
Mach Learn (2017) 106:713–739

DOI 10.1007/s10994-016-5618-0

Multi-view kernel completion

Sahely Bhadra1
· Samuel Kaski1 · Juho Rousu1

Received: 3 May 2016 / Accepted: 21 November 2016 / Published online: 30 December 2016

© The Author(s) 2016

Abstract In this paper, we introduce the first method that (1) can complete kernel matrices

with completely missing rows and columns as opposed to individual missing kernel values,

with help of information from other incomplete kernel matrices. Moreover, (2) the method

does not require any of the kernels to be complete a priori, and (3) can tackle non-linear

kernels. The kernel completion is done by finding, from the set of available incomplete ker-

nels, an appropriate set of related kernels for each missing entry. These aspects are necessary

in practical applications such as integrating legacy data sets, learning under sensor failures

and learning when measurements are costly for some of the views. The proposed approach

predicts missing rows by modelling both within-view and between-view relationships among

kernel values. For within-view learning, we propose a new kernel approximation that gener-

alizes and improves Nyström approximation. We show, both on simulated data and real case

studies, that the proposed method outperforms existing techniques in the settings where they

are available, and extends applicability to new settings.

Keywords Kernel completion · Low rank kernel approximation · Multi-view data ·
Missing values

Editors: Bob Durrant, Kee-Eung Kim, Geoff Holmes, Stephen Marsland, Zhi-Hua Zhou and Masashi

Sugiyama.

B Sahely Bhadra

sahely.bhadra@aalto.fi

Samuel Kaski

samuel.kaski@aalto.fi

Juho Rousu

juho.rousu@aalto.fi

1 Helsinki Institute for Information Technology HIIT, Department of Computer Science,

Aalto University, Espoo, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5618-0&domain=pdf
http://orcid.org/0000-0002-7453-9880
http://orcid.org/0000-0003-1925-9154
http://orcid.org/0000-0002-0705-4314

714 Mach Learn (2017) 106:713–739

1 Introduction

In recent years, many methods have been proposed for multi-view learning, i.e, learning with

data collected from multiple sources or “views” to utilize the complementary information

in them. Kernelized methods capture the similarities among data points in a kernel matrix.

The multiple kernel learning (MKL) framework (c.f. Gönen and Alpaydin 2011) is a popular

way to accumulate information from multiple data sources, where kernel matrices built on

features from individual views are combined for better learning. In MKL methods, it is

commonly assumed that full kernel matrices for each view are available. However, in partial

data analytics, it is common that information from some sources is not available for some

data points.

The incomplete data problem exists in a wide range of fields, including social sciences,

computer vision, biological systems, and remote sensing. For example, in remote sensing,

some sensors can go off for periods of time, leaving gaps in data. A second example is that

when integrating legacy data sets, some views may not available for some data points, because

integration needs were not considered when originally collecting and storing the data. For

instance, gene expression may have been measured for some of the biological samples, but not

for others, and as biological sample material has been exhausted, the missing measurements

cannot be made any more. On the other hand, some measurements may be too expensive to

repeat for all samples; for example, patient’s genotype may be measured only if a particular

condition holds. All these examples introduce missing views, i.e, all features of a view for a

data point can be missing simultaneously.

Novelties in problem definition: Previous methods for kernel completion have addressed

completion of the aggregated Gaussian kernel matrix by integrating multiple incomplete

kernels (Williams and Carin 2005) or single-view kernel completion assuming individual

missing values (Graepel 2002; Paisley and Carin 2010), or required at least one complete

kernel with a full eigen-system to be used as an auxiliary data source (Tsuda et al. 2003;

Trivedi et al. 2005), or assume the eigen-system of two kernels to be exactly the same (Shao

et al. 2013), or assumed a linear kernel approximation (Lian et al. 2015). Williams and Carin

(2005) do not complete the individual incomplete kernel matrix but complete only aggregated

kernels when all kernels are Gaussian. Due to absence of full rows/columns in the incomplete

kernel matrices, no existing or non-existing single-view kernel completion method (Graepel

2002; Paisley and Carin 2010) can be applied to complete kernel matrices of individual views

independently. In the multi-view setting, Tsuda et al. (2003) have proposed an expectation

maximization based method to complete an incomplete kernel matrix for a view, with the

help of a complete kernel matrix from another view. As it requires a full eigen-system of the

auxiliary full kernel matrix, that method cannot be used to complete a kernel matrix with

missing rows/columns when no other auxiliary complete kernel matrix is available. Both

Trivedi et al. (2005) and Shao et al. (2013) match kernels through their Graph Laplacians,

which may not work optimally if the kernels have different eigen-structures arising from

different types of measurements. The method by Shao et al. (2013) completes multiple

kernels sequentially, making an implicit assumption that the adjacent kernels in the sequence

are related. This can be a hard constraint and in general may not match the reality. On the other

hand, Lian et al. (2015) proposed a generative model based method which approximates the

similarity matrix for each view as a linear kernel in some low-dimensional space. Therefore,

it is unable to model highly non-linear kernels such as RBFs. Hence no conventional method

can, by itself, complete highly non-linear kernel matrices with completely missing rows and

columns in a multi-view setting when no other auxiliary full kernel matrix is available.

123

Mach Learn (2017) 106:713–739 715

Contributions: In this paper, we propose a novel method to complete all incomplete kernel

matrices collaboratively, by learning both between-view and within-view relationships among

the kernel values (Fig. 1). We model between-view relationships in the following two ways:

(1) Initially, adapting the strategies from multiple kernel learning (Argyriou et al. 2005; Cortes

et al. 2012), we complete kernel matrices by expressing individual normalized kernel matrices

corresponding to each view as a convex combination of normalized kernel matrices of other

views. (2) Second, to model relationships between kernels having different eigen-systems we

propose a novel approach of restricting the local embedding of one view in the convex hull

of local embeddings of other views. We relate theoretically the kernel approximation quality

of the different approaches to the properties of the underlying eigen-spaces of the kernels,

pointing out settings where different approaches are optimal.

For within-view learning, we begin from the concept of local linear embedding (Roweis

and Saul 2000) applied to the feature vector, and extend it to the kernel matrix by reconstruct-

ing each feature representation for a kernel as a sparse linear combination of other available

feature representations or “basis” vectors in the same view. We assume the local embeddings,

i.e., the reconstruction weights and the basis vectors for reconstructing each samples, are sim-

ilar across views. In this approach, the non-linearity of kernel functions of individual views is

also preserved in the basis vectors. We prove (Theorem 2) that the proposed within-view ker-

nel reconstruction can be seen as generalizing and improving the Nyström method (Williams

and Seeger 2001) which have been successfully applied to efficient kernel learning. Most

importantly, we show (in Theorem 3) for a general single kernel matrix the proposed scheme

results into optimal low rank approximation which is not reached by the Nyström method.

For between-view learning, we recognize that the similarity of the eigen-spaces of the

views plays a crucial role. When the different kernels have similar optimal low-rank approxi-

mations, we show (Theorem 4) that predicting kernel values across views is a potent approach.

For this case, we propose a method (MKCapp (25)) relying on a technique previously used

in multiple kernel learning literature, namely, restricting a kernel matrix into the convex hull

of other kernel matrices (Argyriou et al. 2005; Cortes et al. 2012). Here, we use this tech-

nique for simultaneously completing multiple incomplete kernel matrices, while Argyriou

et al. (2005) and Cortes et al. (2012) used it only for learning effective linear combination of

complete kernel matrices.

