of Science, Bangalore 560012, India.
1Example linear families are (1) the set of probability measures P on X such that

∑

x P (x)f(x) = 0 for some f : X → R, and (2) finite intersections of
such sets. If there is an additive structure on X, a concrete example is the set of all probability measures with a fixed mean.
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A. Reverse I -projection

Let X be a finite alphabet set and let E = {Pθ : θ ∈ Θ} denote a family of probability measures on X indexed by the

elements of the index set Θ ⊂ Rk for some k. Let x1, x2, . . . , xn be n samples drawn independently and with replacement

from X according to an unknown probability measure Pθ belonging to E. The maximum likelihood estimate (MLE) of θ,

denoted θ̂, is the element of the index set Θ that maximizes the likelihood (if it exists), i.e.,

θ̂ = argmax
θ∈Θ

n
∏

i=1

Pθ(xi). (1)

Let P̂ denote the empirical measure of the n samples x1, . . . , xn, i.e.,

P̂ :=
1

n

n
∑

i=1

δxi
,

where δa denotes the Dirac mass at a. One may then write
∏n

i=1 Pθ(xi)
∏n

i=1 P̂ (xi)
=

n
∏

i=1

Pθ(xi)

P̂ (xi)

=
∏

x∈X

(

Pθ(x)

P̂ (x)

)nP̂ (x)

= exp{−nI (P̂‖Pθ)},

where

I (P‖Q) :=
∑

x∈X

P (x) log
P (x)

Q(x)

is the relative entropy2 of P with respect to Q. Hence the MLE is the minimizer (if it exists)

θ̂ = argmin
θ∈Θ

I (P̂ ‖Pθ), (2)

and the corresponding probability measure Pθ̂ is known as the reverse I -projection of P̂ on the family E. Such reverse

projections, particularly those related to robustifications of the MLE, are the subject matter of this paper.

Observe that the MLE depends on the samples only through their empirical measure. Let us write the MLE as a function

of the empirical measure in a different way. Assume that the family E is sufficiently smooth in the parameter θ on account of

which we can define the score function as s(· ; θ) := ∇θ logPθ(·), the gradient of logPθ(·) with respect to θ. The first order

optimality criterion applied to (1) after taking logarithms yields the so-called estimating equation for the MLE:

1

n

n
∑

i=1

s(xi; θ) = 0;

the MLE θ̂ solves this equation. Write EP [· · · ] for expectation with respect to P . Noting that the score function satisfies

EPθ
[s(X ; θ)] = 0 ∀Pθ,

the estimating equation for the MLE can be rewritten as

1

n

n
∑

i=1

s(xi; θ) = EPθ
[s(X ; θ)], (3)

which is the same as

EP̂ [s(X ; θ)] = EPθ
[s(X ; θ)]. (4)

If we write T (P̂ ) for the θ that solves (4), we then have θ̂ = T (P̂ ). The estimator T (P̂ ) is Fisher consistent3, a fact that can

be easily checked using (4).

2The usual convention is p log p

q
= 0 if p = 0 and +∞ if p > q = 0.

3An estimator that maps an empirical measure to an element in Θ is Fisher consistent if it is continuous and maps Pθ to the true parameter θ. See [3,
Sec. 5c.1]
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B. Reverse Iα-projection: α > 1

Though the MLE is known to possess many good properties, asymptotic efficiency being an example, it is not appropriate

when some of the data entries (xi) are contaminated by outliers. To achieve robustness, one may consider scaling the scores

s(xi; θ) in the left-hand side of (3) by weights w(xi; θ) that weigh down outlying observations “relative to the model” (see

for example Basu et al. [4]). This type of robustification, along with the requirement of Fisher consistency, is accomplished

by the estimator that maps the empirical measure P̂ to the θ that solves the equation

EP̂ [w(X ; θ)s(X ; θ)] = EPθ
[w(X ; θ)s(X ; θ)]. (5)

Basu et al. [4] proposed the natural weighting w(x; θ) = Pθ(x)
c where c > 0. As another robustification procedure, Basu et

al. [4] proposed a weighting of the model by itself, motivated by the works of Field and Smith [5] and Windham [6], prior to

solving the estimating equation. Their procedure is as follows. Given a measure Q, its weighting with respect to a parameter

c > 0 and a model θ ∈ Θ, denoted Q(c,θ), is given by

Q(c,θ)(x) =
w(x; θ)Q(x)
∑

y∈X

w(y; θ)Q(y)
, x ∈ X,

where the dependence on c is through the weighting w(x; θ) = Pθ(x)
c as before. Observe that (Pθ)

(c,θ) weighs Pθ by itself,

namely the weighting parameters are c and θ, and (Pθ)
(c,θ) is the probability measure proportional to Pθ

c+1. The Basu et al.

procedure4 [4] is to find the θ that solves the equation

E(P̂ )(c,θ) [s(X ; θ)] = E(Pθ)(c,θ) [s(X ; θ)]; (6)

the P̂ and Pθ of (4) are replaced by the model reweighted (P̂ )(c,θ) and (Pθ)
(c,θ), respectively. It is clear that the corresponding

estimator is Fisher consistent. Now (6) can be rewritten as

1
n

n
∑

i=1

w(xi; θ)s(xi; θ)

1
n

n
∑

i=1

w(xi; θ)
=

EPθ
[w(X ; θ)s(X ; θ)]

EPθ
[w(X ; θ)]

,

which expands to

n
∑

i=1

Pθ(xi)
cs(xi; θ)

n
∑

i=1

Pθ(xi)
c

=

∑

x∈X

Pθ(x)
c+1s(x; θ)

∑

x∈X

Pθ(x)
c+1

. (7)

Jones et al. [7] compare the robustness properties of estimators arising from (5) and (7). According to Jones et al. [7, p. 866],

the former is more efficient, but the latter has better robustness with respect to a mixture model of contamination with outliers.

Equation (7) can be recognized as an estimating equation arising from the first order optimality criterion for the maximization

max
θ∈Θ

[

1

c
log

(

1

n

n
∑

i=1

Pθ(xi)
c

)

−
1

1 + c
log
∑

x∈X

Pθ(x)
1+c

]

. (8)

We shall soon see why it ought to be a maximization. The objective function in (8) is called mean power likelihood 5. The

corresponding estimator is called the maximum mean power likelihood estimate (MMPLE) by Eguchi and Kato [8]; we shall

denote it θ̂c+1. (The appearance of 1 in the subscript θ̂c+1 will soon become clear.) When c = 0, we see that θ̂1 becomes the

MLE θ̂. The parameter c in (8) can thus be used to trade-off robustness for asymptotic efficiency as observed in [6], [7].

4This procedure may be viewed as a generalization of the self-weighting procedure suggested by Windham [6, p. 604].
5To see why the objective function in (8) is called mean power likelihood, verify that (7) is equivalent to

1

n

n
∑

i=1

sc(xi; θ) = 0

where

sc(x; θ) := Pθ(x)
c
[

s(x; θ)−
1

1 + c
∇θ

(

log
∑

x∈X

Pθ(x)
c+1

)]

.

The quantity sc(xi; θ) is a generalization of the power-weighted and centered score function. The centering ensures Fisher consistency. As c ↓ 0, we have
sc(x; θ) → s(x; θ).
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Let us now bring in the connection to a parametric family of relative entropies. Recall that P̂ is the empirical measure of

the data. The argument θ ∈ Θ that maximizes the objective in (8) is the same as minimizing

−
c+ 1

c
log

(

1

n

n
∑

i=1

Pθ(xi)
c

)

+
1

c
log
∑

x∈X

P̂ (x)c+1 + log
∑

x∈X

Pθ(x)
c+1

= −
c+ 1

c
log
∑

x∈X

P̂ (x)Pθ(x)
c +

1

c
log
∑

x∈X

P̂ (x)c+1 + log
∑

x∈X

Pθ(x)
c+1

=: Ic+1(P̂ , Pθ), (9)

where Ic+1 in (9) is a parametric extension of relative entropies already studied in our companion paper [2]. We thus have

θ̂c+1 = argmin
θ∈Θ

Ic+1(P̂ , Pθ), (10)

and the probability measure Pθ̂c+1
corresponding to the MMPLE θ̂c+1 is called the reverse Ic+1-projection of the empirical

measure P̂ on the family E. It is known (see for example [2, Lemma 1-b)]) that limc↓0 Ic+1(P,Q) = I (P‖Q), as it should

be, for we already saw that c = 0 yields θ̂1 = θ̂, the MLE, which is also the reverse I -projection of the empirical measure

P̂ on E. This operational continuity intuitively suggests that we must have minimization in (10) and maximization in (8).