For the case when the eigen-systems of the different views differ, we propose methods

that, instead of kernel values, translate the reconstruction weights across views. For the cases

where the leading eigen-vectors are similar but eigen-value spectra are different, we show

(Theorem 5) that it is sufficient to maintain one global set of reconstruction weights, used in

the within-view reconstructions of all views. In the case of heterogeneous leading eigen-vector

sets across views, we propose to learn the reconstruction weights for each view restricting it

in convex hull of the reconstruction weights of the other views (MKCembd(ht) (24)).

2 Multi-view kernel completion

We assume N data observations X = {x1, . . . , xN } from a multi-view input space X =
X

1 × · · · × X
(M), where X

(m) is the input space generating the mth view. We denote

by X(m) = {x(m)
1 , . . . , x

(m)
N }, ∀ m = 1, . . . , M , the set of observations for the mth view,

where x
(m)
i ∈ X

(m) is the i th observation in the mth view and X
(m) is the input space. For

simplicity of notation we sometimes omit the superscript (m) denoting the different views

when there is no need to refer to several views at a time.

123

716 Mach Learn (2017) 106:713–739

Fig. 1 We assume N data samples with M views, with a few samples missing from each individual view, and

consequently corresponding rows and columns are missing (denoted by ’?’) in kernel matrices (K(m)). The

proposed method predicts the missing kernel rows/columns (e.g., the t th column in views 1 and m) with the

help of other samples of the same view (within-view relationship, blue arrows) and the corresponding sample

in other views (between-view relationship, green arrows) (Color figure online)

Considering an implicit mapping of the observations of the mth view to an inner product

space F
(m) via a mapping φ(m) : X

(m) → F
(m), and following the usual recipe for

kernel methods (Bach et al. 2004), we specify the kernel as the inner product in F
(m). The

kernel value between the i th and j th data points is defined as k
(m)
i j = 〈φ(m)

i , φ
(m)
j 〉, where

φ
(m)
i = φ(m)(x

(m)
i) and k

(m)
i j is an element of K(m), the kernel Gram matrix for the set X(m).

In this paper we make the assumption that a subset of samples is observed in each view,

and correspondingly, a subset of views is observed for each sample. Let IN = [1, . . . , N] be

the set of indices of all data points and I (m) be the set of indices of all available data points in

the mth view. Hence for each view, only a kernel sub-matrix (K
(m)

I (m) I (m)) corresponding to the

rows and columns indexed by I (m) is observed. Our aim is to predict a complete positive semi-

definite (PSD) kernel matrix (K̂(m) ∈ R
N×N) corresponding to each view. The crucial task is

to predict the missing (t th) rows and columns of K̂(m), for all t ∈ {IN /I (m)}. Our approach

for predicting K̂(m) is based on learning both between-view and within-view relationships

among the kernel values (Fig. 1). The sub-matrix K̂
(m)

I (m) I (m) should be approximately equal to

the observed matrix K
(m)

I (m) I (m) , however, in our approach, approximation quality of the two

parts of the kernel matrix can be traded.

2.1 Within-view kernel relationships

For within-view learning, relying on the concept of local linear embedding (Roweis and Saul

2000), we reconstruct the feature map of t th data point φt by a sparse linear combination of

observed data samples

φ̂t =
∑

i∈I

ai tφi

where ai t ∈ R is the reconstruction weight of the i th feature representation for representing

the t th observation. Hence, approximated kernel values can be expressed as

k̂t t ′ = 〈φ̂t , φ̂t ′〉 =
∑

i, j∈I

ai t a j t ′〈φi , φ j 〉.

123

Mach Learn (2017) 106:713–739 717

We note that the above formulation retains the non-linearity of the feature map φ and

the corresponding kernel. We collect all reconstruction weights of a view into the matrix

A =
(

ai j

)N

i, j=1
. Further, by AI we denote the sub-matrix of A containing the rows indexed

by I , the known data samples in the view. Thus the reconstructed kernel matrix K̂ can be

written as

K̂ = A
T

I KI I AI = g(K). (1)

Note that K̂ is positive semi-definite when K is positive semi-definite. Thus, a by-product of

this approximation is that in optimization, PSD property is automatically guaranteed without

inserting explicit positive semi-definiteness constraints.

Intuitively, the reconstruction weights are used to extend the known part of the kernel to

the unknown part, in other words, the unknown part is assumed to reside within the span of

the known part.

We further assume that in each view there exists a sparse embedding in F , given by a

small set of samples B ⊂ I , called a basis set, that is able to represent all possible feature

representations in that particular view. Thus the non-zero reconstruction weights are confined

to the basis set: ai j 	= 0 only if i ∈ B. To select such a sparse set of reconstruction weights,

we regularize the reconstruction weights by the ℓ2,1 norm (Argyriou et al. 2006) of the

reconstruction weight matrix,

‖AI ‖2,1 =
∑

i∈I

√

∑

j∈I

(ai j)2. (2)

Finally, for the observed part of the kernel, we add the additional objective that the recon-

structed kernel values closely approximate the known or observed values. To this end, we

define a loss function measuring the within-view approximation error for each view as

Losswi thin = ‖K̂I I − KI I ‖2
2. (3)

Hence, for individual views the observed part of a kernel is approximated by

K̂I I = A∗T

I I KI I A∗
I I (4)

where the reconstruction weights A∗
I I (here the superscript ∗ indicates the optimum values)

are optimized using (2) and (3) by

A∗
I I = arg min

AI I

‖A
T

I I KI I AI I − KI I ‖2
2 + λ‖AI I ‖2,1 (5)

where λ is user defined hyper-parameter which indicate the weights of regularization.

Without the ℓ2,1 regularization, the above approximation loss could be trivially optimized

by choosing AI I as the identity matrix. The ℓ2,1 regularization will have the effect of zeroing

out some of the diagonal values and introducing non-zeros to the sub-matrix AB I , corre-

sponding to the rows and columns indexed by B and I respectively, where B = {i |ai i 	= 0}.
In Sect. 3 we show by Theorem 1 that (5) corresponds to a generalized form of the Nyström

method (Williams and Seeger 2001) which is a sparse kernel approximation method that has

been successfully applied to efficient kernel learning. Nyström method finds a small set

of vectors (not necessarily linearly independent) spanning the kernel, whereas our method

searches for linearly independent basis vectors (c.f. Sect. 3, Lemma 1) and optimizes the

reconstruction weights for the data samples. In particular, we show that (5) achieves the best

rank-r approximation of a kernel, when the original kernel has rank higher than r , which is

not achieved by Nyström method (c.f. Theorem 2).

123

718 Mach Learn (2017) 106:713–739

2.2 Between-view kernel relationships

For a completely missing row or column of a kernel matrix, there is not enough information

available for completing it within the same view, and hence the completion needs to be based

on other information sources, in our case the other views where the corresponding kernel

parts are known. In the following, we introduce two approaches for relaying information of

the other views for completing the unknown rows/columns of a particular view. The first

technique is based on learning a convex combination of the kernels, extending the multiple

kernel learning (Argyriou et al. 2005; Cortes et al. 2012) techniques to kernel completion. The

second technique is based on learning reconstruction weights so that they share information

between the views.

Between-view learning of kernel values: In multi-view kernel completion the perhaps sim-

plest situation arises when the kernels of the different views are similar, i.e.,

K̂(m) ≈ K̂(l), ∀ l and m. (6)

In this case predicting kernel values across views may lead to good kernel approximation.

One way to model the similarity is to require the kernels of the different views to have the

similar low-rank approximations. In Theorem 3 we show that optimal rank-r approximation

can be achieved if the kernels have the same ‘true’ rank-r approximation and the kernels

themselves have rank at least r .

However, this is probably an overly restrictive assumption in most applications. Thus,

in our approach we allow the views to have different approximate kernel matrices with a

parametrized relationship learned from data. To learn between-view relationships we express

the individual normalized kernel matrix

(

kt t ′√
kt t kt ′ t ′

)

corresponding to each view as a convex

combination of normalized kernel matrices of the other views. Hence the proposed model

learns kernel weights S = (sml)
M
m,l=1 between all pairs of kernels (m, l) such that

K̂(m) ≈
M

∑

l=1,l 	=m

smlK̂
(l), (7)

where the kernel weights are confined to a convex combination

S = {S|sml ≥ 0,

M
∑

l=1,l 	=m

sml = 1}.

The kernel weights then can flexibly pick up a subset of relevant views to the current view

m. This gives us between-view loss as

Loss
(m)
between(K̂, S) = ‖K̂(m) −

M
∑

l=1,l 	=m

smlK̂
(l)‖2

2. (8)

Previously, Argyriou et al. (2005) have proposed a method for learning kernels by restricting

the search in the convex hull of a set of given kernels to learn parameters of individual

kernel matrices. Here, we apply the idea to kernel completion, which has not been previously

considered. We further note that kernel approximation as a convex combination has the

interpretation of avoiding extrapolation in the space of kernels, and can be interpreted as a

type of regularization to constrain the otherwise flexible set of PSD kernel matrices.

123

Mach Learn (2017) 106:713–739 719

Between-view learning of reconstruction weights: In practical applications, the kernels aris-

ing in a multi-view setup might be very heterogeneous in their distributions. In such cases,

it might not be realistic to find a convex combination of other kernels that are closely similar

to the kernel of a given view. In particular, when the eigen-spectra of the kernels are very

different, we expect a low between-view loss (8) to be hard to achieve.

Here we assume the approximated kernel matrices have related eigen-spaces in that the

eigen-vectors of the related kernels can be written as linear combinations of eigen-vectors of

the others, but each of them have their own set of eigen-values. In other words,

K̂(m) = U(m)Σ (m)U(m)T = U(1)T(m)Σ (m)T(m)T

U(1)T

(9)

where U(m) contains eigen-vectors of K(m) in its column and Σ (m) contains corresponding

eigen-values in its diagonal. T(m) is a linear operator such that U(m) = U(1)T(m). Above the

matrices T(m) allow rotations of the eigen-vectors while the scaling is of them is governed

by the matrices Σ (m).

For this situation, we propose and alternative approach, where instead of the kernel values,

we assume that the basis sets and the reconstruction weights have between-view dependencies

that we can learn. Theorem 4 claims when kernels of all views satisfy (9) then learning a set

of reconstruction weights, used in in all views, i.e.,

A(1) = . . . = A(M) (10)

gives better approximation than learning a convex combination of kernels as in (7).

However, assuming that kernel functions in all the views have similar eigen-vectors is also

unrealistic for many real world data-sets with heterogeneous sources and kernels applied to

them. On the contrary, it is quite possible that only for a subset of views the eigen-vectors

of approximated kernel are linearly related. Thus, in our approach we allow the views to

have different reconstruction weights, but assume a parametrized relationship learned from

data. This also allows the model to find an appropriate set of related kernels from the set of

available incomplete kernels, for each missing entry.

To capture the relationship, we assume the reconstruction weights in a view can be approx-

imated by a convex combination of the reconstruction weights of the other views,

A
(m)

I (m) ≈
M

∑

l=1,l 	=m

smlA
(l)

I (m) , (11)

where the coefficients sml are defined as in (7). This gives us between-view loss for recon-

struction weights as

Loss
(m)
between(A, S) = ‖A

(m)

I (m) −
M

∑

l=1,l 	=m

smlA
(l)

I (m)‖2
2. (12)

The reconstructed kernel is thus given by

K̂(m) =

⎛

⎝

M
∑

l=1,l 	=m

smlA
(l)T

I (m)

⎞

⎠ K
(m)

I (m) I (m)

⎛

⎝

M
∑

l=1,l 	=m

smlA
(l)

I (m)

⎞

⎠ . (13)

123

720 Mach Learn (2017) 106:713–739

3 Theoretical analysis

In this section, we present the theoretical results underlying our methods. We begin by

showing the relationship and advantages of our within-kernel approximation to the Nyström

method, and follow with theorems establishing the approximation quality of different kernel

completion models.

3.1 Rank of the within-kernel approximation

We begin with analysis of the rank of the proposed within-kernel approximation method,

given in (4) and (5). It approximates the individual kernels as K̂ = A∗T
KA∗ where

A∗ = arg min
A

‖A
T

KA − K‖2
2 + λ‖A‖2,1. (14)

For the purposes of the analysis, we derive an equivalent form that reveals the rank behaviour

of the method more easily. Above, the matrix A simultaneously indicates the position of

feature maps in the underlying subspace and also selects the basis vectors for defining these

subspaces. Hence A can be written as convolution of two operators A = PÂ where P =
diag(p) and p ∈ {0, 1}N . Here p acts as a selector operator such that pi = 1 if i ∈ B or the

i th feature-map is selected as a basis vectors and all other elements of p are assigned zero

values. Â is a matrix of size A, such that Âi∈B = Ai∈B and other elements are zeros.

The ℓ2,1 norm on A in (14) assigns zeros to few rows of the matrix A; equivalently ℓ1

norm on selection operator (p) fulfils the same purpose. Again, after rows selection is done

both Âi∈B and Ai∈B denote reconstruction weights for kernel by using selected rows (B) and

would behave similarly. Therefore the (14) is equivalent to

[Â∗, P∗] = arg min
Â,P=diag(p)

‖Â
T

P
T

KPÂ − K‖2
2 + λ‖p‖1 +

∑

i

λi‖Âi‖2
2. (15)

To see the equivalence, note that at optimum, the rows of Â that are not selected by P will be

identically zero, since the value of the first term of the objective only depends on the selected

rows. Again the equivalence in regularization term can be shown as

‖A‖2,1 =
∑

i

‖Ai‖2 =
∑

i

‖pi Âi‖2 where‖Ai‖ indicates the i th column of A

=
∑

i

|pi | +
∑

i

1

4

(

1 −
(

pi

‖Âi‖2

− 1

)2
)

‖ Âi‖2
2 as pi ∈ {1, 0}

λ‖A‖2,1 = λ‖p‖1 +
∑

i

λi‖ Âi‖2
2 by equating λi = λ

4

⎛

⎝1 −
(

p∗
i

‖Â∗
i ‖2

− 1

)2
⎞

⎠ (16)

Now, the approximated kernel can be written as

K̂ = Â∗T

P∗T

KP∗Â∗

= Â∗T

B W∗Â∗
B , (17)

where, W∗ and Â∗
B are non-zero sub-matrices of P∗T

KP∗ (corresponding to B rows and B

columns) and Â∗ (corresponding to B rows) respectively.