Let us now use large sample asymptotics to justify the minimization in (10) (and maximization in (8)). Let θ∗ be the true

parameter and let x1, . . . , xn be drawn independently and according to Pθ∗ . As the number of samples n goes to infinity,

almost surely, the empirical measure6 P̂ converges (point-wise) to the true probability measure Pθ∗ . For a fixed candidate

estimate θ, by virtue of the continuity of Ic+1(·, Pθ) in the first argument when c > 0, see [2, Prop. 2], we have (almost

surely)

Ic+1(P̂ , Pθ)
n→∞
→ Ic+1(Pθ∗ , Pθ) ≥ Ic+1(Pθ∗ , Pθ∗),

where the last inequality follows from the fact that Iα(Pθ∗ , Pθ) ≥ 0 with equality if and only if θ = θ∗ [2, Lem. 1-a)]. From

this, it is clear that one must minimize over θ ∈ Θ (and not maximize) in (10) in order to identify the true parameter θ∗.

Some historical remarks are now called for. Basu et al. [4] studied a nonnormalized version of the estimating equation

(7), namely (5) with w(x; θ) = Pθ(x)
c. They also identified an associated divergence which is now called β-divergence [9],

[10]. The β-divergences belong to the class of Bregman divergences [11]. Jones et al. [7] proposed the normalized estimating

equation (7) and identified a divergence associated with (7), see [7, Eq. (2.8)]. Fujisawa and Eguchi [9] found that Ic+1 is

another divergence associated with the estimating equation (7) and termed it γ-divergence. They also established an approximate

Pythagorean relation for Ic+1 (which is quite different from what we shall discuss in Section V) and used it to bound the

error between estimates arising with and without contamination by outliers7. Recently, Cichocki and Amari [10] surveyed the

properties of the β- and the Iα-divergences and their connection to other divergences.

Earlier Sundaresan [12] and [13] arrived at Iα-divergences in the context of redundancy in compression and guessing

problems (for α < 1). Let us now turn to this.

C. Reverse Iα-projection: α < 1

We now motivate reverse Iα-projection for α < 1. Rényi entropies play a role similar to Shannon entropy when one wishes

to minimize the normalized cumulant of compressed lengths as opposed to expected compressed lengths. More precisely, with

ρ = α−1 − 1 > 0, Campbell [14] showed that

min
1

nρ
logE[exp{ρLn(X

n)}] → Hα(P̂ ) (as n → ∞)

for an i.i.d. source with marginal P̂ . The minimization is taken over all length functions Ln that satisfy the Kraft inequality. ρ
is the cumulant parameter. As α ↑ 1, we have ρ ↓ 0, and it is well known that limα↑1 Hα(P̂ ) = H(P̂ ), the Shannon entropy,

so that Rényi entropy can be viewed as an operational generalization of Shannon entropy.

Suppose now that the compressor is forced to use for compression, not the true probability measure P̂ , but a probability

measure Pθ from a family parameterized by θ ∈ Θ. Let us denote, as before, E = {Pθ : θ ∈ Θ}. As an example, P̂ may be

a generic measure on X = {0, 1, . . . , L}, but the compressor may wish to pick the best representation of P̂ among binomial

distributions Pθ having θ ∈ (0, 1) as parameter8. If the compressor picks Pθ instead of the true P̂ , then the gap in the resulting

normalized cumulant from the optimal value is Iα(P̂ , Pθ) [13]. It follows that the best compressor from within E has parameter

θ̂α = argmin
θ∈Θ

Iα(P̂ , Pθ) (11)

6The dependence of P̂ on n is understood and suppressed.
7The outliers are generated using a mixture model.
8More sophisticated examples are possible. Take X = {0, 1}Z, P̂ any fixed, stationary, and ergodic probability measure on X, and E the class of stationary

Markov measures on X of fixed Markov order. Since this X is not finite, such examples are beyond the scope of this paper.
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and the probability measure Pθ̂α
is the reverse Iα-projection of P̂ on the family E. While (10) defines reverse Iα-projection

for α > 1, (11) defines such a projection for α < 1. As one expects, limα↑1 Iα(P̂ , Pθ) = I (P̂‖Pθ), the penalty for mismatch

in compression when expected lengths are considered, and one has the operational continuity that I (P̂‖Pθ) is the usual

limiting penalty for mismatch as α ↑ 1.

Iα also arises as the gap from optimality due to mismatch in performance of guessing schemes (Arikan [15], Hanawal and

Sundaresan [16], Sundaresan [13]) and more recently in the performance of coding for tasks (Bunte and Lapidoth [17]).

III. THE SETTING AND CONTRIBUTIONS

In this section, we formalize the notions of projections and the families of interest. We then highlight our contributions.

We begin by recalling the definition of Iα and its alternate expressions.

Definition 1: The relative α-entropy of P with respect to Q is defined as

Iα(P,Q) :=
α

1− α
log
[

∑

x

P (x)Q(x)α−1
]

−
1

1− α
log
∑

x

P (x)α + log
∑

x

Q(x)α (12)

=
α

1− α
log

[

∑

x

P (x)

‖P‖

(

Q(x)

‖Q‖

)α−1
]

, (13)

where

‖Q‖ =
[

∑

x

Q(x)α
]1/α

.

Equation (12) is the same as (9) but with the parameter space extended to α > 0, α 6= 1. Equation (13) follows after

regrouping of terms using the definition of ‖P‖ and ‖Q‖. For any τ > 0, since Q/‖Q‖ = τQ/‖τQ‖, it follows that (13) can

be extended to any pair of positive measures P and Q on X, and not just probability measures on X.

For each α > 0, α 6= 1, Iα(P,Q) ≥ 0 with equality iff P = Q.

Note that Iα(P,Q) = ∞ if and only if either

• α < 1 and P is not absolutely continuous with respect to Q (notation P 6≪ Q), or

• α > 1 and P and Q are singular, i.e., the supports of P and Q are disjoint.

Let P(X) be the set of all probability measures on X. For a probability measure P on X, let Supp(P ) = {x : P (x) > 0}
denote the support of P . For a set E of probability measures, write Supp(E) for the union of the supports of the members of

E
Let us now formally define what we mean by a reverse Iα-projection for α > 0, α 6= 1.

Definition 2 (Reverse Iα-projection): Let R be a probability measure on X. Let E be a set of probability measures on X
such that Iα(R,P ) < ∞ for some P ∈ E. A probability measure Q ∈ E satisfying

Iα(R,Q) = inf
P∈E

Iα(R,P ) =: Iα(R,E) (14)

is called a reverse Iα-projection of R on E. If there is no such Q ∈ E, a probability measure Q in the closure of E satisfying

(14) is called a generalized reverse Iα-projection of R on E.

In a previous paper [2], we studied the forward Iα-projection of a probability measure R on a family. We reproduce [2,

Defn. 6] here for it plays a crucial role in this paper.

Definition 3 (Forward Iα-projection): Let R be a probability measure on X. Let E be a set of probability measures on X
such that Iα(P,R) < ∞ for some P ∈ E. A probability measure Q ∈ E satisfying

Iα(Q,R) = inf
P∈E

Iα(P,R) =: Iα(E, R) (15)

is called a forward Iα-projection of R on E.

In Definition 2, the minimization is with respect to the second argument, while in Definition 3 the minimization is with

respect to the first argument. The focus in [2] was on forward projection on convex families and general alphabet spaces. We

provided sufficient conditions for existence of the forward projection and argued that if the forward projection exists then it is

unique. Convex families arise naturally from constraints placed by measurements of linear statistics. Examples of such families

are linear families which we now define.

Definition 4 (Linear family): A linear family characterized by k functions fi : X → R, 1 ≤ i ≤ k, is the set of probability

measures given by

L :=
{

P ∈ P(X) :
∑

x

P (x)fi(x) = 0, i = 1, . . . , k
}

. (16)
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Reverse Iα-projections, however, correspond to maximum likelihood or robust estimations, and are often on exponential

families which we now define.