123

Mach Learn (2017) 106:713–739 721

Lemma 1 For rank(K) ≥ r , ∃ λ = λr and λ
Â∗

i
such that the solution of (15) selects a

W∗ ∈ R
r×r with rank(W∗) = r .

Proof When rank(K) ≥ r then there must exist a rank-r sub-matrix of K of size r × r .

Again, in case of ℓ1 regularization on binary vector p, one can tune λ to λr to have required

sparsity on p, i.e., ‖p∗‖1 = r . Moreover, ℓ1 regularization on binary vector ensures the linear

independence of selected columns and rows when λi is carefully chosen. If a solution of (15)

selects a column which is linearly dependent on other selected columns, then the solution,

from the objective function value of some other solution which selects the same columns

except this linearly dependent column, will raise the value of ℓ1 norm regularization term of

objective function by λ while keeping the first part of the objective function same and lowering

the third part of (15) by
λi ‖Ai ‖2

2
2

. Hence if λi < 2 λ

‖Â∗
i ‖2

2

then that can not be an optimum

solution and if λi is chosen according to the (16) then λi < 2 λ

‖Â∗
i ‖2

2

. This completes the

proof. ⊓⊔

3.2 Relation to Nyström approximation

Nyström method (Williams and Seeger 2001) approximates the kernel matrix K as

K̂nys = CW−1CT (18)

where the matrix C ∈ R
N×c consists of c randomly chosen columns of kernel K and W ∈

R
c×c is a matrix consisting of the intersection of those c columns with the corresponding

c rows. Due to the random selection, Nyström method, unlike ours (as established above),

does not in general produce linearly independent set of vectors. One can re-write

C =
[

C1

C2

]

=
[

W

C2

]

and then the Nyström approximation as

K̂nys =
[

W

C2

]

W−1
[

W CT
2

]

=
[

W CT
2

C2 C2W−1CT
2

]

. (19)

For non-invertible W, its pseudo inverse can be used instead of W−1.

Theorem 1 The Nyström approximation of K is a feasible solution of (15), i.e., for invertible

W, ∃Â ∈ R
N×c such that K̂nys = Â

T
WÂ.

Proof Equate

Â
T =

[

Ic

C2W−1

]

in (19) where Ic denotes the identity matrix of size c. ⊓⊔

The above theorem shows that the approach of (15), by finding the optimal feasible

solution, will always produce better kernel approximation with the same level of sparsity as

the Nyström method.

123

722 Mach Learn (2017) 106:713–739

3.3 Low-rank approximation quality

Nyström approximation satisfies following low-rank approximation properties (Kumar et al.

2009):

– If r = rank(K) ≤ c and rank(W) = r , then the Nyström approximation is exact, i.e.,

‖K − K̂nys‖2
2 = 0.

– For general K when rank(K) ≥ r and rank(W) = r , then the Nyström approximation

is not the best rank-r approximation of K.

Below, we will establish that our approach will result in the best rank-r approximation also

in the general case where the original kernel has rank higher than r .

Lemma 2 If Kr be the best rank-r approximation of a kernel K with rank(K) ≥ r and W

be a full rank sub-matrix of K of size r ×r , i.e, rank(W) = r . Then ∃Â ∈ R
N×r such that for

the proposed approximation K̂ = ÂT WÂ is equivalent to Kr , i.e., ‖K − K̂‖2
2 = ‖K − Kr‖2

2.

Proof Using eigen-value decomposition one can write

Kr = UUT and W = UW UT
W

where U ∈ R
N×r and rank(U) = r and UW ∈ R

r×r and rank(UW) = r .

Using invertible property of UW , one can express U as U = (UU−1
W)UW .

Kr = UUT

= (UU−1
W)(UW UT

W)(UU−1
W)T

= ÂT WÂ

where ÂT = UU−1
W . ⊓⊔

Theorem 2 If rank(K) ≥ r , then ∃ λr such that the proposed approximation K̂ in (17) is

equivalent to the best rank-r approximation of K, i.e., ‖K − K̂‖2
2 = ‖K − Kr‖2

2, where Kr

is the best rank-r approximation of K.

Proof Lemma 1 proves that there exist a λr for which the optimum solution of (15) results

into a W∗ ∈ R
r×r such that rank(W∗) = r . According to Lemma 2 there exist also a feasible

Â which reconstructs Kr . Let us assume Â∗ is the optimum solution of (15) with λA = 0,

then

‖K − Â∗T W∗Â∗‖2
2 ≤ ‖K − ÂT W∗Â‖2

2

‖K−K̂‖2
2 ≤ ‖K − Kr‖2

2.

This completes the proof. ⊓⊔

3.4 Low-rank approximation quality of multiple kernel matrices

In this section, we establish the approximation quality achieved in the multi-view setup,

when the different kernels are similar either in the sense of having the same underlying

‘true’ low-rank approximations (Theorem 3) or more generally similar sets of eigen-vectors

(Theorem 4).

123

Mach Learn (2017) 106:713–739 723

Theorem 3 Assume K(1), . . . , KM are M kernel matrices such that ∀ m, rank(Km) ≥ r

and that all of them have the same rank-r approximation, i.e., K
(1)
r = . . . = K

(m)
r (assumption

in (6)). Then ∃λr and λA such that the following optimization problem:

min
Â(m),P

M
∑

m=1

‖K(m) − Â(m)T

P
T

K(m)PÂ(m)‖2
2 + λr

M
∑

m=1

‖p‖1 + λA

M
∑

m=1

‖A(m)‖2
2

s.t. Â(m)T

P
T

K(m)PÂ(m) = Â(l)T

P
T

K(l)PÂ(l) ∀ m and l

P = diag(p) and pi ∈ {0, 1} (20)

produces the exact rank-r approximation for individual matrices, i.e.,

M
∑

m=1

‖K(m) − Â(m)T

P
T

K(m)PÂ(m)‖2
2 =

M
∑

m=1

‖K(m) − K(m)
r ‖2

2.

Proof Each symmetric positive semi-definite kernel matrix can be written as

K(m) = X(m)X(m)T

,

where X(m) ∈ R
N×rank(K(m)) and columns of X(m) are orthogonal to each other.

When all K(m)s have the same rank-r approximation then the first r columns of X(m) are

same for all m. Hence X(m) can be expressed as

X(m) =
[

Xr X
(m)
rc

]

where rc denotes the complement of set r . Here Xr ∈ R
N×r is a rank-r matrix and hence it

is possible to find a set of r rows from Xr which together produce a rank-r sub-matrix of size

r × r . Let P∗T
be such a selector operator which select r linearly independent rows from Xr ,

i.e., Moreover, according to Lemma 1 there exist a λr for which the optimization problem in

(20) gives the required sparsity in P∗.

Hence,

W(m) = P∗T

K(m)P∗ = X
(m)
W X

(m)
W

T

where X
(m)
W = P∗T

X(m) = P∗T
[

Xr X
(m)

r ′

]

and hence X
(m)
W contains r linearly independent

rows of X(m) and hence for all m, rank(W(m)) = r.

When the parameter λA is significantly small then, using Theorem 2, we can prove that

for a W(m) with rank(W(m)) = r , there exist a Â(m) which is able to generate exact rank-r

approximation for individual kernel matrix i.e,

‖K(m) − Â(m)T

P∗T

K(m)P∗Â(m)‖2
2 = ‖K(m) − K(m)

r ‖2
2, ∀ m.

This completes the proof. ⊓⊔

Theorem 4 Assume K(1), . . . , K(M) are M kernel matrices such that ∀ m, rank(K(m)) = r

and all of them have same eigen-space, i.e, eigen-vectors are linearly transferable and

eigen-values are different (assumption in (9)), i.e., K(m) = U(m)Σ (m)U(m)T
such that

U(m) = U(1)T(m). Then ∃λr and λA such that the following optimization problem (by the

123

724 Mach Learn (2017) 106:713–739

assumption in (10))

min
Â,P

M
∑

m=1

‖K(m) − ÂT PT K(m)PÂ‖2
2 + λr

M
∑

m=1

‖p‖1 + λA‖Â‖2
2

P = diag(p) and pi ∈ {0, 1} (21)

selects a rank-r sub-matrix W∗(m) ∈ R
r×r with rank(W∗(m)) = r of each kernel K(m) which

can produce the exact reconstruction for individual matrices, i.e.,

M
∑

m=1

‖K(m) − Â∗T W(m)Â∗‖2
2 = 0

Proof According to assumption in (9) each kernel matrix can be written as

K(m) = U(m)Σ (m)U(m)T = U(1)T(m)Σ (m)T(m)T

U(1)T

where U(1) ∈ R
N×r is orthonormal. Hence it is possible to find a set of r rows from U(1)

which together produce a rank-r sub-matrix of size r × r . Let P∗T
be such selector operator

which selects r linearly independent rows from U(1). Let r∗ denote the set of indices of such

linearly independent rows of U(1). Hence U(1) =
[

U
(1)
r∗

U
(1)
rc

]

and U
(1)
r∗ is invertible.

According to Lemma 1 there exist a λr for which the optimization problem (21) gives the

required sparsity in P∗T . Hence using the assumption U(m) = U(1)T(m), we get

W∗(m) =P∗T

K(m)P∗ =P∗T U(1)
(

T(m)Σ (m)T(m)T
)

U(1)T

P∗ =U
(1)
r∗

(

T(m)Σ (m)T(m)T
)

U
(1)T

r∗

Hence, given λA is significantly small, according to Theorem 2 the optimization problem

(21) selects a sub-matrix W∗(m) such that W∗(m) ∈ R
r×r and rank(W∗(m)) = r . Then each

kernel matrix is expressed in terms of W∗(m) as

K(m) = U(m)Σ (m)U(m)T = U(1)
(

T(m)Σ (m)T(m)T
)

U(1)T

=
(

U(1)U(1)−1
r∗

)

W∗(m)
(

U(1)U(1)−1
r∗

)T

.

Defining Â∗ =
(

U(1)U
(1)−1

r∗
)T

(which is possible for significantly small λA), we get

K(m) = Â∗T
W∗(m)Â∗. This completes the proof. ⊓⊔

4 Optimization problems

Here we present the optimization problems for Multi-view Kernel Completion (MKC),

arising from the within-view and between-view kernel approximations described above.

4.1 MKC using semi-definite programming (MKCsd p)

This is the most general case where we do not put any other restrictions on kernels of individual

views, other than restricting them to be positive semi-definite kernels. In this general case we

propagate information from other views by learning between-view relationships depending

123

Mach Learn (2017) 106:713–739 725

on kernel values in (7). Hence, using (3) and (8) we get

min
S,K̂(m),

m=1,...,M

M
∑

m=1

⎛

⎝‖K̂
(m)

I (m) I (m) − K
(m)

I (m) I (m)‖2
2 + λ1‖K̂(m) −

M
∑

l=1,l 	=m

smlK̂
(l)‖2

2

⎞

⎠

s.t. K̂(m) � 0 ∀ m = 1, . . . , M

S ∈ S . (22)

We solve this non-convex optimization problem by iteratively solving it for S and K̂(m)

using block-coordinate descent. For a fixed S, to update the K̂(m)’s we need to solve a semi-

definite program with M positive constraints.

4.2 MKC using homogeneous embeddings (MKCembd(hm))

An optimization problem with M positive semi-definite constraints is inefficient for even a

data set of size 100. To avoid solving the SDP in each iteration we assume a kernel approx-

imation (1). When kernel functions in different views are not the same and kernel matrices

in different views have different eigen-spectra, we learn relationships among underlying

embeddings of different views (10), instead of the actual kernel values. Hence, using (3), (1)

and (10) along with ℓ2,1 regularization on A, we get

min
A,K̂(m),

∀m=1,...,M

M
∑

m=1

‖K̂
(m)

I (m) I (m) − K
(m)

I (m) I (m)‖2
2 + λ‖A‖2,1

s.t K̂(m) = A
T

I (m)K
(m)

I (m) I (m)AI (m)

S ∈ S (23)

Theorem 4 shows that the above formulation is appropriate when the first few eigen-vectors

for all kernels are same while corresponding eigen-values may be different.

4.3 MKC using heterogeneous embeddings (MKCembd(ht))

When kernel matrices in different views have different eigen-spectra both in eigen-values

and eigen-vectors, we learn relationships among underlying embeddings of different views

(11), instead of the actual kernel values. Hence, using (3), (1) and (12) along with l2,1

regularization on A(m), we get

min
S,A(m),K̂(m),
∀m=1,...,M

M
∑

m=1

⎛

⎝‖K̂
(m)

I (m) I (m) − K
(m)

I (m) I (m)‖2
2 + λ1‖A

(m)

I (m) −
M

∑

l=1,l 	=m

smlA
(l)

I (m)‖2
2

⎞

⎠

+λ2

M
∑

m=1

‖A(m)‖2,1

s.t K̂(m) = A
(m)T

I (m) K
(m)

I (m) I (m)A
(m)

I (m)

S ∈ S (24)

123

726 Mach Learn (2017) 106:713–739

4.4 MKC using kernel approximation (MKCapp)

On the other hand when the low rank approximation of related kernels are same (6) then

between-view relationships are learnt on kernel values using (8). In this case the kernel is

approximated to avoid solving the SDP:

min
S,A(m),K̂(m),
∀m=1,...,M

M
∑

m=1

⎛

⎝‖K̂
(m)

I (m) I (m) − K
(m)

I (m) I (m)‖2
2 + λ1‖K̂(m) −

M
∑

l=1,l 	=m

smlK̂
(l)‖2

2

⎞

⎠

+λ2

M
∑

m=1

‖A(m)‖2,1

s.t K̂(m) = A
(m)T

I (m) K
(m)

I (m) I (m)A
(m)

I (m)

S ∈ S (25)

Theorem 3 shows that this method results into the exact rank-r approximation when rank-r

approximation kernels for related views are same. We solve all the above-mentioned non-

convex optimization problems with l2,1 regularization by sequentially updating S and A(m).

In each iteration S is updated by solving a quadratic program and for each m, A(m) is updated

using proximal gradient descent.