Definition 5 (Exponential family): An exponential family characterized by a probability measure R and k functions fi : X →
R, 1 ≤ i ≤ k, is the set of probability measures given by

M :=
{

Pθ : θ ∈ Θ ⊂ Rk
}

,

where

Pθ(x)
−1 := Z(θ) exp

[

log
(

R(x)−1
)

+

k
∑

i=1

θifi(x)
]

= Z(θ)R(x)−1 exp
[

k
∑

i=1

θifi(x)
]

∀x ∈ X

with Z(θ) being the normalization constant and Θ being the subset of Rk for which Pθ is a valid probability measure9.

Examples of exponential families include

• Bernoulli distribution (X = {0, 1}, Θ = (0, 1)),
• Binomial distribution (X = {0, 1, . . . , L}, Θ = (0, 1)),
• Poisson distribution (X = {0, 1, . . .}, Θ = (0,∞)), and

• Gaussian distribution (X = Rd, the parameter θ denotes the pair of mean and covariance).

The last two are given only as illustrative examples for they do not satisfy the finite X assumption of this paper. We will take

up the study of reverse Iα-projection on the more general log-convex families which we now define.

Definition 6 (Log-convex family): A set E of probability measures on a finite alphabet set X is said to be log-convex if for

any two probability measures P and Q in E that are not singular, and any t ∈ [0, 1], the probability measure P tQ1−t defined

by

P tQ1−t(x) :=
P (x)tQ(x)1−t

∑

y
P (y)tQ(y)1−t

(17)

also belongs to E.

Exponential families are log-convex, a fact that is easily checked.

We will also take up reverse projections on analogs of exponential families. To define these analogs, let us first define the

generalized logarithm and the generalized exponential functions [18]. Let R̄+ = R ∪ {+∞} and let R̄ = R ∪ {+∞,−∞}.

Definition 7: For α > 0, the α-logarithm function, denoted lnα : R̄+ → R̄, is defined to be

lnα(u) :=

{

u1−α−1
1−α α 6= 1

log(u) α = 1

where the log function is the natural logarithm. Its functional inverse, the α-exponential function, denoted eα : R̄ → R̄+, is

defined to be

eα(u) :=

{

(max{1 + (1− α)u, 0})1/(1−α) α 6= 1
exp(u) α = 1.

It is easy to check that eα(lnα(u)) = u for u > 0 and that lnα(eα(u)) = u whenever 0 < eα(u) < ∞.

The analogs of exponential families are the so-called α-power-law families which we now define. (Compare Definitions 5

and 8.)

Definition 8 (α-power-law family): Let R be a probability measure such that if α > 1 then Supp(R) = X. An α-power-law

family characterized by the probability measure R and k functions fi : X → R, 1 ≤ i ≤ k, is the set of probability measures

given by

M(α) :=
{

Pθ : θ ∈ Θ ⊂ Rk
}

,

where

Pθ(x)
−1 := Z(θ)eα

[

lnα
(

R(x)−1
)

+
k
∑

i=1

θifi(x)
]

∀x ∈ X, (18)

9If R(x) equals 0, then so does Pθ(x).
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provided

1 + (1 − α)
[

lnα

(

R(x)−1
)

+

k
∑

i=1

θifi(x)
]

> 0 ∀x ∈ X,

with Z(θ) being the normalization constant and Θ being the subset of Rk for which Pθ is a valid probability measure.

Equivalently10,

Pθ(x)
α−1 = Z(θ)1−α

[

R(x)α−1 + (1− α)

k
∑

i=1

θifi(x)
]

> 0 ∀x ∈ X. (19)

When we wish to be explicit about the characterizing entities, we shall write M(α)(R, f1, . . . , fk) for the family. In Appendix

22, we show that M(α) depends on R in only a weak manner. Any member Pθ∗ ∈ M(α) may equally well play the role of R
and this merely corresponds to translation and scaling of the parameter space.

M(α) is not closed. Sometimes it will be required to consider its closure cl(M(α)).
One has the more general notion of lnα-convex family as well (see van Erven and Harremoës [19]11).

Definition 9 (lnα-convex family): A set E of probability measures is said to be lnα-convex if for any two probability measures

P and Q in E (that are not singular when α ≤ 1), and any t ∈ [0, 1], the probability measure R defined by

R−1 := Zeα
(

t lnα(P
−1) + (1− t) lnα(Q

−1)
)

(20)

also belongs to E. The quantity Z is the normalization constant that makes R a probability measure.

Substitution of the definitions of eα and lnα indicate that the probability measure R defined in (20) can be rewritten as

Z−1
[

tPα−1 + (1 − t)Qα−1
]

1
α−1 . (21)

When α = 1, lnα-convexity is just log-convexity, thereby justifying that lnα-convexity is an extension of log-convexity. Just

as exponential families are log-convex, α-power-law families are lnα-convex, a fact that can be easily checked using (21).

While forward projections of interest are on convex families, reverse projections of interest, particularly those arising in

estimation problems, are on log-convex, and by analogy, on lnα-convex families. Log-convex or lnα-convex families are not

necessarily convex in the usual sense.

Definition 9 is given only to complete the picture. We shall restrict attention in this paper to the α-power-law family.

A. A closer look at our contributions.

For a given R and a given E with some P such that Iα(R,P ) < ∞, we obviously have Iα(R,E) < ∞. If we consider a

sequence (Pn) ⊂ E such that limn→∞ Iα(R,Pn) = Iα(R,E), by virtue of the continuity of Iα(P, ·) in the second argument

(see [2, Rem. 5]), all subsequential limits of (Pn) are generalized reverse Iα-projections. In this paper, we study example

settings when the generalized reverse Iα-projection is unique, when it is not, and how one may characterize it, sometimes,

as a forward Iα-projection. Specifically, we do the following.

• In Section IV, we study reverse Iα-projections on log-convex families. We show an example of nonuniqueness of

generalized reverse Iα-projections on an exponential family when α > 1. However uniqueness holds for α < 1.

• In Section V, our focus will be on the forward Iα-projection on certain convex families, in particular, linear families. We

identify the form of the forward Iα-projection on a linear family L and prove a necessary and sufficient condition for a

Q ∈ L to be the forward Iα-projection on L. We consider the cases α > 1 and α < 1 separately in two subsections. The

proof for the α < 1 case is similar to Csiszár and Shields’ proof for α = 1 case [20]. For the proof of the α > 1 case,

we resort to the Lagrange multiplier technique. The structure of the forward Iα-projection naturally suggests a statistical

model, namely the α-power-law family M(α).

• In Section VI, we study reverse Iα-projections on M(α), and show uniqueness of the generalized reverse projection for

all α > 0, α 6= 1. To show this, we establish an orthogonality relationship between M(α) and an associated linear family.

We then use this geometric property to turn a reverse Iα-projection on M(α) into a forward Iα-projection on the linear

family. It will turn out that, sometimes, we may need to consider a larger family than just cl(M(α)).

10A definition such as (18) is fraught with pesky issues of well-definedness. We have verified the equivalence of (19). But a skeptical reader may simply
take (19) as the starting point to define M(α). The definition in (18) is given only to highlight its similarity with Definition 5. Observe that, from (19), if
α < 1, R(x) = 0 implies Pθ(x) = 0.

11van Erven and Harremoës [19] gave a different name to what we call lnα-convex family; they called this (α− 1)-convex family. Our convention follows
the notation for and parametrization of the generalized logarithm.
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IV. REVERSE PROJECTION ONTO LOG-CONVEX SETS

We consider the cases α > 1 and α < 1 separately in the next two subsections. Before that, we present a lemma of some

independent interest. This is an extension of a result for relative entropy (α = 1); see Csiszár and Matúš [21, Eq. (3)], where

(22) below is an equality.

Lemma 10: Let P and Q be probability measures on X that are mutually absolutely continuous. Let R be any probability

measure on X that is not singular with respect to P or Q. Let t ∈ [0, 1].

(a) If α < 1, then

tIα(R,P ) + (1− t)Iα(R,Q) ≥ Iα(R,P tQ1−t)− log
∑

x

P ′(x)tQ′(x)1−t, (22)

where P ′ is the escort probability measure associated with P given by

P ′(x) :=
P (x)α
∑

y
P (y)α

and Q′ is the escort probability measure associated with Q.

(b) If α > 1, the inequality in (22) is reversed.

Proof: Let us first observe that if α < 1 and R 6≪ P tQ1−t, then, by the assumption that P and Q are mutually absolutely

continuous, both sides of (22) are +∞, and so (22) holds. We may thus assume that R ≪ P tQ1−t when α < 1. Also, notice

that the hypotheses imply that R is not singular with respect to P tQ1−t. Hence, for both α < 1 and α > 1, we may take all

the terms in (22) to be finite.

Let us write

P (x)tQ(x)1−t

∑

y
P (y)tQ(y)1−t

=

(

P (x)
‖P‖

)t (
Q(x)
‖Q‖

)1−t

∑

y

(

P (y)
‖P‖

)t (
Q(y)
‖Q‖

)1−t .

Using this in (13) we get

Iα(R,P tQ1−t) =
α

1− α
log
∑

x

R(x)

‖R‖















(

P (x)
‖P‖

)t(
Q(x)
‖Q‖

)1−t

(

∑

y

(

P (y)
‖P‖

)αt(
Q(y)
‖Q‖

)α(1−t)
)

1
α















α−1

=
α

1− α
log
∑

x

R(x)

‖R‖

[

(

P (x)

‖P‖

)t (
Q(x)

‖Q‖

)1−t
]α−1

+ log
∑

x

(

P (x)

‖P‖

)αt(
Q(x)

‖Q‖

)α(1−t)

=
α

1− α
log
∑

x

[

R(x)

‖R‖

(

P (x)

‖P‖

)α−1
]t [

R(x)

‖R‖

(

Q(x)

‖Q‖

)α−1
]1−t

+ log
∑

x

P ′(x)tQ′(x)1−t

≤
α

1− α
log

[

∑

x

R(x)

‖R‖

(

P (x)

‖P‖

)α−1
]t [

∑

x

R(x)

‖R‖

(

Q(x)

‖Q‖

)α−1
]1−t

+ log
∑

x

P ′(x)tQ′(x)1−t

= tIα(R,P ) + (1 − t)Iα(R,Q) + log
∑

x

P ′(x)tQ′(x)1−t,

for α < 1, where the penultimate inequality follows by applying Hölder’s inequality to the inner-product within the first

logarithm term, with exponents 1/t and 1/(1− t). For α > 1, the inequality is obviously reversed because the multiplication

factor α/(1− α) is negative.

A. Reverse Iα-projection for α > 1

Recall that the MMPLE on a log-convex family is the reverse Iα-projection of the empirical measure on the family for the

case when α > 1. For log-convex families, it is possible that multiple reverse Iα-projections may exist, and we provide an

explicit example.

Example 1: Let X = {0, 1, 2}, let R be the uniform probability measure on X, and let E be the log-convex family of

binomial distributions on X with parameter θ ∈ (0, 1). A member Pθ of the family is given by

Pθ(0) = (1− θ)2, Pθ(1) = 2θ(1− θ), Pθ(2) = θ2.
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Fig. 1. Multiple reverse Iα-projections are possible when α > 1.

Figure 1 plots Iα(R,Pθ) as a function of θ for α = 2 (plot on the left-hand side) and α = 4 (plot on the right-hand side). Since

Iα(R,Pθ) has mirror-symmetry around the point θ = 1/2, a fact that can be easily checked, if there is a global minimum at

θ∗ ∈ (0, 1
2 ), then we have another global minimum at 1 − θ∗ ∈ (12 , 1). This is the situation with the plot on the right-hand

side.

Eguchi and Kato [8] consider the problem of spontaneous clustering for a Gaussian mixture model with an unknown

number of components, and put the possibility of multiple minima to good use. Very briefly, their procedure operates on the

data as follows, and we refer the interested reader to [8] for further details. They first choose the parameter α with some

care using either the maximum range of the data or the Akaike information criterion. They then identify the resulting minima

of Iα(R,Pθ) over the parameters θ ∈ Θ. Here R is the empirical measure12 of the data and α is as chosen. They interpret

each minimum point as the parameter of a “discovered” component of the mixture. Finally, they associate each data point to

a nearby component, among those discovered, thereby arriving at a clustering. If the number of components is unknown, the

number of minima is a spontaneous choice for the number of components of the mixture.

Example 1 suggests a sequence (Pn) ⊂ E that satisfies Iα(R,Pn) → Iα(R,E), and yet Pn does not converge: take α = 4,

Pn = Pθ∗ for odd n, and Pn = P1−θ∗ for even n. All subsequential limits are of course generalized reverse Iα-projections.

B. Reverse Iα-projection for α < 1

For α < 1, the generalized reverse Iα-projection is unique, unlike the situation in the previous subsection.

Theorem 11: Let α < 1. Let E be a log-convex set of mutually absolutely continuous probability measures on X. Let R be

a probability measure on X such that Iα(R,E) < ∞. Under these conditions, there exists a unique probability measure Q
such that, for every sequence (Pn) in E satisfying Iα(R,Pn) → Iα(R,E), we have Pn → Q and Iα(R,Q) = Iα(R,E).

Proof: The proof broadly follows the proof of Csiszár’s [21, Th. 1].

Consider a sequence (Pn) ⊂ E such that limn Iα(R,Pn) = Iα(R,E). Since Iα(R,E) is finite, we may assume without

loss of generality that Iα(R,Pn) is finite for all n. Hence, for all n, R is not singular with respect to Pn; indeed, R ≪ Pn

12The empirical measure R and the Gaussian Pθ are singular. Following the formal definition in [2, Sec. II], strictly speaking, we have the relative α-entropy
Iα(R, Pθ) = ∞. The expansion however does provide a valid expression for optimization although one cannot interpret it as the relative α-entropy, and
Eguchi and Kato [8] minimize the expression to get the MMPLE.
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for all n. Apply Lemma 10 with P = Pm, Q = Pn to get

tIα(R,Pm) + (1− t)Iα(R,Pn) ≥ Iα(R,P t
mP 1−t

n )− log
∑

x

P ′
m(x)tP ′

n(x)
1−t (23)

≥ Iα(R,E)− log
∑

x

P ′
m(x)tP ′

n(x)
1−t, (24)

where last inequality follows from the hypothesis that P t
mP 1−t

n ∈ E. Also observe that, by Hölder’s inequality,

∑

x

P ′
m(x)tP ′

n(x)
1−t ≤

(

∑

x

P ′
m(x)

)t(∑

x

P ′
n(x)

)1−t

= 1. (25)

Let m,n → ∞ in (24) and use (25) to get

lim
m,n→∞

log
∑

x

P ′
m(x)tP ′

n(x)
1−t = 0.

Set t = 1/2 in this limit and undo the logarithm to get

lim
m,n→∞

∑

x

√

P ′
m(x)P ′

n(x) = 1

so that
∑

x

(

√

P ′
m(x)−

√

P ′
n(x)

)2

= 2− 2 ·
∑

x

√

P ′
m(x)P ′

n(x)

→ 0 as m,n → ∞.

Thus (P ′
n) is a Cauchy sequence. It must converge to some Q′, an escort of some probability measure Q. Given our finite

alphabet assumption, we must then have Pn → Q.

If (Qn) ⊂ E is another sequence such that Iα(R,Qn) → Iα(R,E), then since Pn and Qn can be merged together, (Qn)
must also converge to the same Q. The generalized reverse Iα-projection is therefore unique.

By continuity of Iα(R, ·), see [2, Rem. 5], we also have Iα(R,Q) = Iα(R,E).

The proof fails for α > 1 because the inequality in (24) is in the opposite direction, and one cannot conclude that (P ′
n) is

a Cauchy sequence. Indeed, the previous subsection provides a counterexample for lack of convergence and nonuniqueness of

reverse Iα-projection on a log-convex family, when α > 1.

V. FORWARD Iα-PROJECTION

In this section, we will recall some results on forward Iα-projection from [2] along with some refinements for our restricted

finite alphabet setting. The proofs here use elementary tools and exploit the finite alphabet assumption. The results will then

be used to turn a reverse Iα-projection on an α-power-law family into a forward Iα-projection on a linear family.

A. α < 1:

The result for α < 1 is the following. It establishes the form of the forward Iα-projection on a linear family.

Theorem 12: Let α < 1. Let L be a linear family characterized by fi, i = 1, . . . , k. Let R be a probability measure with

full support. Then the following hold.

(a) R has a forward Iα-projection on L. Call it Q.

(b) Supp(Q) = Supp(L) and the Pythagorean equality holds (see Figure 2):

Iα(P,R) = Iα(P,Q) + Iα(Q,R) ∀P ∈ L. (26)

(c) The forward Iα-projection Q satisfies

Zα−1Q(x)α−1 = R(x)α−1 + (1− α)

k
∑

i=1

θ∗i fi(x) ∀x ∈ Supp(L), (27)

where θ∗1 , . . . , θ
∗
k are scalars and Z is the normalization constant that makes Q a probability measure.