5 Algorithms

Here we present algorithms for solving various optimization problems, described in previous

section.1

5.1 Algorithm to solve MKCembd(ht)

In this section the Algorithm 1 describes the algorithm to solve MKCembd(ht) (24).

Substituting K̂(m) = A
(m)T

I (m) K
(m)

I (m) I (m)A
(m)

I (m) , the optimization problem (24) contains two

sets of unknowns, S and the A(m)’s. We update A(m) and S in an iterative manner. In the

kth iteration for a fixed Sk−1 from the previous iteration, to update A(m)’s we need to solve

following for each m:

A(m)k = arg min
A(m)

Aobjk
S (A(m)) + λ2Ω(A(m))

where Ω(A(m))=‖A(m)‖2,1 and Aobjk
S (A(m))=‖K

(m)

I (m) I (m) −
[

A
(m)T

I (m) K
(m)

I (m) I (m)A
(m)

I (m)

]

I (m) I (m)

‖2
2 + λ1

∑M
m=1 ‖A(m) −

∑M
l=1,l 	=m sk−1

ml A(l)‖2
2.

Instead of solving this problem in each iteration we update A(m) using proximal gradient

descent. Hence, in each iteration,

A(m)k = Proxγ λ2Ω

(

A(m)k−1 − γ ∂ Aobjk
S (A(m)k−1

)

)

(26)

where ∂ Aobjk
S (A(m)) is the differential of Aobjk

S (A(m)) at A(m)k−1
and γ is the step size

which is decided by a line search. In (26) each row of A(m) (i.e., a
(m)
t) can be solved inde-

1 MKC code is available in https://github.com/aalto-ics-kepaco/MKC_software.

123

https://github.com/aalto-ics-kepaco/MKC_software

Mach Learn (2017) 106:713–739 727

Algorithm 1 . MKCembd(ht)

(

K(m), I (m),∀m ∈ [1, . . . , M]
)

Initialization:

s0
mm = 0, s0

ml
= 1

M−1
,

A
(m)0

I (m) I (m) = Identity matrix and

a
(m)0

t t ′ ∼ uni f orm(−1, 1) for all t, t ′ /∈ I (m)

repeat

for m=1 to M do

for t=1 to N do

a
(m)k

t = max

(

0, (1 − γ λ2

‖Δa
(m)k−1

t ‖2

)Δa
(m)k−1

t

)

[according to (26) and (27)]

[γ is fixed by line search]

end for

end for

for m=1 to M do

sk
m = arg minsm Sobjk

A(m),m=1,...,M (sm)

[according to (28)]

end for

until convergence

pendently and we apply a proximal operator on each row. Following Bach et al. (2011), the

solution of (26) is

a
(m)k

t = max

(

0, (1 − γ λ2

‖Δa
(m)k−1

t ‖2

)Δa
(m)k−1

t

)

, (27)

where Δa
(m)k−1

t is the t th row of
(

A(m)k−1 − γ ∂ Aobjk
S (A(m)k−1

)

)

.

Again, in the kth iteration, for fixed A(m)k
’s, the S is updated by independently updating

each row (sm) through solving the following Quadratic Program:

sk
m = arg min

sm

Sobjk
A(m),m=1,...,M (sm)

s.t
∑

l 	=m

sml = 1,

sml ≥ 0 ∀l (28)

where Sobjk
A(m),m=1,...,M (sm) = ‖A(m)k −

∑M
l=1,l 	=m smlA

(l)k ‖2
2.

Computational Complexity: Each iteration of Algorithm 1 needs to update reconstruction

weight vectors of size N for N data-points for M views and also between view relation

weights of size M × M . Hence the effective computational complexity is O
(

M(N 2 + M)
)

.

5.2 Algorithm to solve MKCsd p

In this section the Algorithm 2 describes the algorithm to solve MKCsdp(22). The optimiza-

tion problem (22) has two sets of unknowns, S and the K̂(m)’s. We update K̂(m) and S in

123

728 Mach Learn (2017) 106:713–739

an iterative manner. In the kth iteration, for fixed Sk−1 and K̂(m)k−1
, the K̂(m) is updated

independently by solving following Semi-definite Program:

K̂(m)k = arg min
K

K objk
S (K̂(m))

s.t K̂(m) � 0, (29)

where

K objk
S (K̂(m)) = ‖K̂

(m)

I (m) I (m) − K
(m)

I (m) I (m)‖2
2 + λ‖K̂(m) −

M
∑

l=1,l 	=m

sk−1
ml K̂(l)k−1‖2

2

+λ

M
∑

l=1,l 	=m

‖

⎛

⎝K̂(l)k−1 −
M

∑

l ′=1,l ′ 	=l,m

sk−1
ll ′ K̂(l ′)k−1

⎞

⎠ − sk−1
lm K̂(m)‖2

2

Algorithm 2 MKCsdp

(

K(m), I (m),∀m ∈ [1, . . . , M]
)

Initiaization:

s0
mm = 0, s0

ml
= 1

M−1
,

K̂
(m)0

I (m) I (m) = K
(m)

I (m) I (m) and

k̂
(m)0

t t ′ ∼ uni f orm(−1, 1) for all t, t ′ /∈ I (m)

repeat

for m=1 to M do

K̂(m)k = arg min
K̂(m) K objk

S
(K̂(m))

[according to (29)]

end for

for m=1 to M do

sk
m = arg minsm Sobjk

[psd]K̂(m),m=1,...,M
(sm)

[according to (30)]

end for

until convergence

Again, in the kth iteration, for fixed K̂(m)k
,∀m = [1, . . . , M], S is updated by indepen-

dently updating each row (sm) through solving the following Quadratic Program:

sk
m = arg min

sm

Sobjk

[psd]K̂(m),m=1,...,M
(sm)

s.t
∑

l 	=m

sml = 1,

sml ≥ 0 ∀l (30)

Here Sobjk

[psd]K̂(m),m=1,...,M
(sm) = ‖K̂(m)k −

∑M
l=1,l 	=m smlK̂

(l)k ‖2
2.

Computational Complexity: Each iteration of Algorithm 2 needs to optimize M kernel by

solving of M semi-definite programming(SDP) of size N . General SDP solver has computa-

123

Mach Learn (2017) 106:713–739 729

tion complexity O
(

N 6.5
)

(Wang et al. 2013). Hence the effective computational complexity

is O
(

M N 6.5
)

.

5.3 Algorithm to solve MKCapp

In this section the Algorithm 3 describes the algorithm to solve MKCapp(25) which is similar

to Algorithm 1. Substituting K̂(m) = A
(m)T

I (m) K
(m)

I (m),I (m)A
(m)

I (m) , the optimization problem (25)

also has two sets of unknowns, S and the A(m)’s and again we update A(m) and S in an iterative

manner. In the kth iteration for a fixed Sk−1 from previous iteration, to update A(m)’s, unlike

MKCembd(ht), we need to solve following for each m:

A(m)k = arg min
A(m)

Aobjk
[app]S(A(m)) + λ2Ω(A(m)k−1

)

where Ω(A(m)) = ‖A(m)‖2,1 and

Aobjk
[app]S(A(m)) = ‖K

(m)

I (m) I (m) −
[

A
(m)T

I (m) K
(m)

I (m) I (m)A
(m)

I (m)

]

I (m) I (m)
‖2

2

+λ1

M
∑

m=1

‖A
(m)T

I (m) K
(m)

I (m) I (m)A
(m)

I (m) −
M

∑

l=1,l 	=m

sk−1
ml A

(l)T

I (l) K
(l)

I (l) I (l)A
(l)

I (l)‖2
2.