(d) The forward Iα-projection is unique.

Proof: (a) The mapping P 7→ Iα(P,R) is continuous [2, Rem. 5] and L is compact. Hence the forward Iα-projection

exists.

(b) This follows from [2, Props. 14-15, Th. 10-a].



11

Fig. 2. Pythagorean property

(c) Our proof follows the proof of Csiszár and Shields proof for the case α = 1 [20, Th. 3.2].

From (16), it is clear that the probability measures P ∈ L, when considered as |Supp(L)|-dimensional vectors, belong to the

orthogonal complement F⊥ of the subspace F of R|Supp(L)| spanned by the vectors fi(·), i = 1, . . . , k, restricted to Supp(L).
These P ∈ L actually span F⊥. (This follows from the fact that if a subspace of R|Supp(L)| contains a vector all of whose

components are strictly positive, here Q, then it is spanned by the probability vectors of that space.) Using (13), one can see

(26) same as
∑

x

P (x)

(

R(x)α−1

∑

a
Q(a)R(a)α−1

−
Q(x)α−1

∑

a
Q(a)α

)

= 0 ∀P ∈ L.

Consequently, the vector
R(·)α−1

∑

a
Q(a)R(a)α−1

−
Q(·)α−1

∑

a
Q(a)α

belongs to (F⊥)⊥ = F , that is,

R(x)α−1

∑

a
Q(a)R(a)α−1

−
Q(x)α−1

∑

a
Q(a)α

=

k
∑

i=1

λifi(x) ∀x ∈ Supp(L)

for some scalars λi, i = 1, . . . , k . This verifies (27) for obvious choices of Z and θ∗i .

(d) This follows from [2, Th. 8].

One can also state a converse.

Theorem 13: Let α < 1. Let Q ∈ L be a probability measure of the form (27). Then Q satisfies (26) and is the forward

Iα-projection of R on L.

Proof: This follows from [2, Th. 11-b].

B. α > 1:

We now establish the form of the forward Iα-projection on a linear family when α > 1. The following result may be seen

as a refinement of [2, Th. 10(a)].

Theorem 14: Let α > 1. Let L be a linear family characterized by fi, i = 1, . . . , k. Let R be a probability measure with

full support. Then the following hold.

(a) R has a forward Iα-projection on L. Call it Q.

(b) The forward Iα-projection Q satisfies

Zα−1Q(x)α−1 =
[

R(x)α−1 + (1− α)

k
∑

i=1

θ∗i fi(x)
]

+
∀x ∈ X, (28)

where θ∗1 , . . . , θ
∗
k are scalars, Z is the normalization constant that makes Q a probability measure, and [u]+ = max{u, 0}.

(c) The Pythagorean inequality holds:

Iα(P,R) ≥ Iα(P,Q) + Iα(Q,R) ∀P ∈ L. (29)

(d) The forward Iα-projection is unique.

(e) If Supp(Q) = Supp(L), then (29) holds with equality.

Proof: (a) The mapping P 7→ Iα(P,R) is continuous [2, Prop. 2] and L is compact. Hence the forward Iα-projection

exists.
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(b) The optimization problem for the forward Iα-projection is

min
P

Iα(P,R) (30)

subject to
∑

x

P (x)fi(x) = 0, i = 1, . . . , k (31)

∑

x

P (x) = 1 (32)

P (x) ≥ 0 ∀x ∈ X. (33)

We will proceed in a sequence of steps.

(i) Observe that Iα(·, R), in addition to being continuous, is also continuously differentiable. Indeed, we have

∂

∂P (x)
Iα(P,R) =

α

1− α

[

R(x)α−1

∑

a
P (a)R(a)α−1

−
P (x)α−1

∑

a
P (a)α

]

. (34)

Both denominators are bounded away from zero because for any P ∈ L, we have maxx P (x) ≥ 1/|X|, and therefore

∑

a

P (a)R(a)α−1 ≥
1

|X|
·min

a
R(a)α−1 > 0,

and
∑

a

P (a)α ≥
1

|X|α
> 0.

Consequently, the partial derivative (34) exists everywhere on R|X|
+ , and is continuous because the terms involved are

continuous. (The numerator of the second term in (34) is continuous because α > 1).

(ii) Since the equality constraints in (31) and (32) arise from affine functions, and the inequality constraints in (33) arise from

linear functions, we may apply [22, Prop. 3.3.7] to conclude that there exist Lagrange multipliers (λi, i = 1, . . . , k), ν,

and (µ(x), x ∈ X) associated with the constraints (31), (32), and (33), respectively, that satisfy:

α

1− α

[

Q(x)α−1

∑

a
Q(a)α

−
R(x)α−1

∑

a
Q(a)R(a)α−1

]

=

k
∑

i=1

λifi(x)− µ(x) + ν ∀x (35)

µ(x) ≥ 0 ∀x (36)

µ(x)Q(x) = 0 ∀x. (37)

In writing (35), we have substituted (34) for ∂
∂P (x)Iα(P,R).

(iii) Multiplying (35) by Q(x), summing over all x ∈ X, using Q ∈ L, and using (37), we see that ν = 0.

(iv) If Q(x) > 0, we must have µ(x) = 0 from (37), and its substitution in (35) yields, for all such x,

Q(x)α−1

∑

a
Q(a)α

=
R(x)α−1

∑

a
Q(a)R(a)α−1

+
1− α

α

k
∑

i=1

λifi(x). (38)

If Q(x) = 0, (35) implies that

R(x)α−1

∑

a
Q(a)R(a)α−1

+
1− α

α

k
∑

i=1

λifi(x) =
(1 − α)

α
µ(x) ≤ 0, (39)

where the last inequality holds because of (36) and α > 1. Therefore, (38) and (39) may be combined as

Zα−1Q(x)α−1 =
[

R(x)α−1 + (1− α)

k
∑

i=1

θ∗i fi(x)
]

+
∀x ∈ X,

where the choices of Z and θ∗i are obvious. This verifies (28) and completes the proof of (b).

(c) This follows from [2, Th. 10-a].

(d) Follows from [2, Th. 8].

(e) This can be shown using the proof of [2, Prop. 15] and using [2, Th. 10-a].

As in the α < 1 case, one has a converse.

Theorem 15: Let α > 1. Let Q ∈ L be a probability measure of the form (28). Then Q satisfies (29) for every P ∈ L, and

Q is the forward Iα-projection of R on L.
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Fig. 3. Orthogonal intersection of an α-power-law family and a linear family

Proof: Follows from [2, Th. 11-b].

When α > 1, in general, Supp(Q) 6= Supp(L) as shown by the following counterexample, and the Pythagorean inequality

(29) may be strict.

Example 2: Let α = 2. Let X = {1, 2, 3, 4}. Write P = (p1, p2, p3, p4) for a probability measure on X. Define the linear

family L to be

L = {P ∈ P(X) : 8p1 + 4p2 + 2p3 + p4 = 7} .

Let R be the uniform probability measure on X. We claim that the forward Iα-projection of R on L is Q = (3/4, 1/4, 0, 0).
First, Q ∈ L because 8q1 + 4q2 + 2q3 + q4 = 8× 3/4+ 4× 1/4+ 0+ 0 = 7. Second, Q is of the form (28). To see this, let us

note that f1(·) = (1,−3,−5,−6). Take θ∗1 = −1/20 and Z = 2/5. Then
[

R(·)α−1 + (1− α)θ∗1f1(·)
]

+
= [R(·)− θ∗1f1(·)]+

= ([1/4 + 1/20]+, [1/4 − 3/20]+, [1/4 − 5/20]+, [1/4 − 6/20]+)

= (6/20, 2/20, 0, 0)

= Z ·Q(·).

That Q is the forward Iα-projection now follows from Theorem 15.

Clearly Supp(Q) $ Supp(L). Also for P = (0.8227, 0.0625, 0.0536, 0.0612) ∈ L, numerical calculations yield a strict

inequality in (29) since the left-hand side and the right-hand side of (29) evaluate to 1.0114 and 0.9871, respectively. See also

[2, Rem. 13] where this counterexample showed that transitivity of projections does not hold for α > 1. In both situations,

the issue is that Supp(Q) 6= Supp(L).

VI. ORTHOGONALITY BETWEEN THE α-POWER-LAW FAMILY AND THE LINEAR FAMILY

The focus of this section is on the geometry of the α-power-law family with respect to its associated linear family, and its

exploitation. See Figure 3. We treat the cases α < 1 and α > 1 separately. Theorems 18 and 21 are the main contributions.

A. α < 1:

This case is the simpler of the two. The core result of this section, one on which the main result Theorem 18 hinges, is the

following that shows that the case α < 1 is similar to α = 1 [20, Th. 3.2].

Theorem 16: Let α < 1. Let L be a linear family characterized by fi, i = 1, . . . , k, as in (16). Let R be a probability

measure with full support. Let M(α) be the α-power-law family, as in Definition 8, characterized by R and the same k
functions fi, i = 1, . . . , k. Let Q be the forward Iα-projection of R on L. Then the following hold.

(a) L ∩ cl(M(α)) = {Q}.

(b) For every P ∈ L, we have

Iα(P,R) = Iα(P,Q) + Iα(Q,R). (40)

(c) If Supp(L) = X, then L ∩M(α) = {Q}.

Proof: Statement (b) is the same as Theorem 12-(c). Let us observe from Theorem 12 that when Supp(L) = X, the

forward Iα-projection Q of R on L satisfies

Zα−1Q(x)α−1 = R(x)α−1 + (1 − α)

k
∑

i=1

θ∗i fi(x) ∀x ∈ X
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for some scalars Z, θ∗1 , . . . , θ
∗
k. Hence Q ∈ M(α). Since Q is also in L, we have Q ∈ L ∩M(α).

Thus, in general, when Supp(L) is not necessarily X, if we can show that (i) every member of L ∩ cl(M(α)) satisfies (40),

and (ii) L∩cl(M(α)) is nonempty, then, since any member satisfying (40) is also forward Iα-projection and since the forward

Iα-projection is unique, the theorem will be established. We now proceed to show (i) and (ii).

(i) Every Q̃ ∈ L ∩ cl(M(α)) satisfies (40). (41)

Let (Qn) ⊂ M(α) be such that Qn → Q̃. Then, for each n, there exist θ(n) =
(

θ
(n)
1 , . . . , θ

(n)
k

)

∈ Rk and a constant Zn such

that

Zα−1
n Qn(x)

α−1 = R(x)α−1 + (1− α)

k
∑

i=1

θ
(n)
i fi(x) ∀x ∈ X. (42)

Since, for any P ∈ L, we have
∑

x

P (x)fi(x) =
∑

x

Q̃(x)fi(x) = 0, i = 1, . . . , k,

by taking expectation with respect to P and Q̃ on both sides of (42), we get

Zα−1
n

∑

x

P (x)Qn(x)
α−1 =

∑

x

P (x)R(x)α−1

and

Zα−1
n

∑

x

Q̃(x)Qn(x)
α−1 =

∑

x

Q̃(x)R(x)α−1,

respectively. Using the above two equations to eliminate Zα−1
n , we get

∑

x

P (x)R(x)α−1 =

∑

x
Q̃(x)R(x)α−1

∑

x
Q̃(x)Qn(x)α−1

∑

x

P (x)Qn(x)
α−1.

Letting n → ∞, and then by using (12), we get (40) with Q replaced by Q̃. This proves (i).

(ii) L ∩ cl(M(α)) is nonempty.

Let

τ
(n)
i :=

1
n

∑

x
R(x)fi(x)

(1− 1
n )
∑

x
Q(x)R(x)α−1 + 1

n

∑

x
R(x)α

,

f̃i(·) := fi(·) − τ
(n)
i R(·)α−1, i = 1, . . . , k,

and define the sequence of linear families

Ln :=
{

P ∈ P(X) :
∑

x

P (x)f̃i(x) = 0, i = 1, . . . , k
}

.

The τ
(n)
i ’s are chosen so that (1 − 1

n )Q + 1
nR ∈ Ln, and so Supp(Ln) = X. Let Qn be the forward Iα-projection of R on

Ln. Then, by virtue of Theorem 12-(b), we have Supp(Qn) = X, and by virtue of Theorem 12-(c), we have

Zα−1
n Qn(x)

α−1 = R(x)α−1 + (1 − α)

k
∑

i=1

θ
(n)
i f̃i(x)

=
[

1− (1− α)

k
∑

i=1

θ
(n)
i τ

(n)
i

]

R(x)α−1 + (1 − α)

k
∑

i=1

θ
(n)
i fi(x) ∀x ∈ X. (43)

Taking expectation with respect to Q on both sides, and using
∑

x
Q(x)fi(x) = 0, i = 1, . . . , k, we get

Zα−1
n

∑

x

Q(x)Qn(x)
α−1 =

[

1− (1 − α)

k
∑

i=1

θ
(n)
i τ

(n)
i

]

·
∑

x

Q(x)R(x)α−1.

As the summations on either side are finite and strictly positive for each n, the term within square brackets in the above

equation is also strictly positive for each n. Rescaling (43) appropriately, we see that Qn ∈ M(α). Note also that τ
(n)
i → 0 as

n → ∞ for i = 1, . . . , k. Hence the limit of any convergent subsequence of (Qn) belongs to L ∩ cl(M(α)). This verifies (ii)

and concludes the proof of the theorem.
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We now argue that the family cl(M(α)) and L are “orthogonal” to each other, in a sense made precise in the statement of

the next result.

Corollary 17: Under the hypotheses of Theorem 16, the following additional statements hold.

(a) For every P ∈ L and every S ∈ cl(M(α)), we have

Iα(P, S) = Iα(P,Q) + Iα(Q,S). (44)

(b) For any S ∈ cl(M(α)), the forward Iα-projection of S on L is Q.

Proof: Since any member of M(α) can play the role of R by Prop. 22 (in the Appendix), and since, by Theorem 16,

L ∩ cl(M(α)) = {Q}, Q is the forward Iα-projection of any member of M(α) on L. Therefore (44) holds for every P ∈ L
and every S ∈ M(α). Furthermore, (44) holds for the limit of any sequence of members of M(α), and hence (a) and (b) hold

for members of cl(M(α)) \M(α) as well.

Let us now return to the compression problem discussed in Section II-C and show the connection between the reverse

Iα-projection on an α-power-law family and a forward Iα-projection on a linear family.

Theorem 18: Let α < 1. Let P̂ be a probability measure on X. Let M(α) be characterized by the probability measure R
and the functions fi, i = 1, . . . , k. Let L be the associated linear family characterized by fi, i = 1, . . . , k, and assume that it

is nonempty. Let R have full support.

Define L̃ as

L̃ :=
{

P ∈ P(X) :
∑

x

P (x)f̃i(x) = 0
}

, (45)

where

f̃i(·) = fi(·)− τRi R(·)α−1 (46)

with

τRi =

∑

x
P̂ (x)fi(x)

∑

x
P̂ (x)R(x)α−1

, i = 1, . . . , k. (47)

Let Q be the forward Iα-projection of R on L̃.

(a) If Supp(Q) = X, then Q is the unique reverse Iα-projection of P̂ on M(α).

(b) If Supp(Q) 6= X, then P̂ does not have a reverse Iα-projection on M(α). However, Q is the unique reverse Iα-projection

of P̂ on cl(M(α)).

Proof: L̃ is constructed so that P̂ ∈ L̃ (which is easy to check) and, further, L̃ is orthogonal to M(α) in the sense of Corollary

17. We now verify the latter statement. For concreteness, we will index the the α-power-law family by its characterizing

entities. By Corollary 17, L̃ is orthogonal to M(α)(R, f̃1, . . . , f̃k). It therefore suffices to show that M(α)(R, f̃1, . . . , f̃k) =
M(α)(R, f1, . . . , fk). Take any Pθ ∈ M(α)(R, f1, . . . , fk). Then, for each x ∈ X, we have

Z(θ)α−1Pθ(x)
α−1 = R(x)α−1 + (1− α)

k
∑

i=1

θifi(x)

= (1 + (1− α)θiτ
R
i )R(x)α−1 + (1 − α)

k
∑

i=1

θif̃i(x).

Taking expectation with respect to P̂ on both sides, and using
∑

x P̂ (x)f̃i(x) = 0, i = 1, . . . , k, we get

Z(θ)α−1
∑

x

P̂ (x)Pθ(x)
α−1 =

[

1 + (1 − α)θiτ
R
i

]

·
∑

x

P̂ (x)R(x)α−1.