For this case too, instead of solving this problem in each iteration we update A(m) using

proximal gradient descent. Hence, in each iteration,

A(m)k = Proxγ λ2Ω

(

A(m)k−1 − γ ∂ Aobjk
[app]S(A(m)k−1

)

)

(31)

Algorithm 3 MKCapp

(

K(m), I (m),∀m ∈ [1, . . . , M]
)

Initialization:

s0
mm = 0, s0

ml
= 1

M−1
,

A
(m)0

I (m) I (m)
= Identity matrix and

a
(m)0

t t ′ ∼ uni f orm(−1, 1) for all t, t ′ /∈ I (m)

repeat

for m=1 to M do

for t=1 to N do

a
(m)k

t = max

(

0, (1 − γ λ2

‖
a
(m)k−1

t ‖2

)
a
(m)k−1

t

)

[according to s (31, 32)]

[λ is fixed by line search]

end for

end for

for m=1 to M do

sk
m = arg minsm Sobjk

[app]A(sm)

[according to (33)]

end for

until convergence

where ∂ Aobjk
[app]S(A(m)k−1

) is the differential of Aobjk
[app]S(A(m)) at A(m)k−1

and γ is the

step size which is decided by a line search. By applying proximal operator on each row of A

(i.e., at) in (31)

123

730 Mach Learn (2017) 106:713–739

a
(m)k

t = max

(

0,

(

1 − γ λ2

‖Δa
(m)k−1

t ‖2

)

Δa
(m)k−1

t

)

, (32)

where Δa
(m)k−1

t is the t th row of
(

A(m)k−1 − γ ∂ Aobjk
[app]S(A(m))

)

.

Again, in the kth iteration, for fixed A(m)k
,∀m = [1, . . . , M], S is updated by indepen-

dently updating each row (sm) through solving the following Quadratic Program:

sk
m = arg min

sm

Sobjk
[app]A(sm)

s.t
∑

l 	=m

sml = 1,

sml ≥ 0 ∀l (33)

where Sobjk
[app]A(sm) = ‖A

(m)T

I (m) K
(m)

I (m) I (m)A
(m)

I (m) −
∑M

l=1,l 	=m smlA
(l)T

I (l) K
(l)

I (l) I (l)A
(l)

I (l)‖2
2.

Computational Complexity: Each iteration of Algorithm 3 needs to update reconstruction

weight vectors of size N for N data-points for M views and also between view relation

weights of size M × M . Hence the effective computational complexity is O
(

M(N 2 + M)
)

.

6 Experiments

We apply the proposed MKC method on a variety of data sets, with different types of

kernel functions in different views, along with different amounts of missing data points. The

objectives of our experiments are: (1) to compare the performance of MKC against other

existing methods in terms of the ability to predict the missing kernel rows, (2) to empirically

show that the proposed kernel approximation with the help of the reconstruction weights also

improves running-time over the MKCsdp method.

6.1 Experimental setup

6.1.1 Data sets:

To evaluate the performance of our method, we used 4 simulated data sets with 100 data

points and 5 views, as well as two real-world multi-view data sets: (1) Dream Challenge

7 data set (DREAM) (Daemen et al. 2013; Heiser and Sadanandam 2012) and (2) Reuters

RCV1/RCV2 multilingual data (Amini et al. 2009).2

Synthetic data sets: We followed the following steps to simulate our synthetic data sets:

1 We generated the first 10 points (X
(m)

B(m)) for each view, where X
(1)

B(m) and X
(2)

B(m) are

uniformly distributed in [−1, 1]5 and X
(3)

B(m) , X
(4)

B(m) and, X
(5)

B(m) are uniformly distributed

in [−1, 1]10.

2 These 10 data points were used as basis sets for each view, and further 90 data points

in each view were generated by X(m) = A(m)X
(m)

B(m) , where the A(m) are uniformly

distributed random matrices ∈ R
90×10. We chose A(1) = A(2) and A(3) = A(4) = A(5).

2 All data-sets and MKC code is available in https://github.com/aalto-ics-kepaco/MKC_software.

123

https://github.com/aalto-ics-kepaco/MKC_software

Mach Learn (2017) 106:713–739 731

Fig. 2 Eigen-spectra of kernel matrices of the different views in the data sets. It shows that eigen-spectra

of the TOY data-set with two different kernels (TOYLG1) and the real world DREAM data-sets are very

much different in different views Each coloured line in a plot shows the eigen-spectrum in one view. Here,

(r) indicates use of Gaussian kernel on real values whereas (b) indicates use of Jaccard’s kernel on binarized

values (Color figure online)

3 Finally, K(m) was generated from X(m) by using different kernel functions for different

data sets as follows:

– TOYL: Linear kernel for all views

– TOYG1 and TOYG0.1: Gaussian kernel for all views where the kernel with of the

Gaussian kernel are 1 and 0.1 respectively.

– TOYLG1: Linear kernel for the first 3 views and Gaussian kernel for the last two views

with the kernel width 1. Note that with this selection view 3 shares reconstruction

weights with view 4 and 5, but has the same kernel as views 1 and 2.

Figure 2 shows the eigen-spectra of kernel matrices are very much different for TOYLG1

where we have used different kernels in different views.

The Dream Challenge 7 data set (DREAM): For Dream Challenge 7, genomic charac-

terizations of multiple types on 53 breast cancer cell lines are provided. They consist of

DNA copy number variation, transcript expression values, whole exome sequencing, RNA

sequencing data, DNA methylation data and RPPA protein quantification measurements. In

addition, some of the views are missing for some cell lines. For 25 data points all 6 views are

available. For all the 6 views, we calculated Gaussian kernels after normalizing the data sets.

We generated two other kernels by using Jaccard’s kernel function over binarized exome data

and RNA sequencing data. Hence, the final data set has 8 kernel matrices. Figure 2 shows

the eigen-spectra of the kernel matrices of all views, which are quite different for different

views.

RCV1/RCV2: Reuters RCV1/RCV2 multilingual data set contains aligned documents for

5 languages (English, French, Germany, Italian and Spanish). Originally the documents

are in any one of these languages and then corresponding documents for other views have

been generated by machine translations of the original document. For our experiment, we

randomly selected 1500 documents which were originally in English. The latent semantic

kernel (Cristianini et al. 2002) is used for all languages.

6.1.2 Evaluation setup

Each of the data sets was partitioned into tuning and test sets. The missing views were

introduced in these partitions independently. To induce missing views, we randomly selected

123

732 Mach Learn (2017) 106:713–739

data points from each partition, a few views for each of them, and deleted the corresponding

rows and columns from the kernel matrices. The tuning set was used for parameter tuning.

All the results have been reported on the test set which was independent of the tuning

set.

For all 4 synthetic data sets as well as RCV1/RCV2 we chose 40% of the data samples

as the tuning set, and the rest 60% were used for testing. For the DREAM data set these

partitions were 60% for tuning and 40% for testing.