Since Pθ and R have full support, it follows that
[

1 + (1− α)θiτ
R
i

]

> 0, and hence Pθ ∈ M(α)(R, f̃1, . . . , f̃k). This

shows M(α)(R, f1, . . . , fk) ⊂ M(α)(R, f̃1, . . . , f̃k). Similarly, using the assumption that L is nonempty, one can show that

M(α)(R, f̃1, . . . , f̃k) ⊂ M(α)(R, f1, . . . , fk).
By Corollary 17, we have

Iα(P̂ , S) = Iα(P̂ , Q) + Iα(Q,S) ∀S ∈ cl(M(α)). (48)

(a) If Supp(Q) = X, then by Th. 16(c), Q ∈ M(α), and from (48), the minimum of Iα(P̂ , S) over S ∈ M(α) is attained at

S = Q. To prove the uniqueness, let Pθ∗ ∈ M(α) also attain the minimum. Then, from (48), we have

Iα(P̂ , Pθ∗) = Iα(P̂ , Q) + Iα(Q,Pθ∗). (49)
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Since Iα(P̂ , Pθ∗) = Iα(P̂ , Q), we have Iα(Q,Pθ∗) = 0, and so Pθ∗ = Q.

(b) Let Supp(Q) 6= X. Then, by Th. 16(a), Q ∈ cl(M(α)) \ M(α). Uniqueness on the closure follows just as in (a)

immediately above. If P̂ has a reverse Iα-projection on M(α), say Pθ∗ , then by continuity of Iα(P̂ , ·) ( [2, Rem. 5]), we

have Iα(P̂ , Q) = Iα(P̂ , Pθ∗). This contradicts the uniqueness.

B. α > 1:

Let us begin with a counterexample that shows that Theorem 16 does not hold when α > 1; cl(M(α)) need not intersect

the associated L.

Example 3: Let α,X,L, and R be as in Example 2. The associated α-power-law family and its closure are

M(α) =
{

Pθ : θ ∈ (−1/24, 1/4)
}

,

and

cl(M(α)) =
{

Pθ : θ ∈ [−1/24, 1/4]
}

,

where

Pθ =
1

1 + 13θ

(

1/4 − θ, 1/4 + 3θ, 1/4 + 5θ, 1/4 + 6θ
)

.

We assert that no such Pθ , either of M(α) or cl(M(α)), is in L. Furthermore, the forward Iα-projection of every member in

cl(M(α)) on L is Q = (3/4, 1/4, 0, 0) which, of course, is not in cl(M(α)).

One must therefore extend M(α) beyond its closure to identify the family that is orthogonal to L and intersects L at Q. An

appropriate extension of M(α) that intersects L turns out to be the following.

Definition 19: The family M̂(α)
+ characterized by a probability measure R and k functions fi : X → R, i = 1, . . . , k, is

defined as follows. Let Q = Pθ∗ be the forward Iα-projection13 of R on L. Define M̂(α)
+ to be the set of all probability

measures Pθ satisfying (a), (b), and (c) below.

(a)

Z(θ)α−1Pα−1
θ (x) =

[

R(x)α−1 + (1− α)

k
∑

i=1

θifi(x)
]

+
∀x ∈ X,

where Z(θ) is the normalization constant that makes Pθ a valid probability measure on X.

(b) Supp(Pθ∗) ⊆ Supp(Pθ);

(c)
k
∑

i=1

θifi(x) ≤
k
∑

i=1

θ∗i fi(x) ∀x /∈ Supp(Pθ).

The following is the analog of the combined Theorem 16 and Corollary 17.

Theorem 20: Let α > 1. Let L be a linear family characterized by fi, i = 1, . . . , k as in (16). Let M(α) be as in Definition

8, characterized by R and the k functions fi, i = 1, . . . , k. Let Q be the forward Iα-projection of R on L. Let M̂(α)
+ be the

extension of M(α) as in Definition 19. We then have the following.

(a) L ∩ M̂(α)
+ = {Q} and

Iα(P, Pθ) ≥ Iα(P,Q) + Iα(Q,Pθ) (50)

for every P ∈ L and every Pθ ∈ M̂(α)
+ .

(b) If Q ∈ cl(M(α)), then L ∩ cl(M(α)) = {Q} and (50) holds with equality for every P ∈ L and every Pθ ∈ cl(M(α)).
(c) If Q ∈ M(α), then L ∩M(α) = {Q} and (50) holds with equality for every P ∈ L and every Pθ ∈ M(α).

Proof: (a) By virtue of Theorem 14-(b), we have Q ∈ L∩ M̂(α)
+ . Furthermore, by Theorem 15, any member of L∩ M̂(α)

+

is a forward Iα-projection of R on L. Since the forward projection is unique, L ∩ M̂(α)
+ must be the singleton {Q}.

Let Pθ ∈ M̂(α)
+ . We claim that Pθ has Pθ∗ = Q as its forward projection on L. Assuming the claim, by Theorem 14-(c),

inequality (50) holds.

Let us now proceed to show the claim. By Theorem 15, it suffices to verify that Pθ∗ can be written as

Z̃(θ̃)α−1Pθ∗(x)α−1 =
[

Pθ(x)
α−1 + (1 − α)

k
∑

i=1

θ̃ifi(x)
]

+
∀x (51)

13By virtue of Th. 14(b), Q is of the form (28) for some θ∗ and hence may be written as Q = Pθ∗ .
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for some Z̃(θ̃) and θ̃ = (θ̃1, . . . , θ̃k). To see this, by definition of Pθ , we have

Z(θ)α−1Pθ(x)
α−1 =

[

R(x)α−1 + (1− α)
k
∑

i=1

θifi(x)
]

+
∀x, (52)

and, by Theorem 14-(b), we have

Z(θ∗)α−1Pθ∗(x)α−1 =
[

R(x)α−1 + (1− α)
k
∑

i=1

θ∗i fi(x)
]

+
∀x. (53)

Let x ∈ Supp(Pθ∗). By Definition 19-(a), x ∈ Supp(Pθ) as well. Hence, we can remove the [·]+ operation in (52) and (53) to

get

Z(θ)α−1Pθ(x)
α−1 = R(x)α−1 + (1− α)

k
∑

i=1

θifi(x).

Z(θ∗)α−1Pθ∗(x)α−1 = R(x)α−1 + (1− α)
k
∑

i=1

θ∗i fi(x),

Eliminating R(x)α−1 from the preceding equations, we get

Z(θ∗)α−1Pθ∗(x)α−1 = Z(θ)α−1Pθ(x)
α−1 + (1 − α)

k
∑

i=1

(θ∗i − θi)fi(x),

equivalently,
(

Z(θ∗)

Z(θ)

)α−1

Pθ∗(x)α−1 = Pθ(x)
α−1 + (1− α)

k
∑

i=1

(θ∗i − θi)

Z(θ)α−1
fi(x). (54)

This suggests that Z̃(θ̃) = Z(θ∗)/Z(θ) and θ̃i = (θ∗i − θi)/Z(θ)α−1 should work. Let us now verify that they do, that is, that

(51) holds for all x with these choices of Z̃ and θ̃.

The foregoing shows (51) holds for all x ∈ Supp(Pθ∗). Next, let x ∈ Supp(Pθ) \ Supp(Pθ∗). The right-hand side of (54),

upon substitution of (52) without the [·]+ operation, becomes

R(x)α−1 + (1− α)
k
∑

i=1

θifi(x)

Z(θ)α−1
+ (1− α)

k
∑

i=1

(θ∗i − θi)

Z(θ)α−1
fi(x) =

R(x)α−1 + (1 − α)
k
∑

i=1

θ∗i fi(x)

Z(θ)α−1

≤ 0,

as is required for x /∈ Supp(Pθ∗). Hence (51) holds for x ∈ Supp(Pθ)\Supp(Pθ∗) as well, and therefore for all x ∈ Supp(Pθ).
Finally, when x /∈ Supp(Pθ),

R(x)α−1 + (1 − α)

k
∑

i=1

θifi(x) ≤ 0.

The right-hand side of (54) then satisfies

(1 − α)

k
∑

i=1

(θ∗i − θi)

Z(θ)α−1
fi(x) ≤ 0

because of condition (b) in Definition 19 and α > 1. This establishes that Pθ∗ is of the form (51), and is therefore the forward

Iα-projection of Pθ on L.

Proofs of (b) and (c) are the same as in α < 1 case considered in Theorem 16.

Having established the orthogonality between a linear family and its associated α-power-law family, let us now return to the

problem of robust estimation discussed in section II-B. As in the case of α < 1, we show a connection between the MMPLE

on the extended α-power-law family M̂(α)
+ , which is a reverse Iα-projection on M̂(α)

+ , and the forward Iα-projection on the

related linear family.

Theorem 21: Let α > 1. Let P̂ be a probability measure on X. Let M(α) be characterized by the probability measure R and

the functions fi, i = 1, . . . , k. Let R have full support. Let L be the associated linear family characterized by fi, i = 1, . . . , k,

and assume that it is nonempty. Define L̃ as in (45) using f̃i and τRi as defined in (46) and (47), respectively. Let Q be the

forward Iα-projection of R on L̃. Then the following hold.

(a) If Q ∈ M(α), then Q is the unique reverse Iα-projection of P̂ on M(α).
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(b) If Q ∈ cl(M(α)) \ M(α), then P̂ does not have a reverse Iα-projection on M(α). However, Q is the unique reverse

Iα-projection of P̂ on cl(M(α)).
(c) If Q /∈ cl(M(α)), then

(i) P̂ does not have a reverse Iα-projection on M(α).

(ii) M(α) can be extended to M̂(α)
+ (R, f̃1, . . . , f̃k), and Q is the unique reverse Iα-projection of P̂ on M̂(α)

+ (R, f̃1, . . . , f̃k).

Proof: Only (c)-(i) needs a proof. Proofs of all others follow the same arguments in the proof of Theorem 18, but now

one uses Theorem 20 instead of Corollary 17.

Let us now prove (c)-(i) by contradiction. Suppose P̂ has a reverse Iα-projection on M(α). Call it Pθ∗ . Since Pθ∗ has full

support, there is a neighborhood N of θ∗ such that θ ∈ N implies Pθ ∈ M(α). The first order optimality condition applies,

namely
∂

∂θi
Iα(P̂ , Pθ)

∣

∣

∣

∣

θ=θ∗

= 0, i = 1, . . . , k.

We claim that this implies
∑

x

Pθ∗(x)f̃i(x) = 0, i = 1, . . . , k. (55)

But then Pθ∗ ∈ L̃ and so Pθ∗ = Q, a contradiction to Q /∈ cl(M(α)).
We now proceed to prove the claim (55). Observe that, since Pθ ∈ M(α), by Definition 8, we have

Z(θ)α−1Pθ(x)
α−1 = R(x)α−1 +

∑

j

θj f̃j(x), (56)

and so

Z(θ)α−1
∑

x

P̂ (x)Pθ(x)
α−1 =

∑

x

P̂ (x)R(x)α−1 +
∑

j

θj

(

∑

x

P̂ (x)f̃j(x)
)

=
∑

x

P̂ (x)R(x)α−1, (57)

where the last equality holds because P̂ ∈ L̃. Also,

∑

x

Pθ(x)
α =

∑

x

[

Pθ(x)
α−1

]
α

α−1

= Z(θ)−α
∑

x

[

R(x)α−1 +
∑

j

θj f̃j(x)
]

α
α−1

. (58)

Substituting (57) and (58) into (12) and taking the partial derivative, we get

∂

∂θi
Iα(P̂ , Pθ) =

α

1− α

∂

∂θi
logZ(θ)1−α +

∂

∂θi
logZ(θ)−α +

∂

∂θi
log
∑

x

[

R(x)α−1 +
∑

j

θj f̃j(x)
]

α
α−1

=
∂

∂θi
log
∑

x

[

R(x)α−1 +
∑

j

θj f̃j(x)
]

α
α−1

=
1

A
·

α

1− α

∑

x

[

R(x)α−1 +
∑

j

θj f̃j(x)
]

1
α−1

f̃i(x)

=
1

A
·

α

1− α
Z(θ)

∑

x

Pθ(x)f̃i(x),

where A =
∑

x

[

R(x)α−1 +
∑

j

θj f̃j(x)
]

α
α−1

, and the last equality follows from (56). Thus,

∂

∂θi
Iα(P̂ , Pθ)

∣

∣

∣

∣

θ=θ∗

= 0 =⇒
∑

x

Pθ∗(x)f̃i(x) = 0,

thereby proving the claim.
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VII. EPILOGUE

We now provide some concluding remarks. Our focus has primarily been on the geometric relation between the α-power-law

and the linear families. This geometric relation enabled us to characterize the reverse Iα-projection on an α-power-law family

M(α) := M(α)(R, f1, . . . , fk) as a forward Iα-projection on a linear family. The procedure is as follows.

“Given the family M(α), sweep through a collection of linear families (45)-(47) orthogonal to M(α) by varying

τRi , i = 1, . . . , k, and find the linear family L̃ that contains P̂ . Then find the forward Iα-projection of R on L̃; call

it Q. If Q ∈ M(α), then Q is the reverse Iα-projection of P̂ on the M(α). If Q ∈ cl(M(α)) \M(α), then P̂ does not

have a reverse Iα-projection on M(α). But Q attains the minimum in the closure.”

The cases α < 1 and α > 1 have different characteristics. The α < 1 case is similar to α = 1 and one always has

L̃ ∩ cl(M(α)) = {Q}. On the other hand, when α > 1, it is possible that L̃ ∩ cl(M(α)) = ∅, and Q /∈ cl(M(α)). Then P̂
does not have a reverse Iα-projection on M(α). One then needs to extend M(α) to make it intersect L̃. We showed that the

extension M̂(α)
+ is just right and satisfies L̃∩ M̂(α)

+ = {Q}. However, Q, in the intersection L̃∩ M̂(α)
+ , is no longer the reverse

Iα-projection of P̂ on cl(M(α)). It would be interesting to see if Q can be used to simplify the computation of the true reverse

Iα-projection of P̂ on cl(M(α)).
Our characterization has algorithmic benefits since the forward Iα-projection is a minimization of a quasiconvex function

subject to linear constraints. Standard techniques are available to solve such problems, for example, via a sequence of convex

feasibility problems [23, Sec. 4.2.5], or via a sequence of simpler forward projections on single-constraint linear families [2,

Th. 16, Rem. 13].

APPENDIX A

WEAK DEPENDENCE OF THE α-POWER-LAW FAMILY ON R

The following result shows that the α-power-law family depends on R only in a weak manner, and that any member of

M(α) could equally well play the role of R. The same result is well-known for an exponential family.

Proposition 22: If α > 1, let R have full support. Consider the M(α)(R, f1, . . . , fk) as in Definition 8. Fix Pθ∗ ∈
M(α)(R, f1, . . . , fk). Then M(α)(Pθ∗ , f1, . . . , fk) = M(α)(R, f1, . . . , fk).

Proof: Write M(α) for M(α)(R, f1, . . . , fk) and M̃(α) for M(α)(Pθ∗ , f1, . . . , fk). We will check that an arbitrary element

Pθ ∈ M(α) is an element of M̃(α). This will establish M(α) ⊂ M̃(α). The converse holds by symmetry.

From the formula for Pθ∗ , observe that

Pθ∗(x)α−1 = Z(θ∗)1−α
[

R(x)α−1 + (1 − α)

k
∑

i=1

θ∗i fi(x)
]

∀x,

and so

R(x)α−1 = Z(θ∗)α−1Pθ∗(x)α−1 − (1 − α)

k
∑

i=1

θ∗i fi(x) ∀x. (59)

Substitute this into the formula for Pθ in (19) to get

Pθ(x)
α−1 = Z(θ)1−α

[

Z(θ∗)α−1Pθ∗(x)α−1 − (1− α)
k
∑

i=1

θ∗i fi(x) + (1− α)
k
∑

i=1

θifi(x)
]

=

(

Z(θ∗)

Z(θ)

)α−1
[

Pθ∗(x)α−1 + (1− α)

k
∑

i=1

θi − θ∗i
Z(θ∗)α−1

fi(x)
]

= Z̃(ξ)1−α
[

Pθ∗(x)α−1 + (1− α)

k
∑

i=1

ξifi(x)
]

,

where ξ = (θ − θ∗)/Z(θ∗)α−1, and Z̃(ξ) = Z(θ)/Z(θ∗). Thus, Pθ ∈ M̃(α).

Change of reference from R to Pθ∗ merely amounts to a translation and rescaling of the parameter space.
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