We generated versions of the data with different amounts of missing values. For the first

test case, we deleted 1 view from each selected data point in each data set. In the second test

case, we removed 2 views for TOY and RCV1/RCV2 data sets and 3 views for DREAM.

For the third one we deleted 3 views among 5 views per selected data point in TOY and

RCV1/RCV2, and 5 views among 8 views per selected data point in DREAM.

We repeated all our experiments for 5 random tuning and test partitions with different

missing entries and report the average performance on them.

6.1.3 Compared methods

We compared performance of the proposed methods, MKCembd(hm) MKCembd(ht), MKCapp ,

MKCsdp , with k nearest neighbour (KNN) imputation as a baseline KNN has previously

been shown to be a competitive imputation method (Brock et al. 2008). For KNN imputation

we first concatenated underlying feature representations from all views to get a joint feature

representation. We then sought k nearest data points by using their available parts, and the

missing part was imputed as either average (Knn) or the weighted average (wKnn) of the

selected neighbours. We also compare our result with generative model based approach of

Lian et al. (2015) (MLFS) and with an EM-based kernel completion method (EMbased)

proposed by Tsuda et al. (2003). Tsuda et al. (2003) cannot solve our problem when no view

is complete, hence we study the relative performance only in the cases which it can solve.

For Tsuda et al. (2003)’s method we assume the first view is complete.

We also compared MKCembd(ht), with MKCrnd where we assumed the basis vectors are

selected randomly with uniform distribution with out replacement and after that reconstruc-

tion weights for all views are optimizied.

The hyper-parameters λ1 and λ2 of MKC and k of Knn and wKnn were selected with

the help of tuning set, from the range of 10−3 to 103 and [1, 2, 3, 5, 7, 10] respectively. All

reported results indicate performance in the test sets.

6.2 Prediction error comparisons

6.2.1 Average Relative Error (ARE)

We evaluated the performance of all methods using the average relative error (ARE) (Xu

et al. 2013). Let k̂
(m)
t be the predicted t th row for the mth view and the corresponding true

values of kernel row be k
(m)
t , then the relative error is the relative root mean square deviation.

The average relative error (in percentage) is then computed over all missing data points

for a view, that is,

ARE = 100

n
(m)
t

⎛

⎝

∑

t /∈I (m)

‖k̂
(m)
t − k

(m)
t ‖2

‖k
(m)
t ‖2

⎞

⎠ . (34)

Here n
(m)
t is the number of missing samples in the mth view.

123

Mach Learn (2017) 106:713–739 733

T
a

b
le

1
A

v
er

ag
e

re
la

ti
v
e

er
ro

r
p

er
ce

n
ta

g
e

(3
4

))

A
lg

o
ri

th
m

T
O

Y
L

T
O

Y
G

1
T

O
Y

G
0
.1

T
O

Y
L

G
1

D
R

E
A

M
R

C
V

1
/R

C
V

2

N
u

m
b

er
o

f
m

is
si

n
g

v
ie

w
s

=
1

(T
O

Y
an

d
R

C
V

1
/R

C
V

2
)

an
d

1
(D

R
E

A
M

)

M
K

C
e
m

b
d
(h

t)
0

.0
7

(±
0

.0
9

)
7

.4
0

(±
9

.2
0

)
8

4
.9

1
(±

5
.1

8
)

4
.5

0
(±

6
.7

2
)

1
3

.3
6

(±
2

6
.5

3
)

1
.7

9
(
±

0
.8

9
)

M
K

C
a

p
p

0
.0

9
(±

0
.1

0
)

5
.0

2
(±

3
.6

0
)

7
6

.2
4

(±
1

0
.5

9
)

2
.1

1
(±

3
.4

0
)

1
4

.4
6

(±
2

8
.3

9
)

1
.1

5
(
±

0
.4

8
)

M
K

C
s
d

p
0

.2
2

(±
0

.3
2

)
1

1
.2

9
(±

6
.2

9
)

7
.8

3
(±

5
.4

6
)

6
.0

6
(±

7
.8

4
)

2
0

.1
9

(±
4

1
.2

8
)

–

M
K

C
e
m

b
d
(h

m
)

0
.1

9
(±

0
.1

8
)

2
7

.5
4

(±
1

4
.3

8
)

8
6

.0
8

(±
6

.3
4

)
8

.9
3

(±
1

1
.8

6
)

1
6

.1
2

(±
3

0
.2

7
)

3
.2

7
(
±

1
.2

6
)

M
K

C
r
n

d
0

.0
8

(±
0

.0
9

)
1

6
.7

9
(±

1
3

.1
4

)
9

3
.3

6
(±

5
.1

8
)

4
.5

0
(±

6
.7

2
)

1
6

.0
0

(±
2

8
.8

3
)

1
.4

0
(
±

0
.2

8
)

M
L

F
S

0
.2

8
(
±

0
.2

0
)

7
9

.2
0

(
±

2
2

.9
5

)
1

0
0

.0
0

(
±

0
.0

0
)

2
5

.3
4

(
±

3
1

.4
2

)
1

1
.6

9
(
±

2
6

.4
7

)
1

5
.1

3
(
±

3
.2

5
)

E
M

b
a

s
e
d

2
0

.6
5

(±
4

1
.0

8
)

5
5

4
.0

8
(±

9
0

.0
0

)
3

1
.2

3
(±

3
7

.0
2

)
7

5
9

.7
4

(±
9

0
.0

0
)

1
4

.7
8

(±
3

2
.9

3
)

2
3

.3
8

(
±

2
9

.0
0

)

K
n

n
0

.3
4

(
±

0
.5

3
)

4
2

.8
9

(
±

2
7

.9
3

)
6

2
.6

9
(
±

8
.7

7
)

1
1

.2
7

(
±

1
5

.5
3

)
1

4
.9

4
(
±

2
5

.2
9

)
5

.7
9

(
±

2
.6

5
)

w
K

n
n

0
.3

4
(
±

0
.5

3
)

4
5

.4
7

(
±

2
9

.5
0

)
6

2
.8

0
(
±

8
.8

6
)

1
5

.3
0

(
±

2
0

.1
5

)
1

5
.0

0
(
±

2
5

.3
5

)
5

.9
1

(
±

2
.7

1
)

N
u

m
b

er
o

f
m

is
si

n
g

v
ie

w
s

=
2

(T
O

Y
an

d
R

C
V

1
/R

C
V

2
)

an
d

3
(D

R
E

A
M

)

M
K

C
e
m

b
d
(h

t)
0

.0
8

(±
0

.0
7

)
9

.4
3

(±
6

.7
2

)
8

6
.7

2
(±

3
.3

4
)

3
.2

6
(±

5
.0

7
)

1
6

.1
3

(±
2

8
.2

9
)

2
.7

4
(
±

0
.8

5
)

M
K

C
a

p
p

0
.0

7
(±

0
.0

5
)

6
.8

9
(±

3
.4

4
)

8
4

.4
0

(±
9

.0
4

)
4

.0
1

(±
6

.0
3

)
1

7
.5

1
(±

2
7

.6
5

)
1

.6
1

(
±

0
.6

5
)

M
K

C
s
d

p
0

.3
4

(±
0

.3
9

)
1

9
.8

7
(±

1
3

.8
8

)
1

8
.3

0
(±

1
2

.9
4

)
3

7
.8

8
(±

4
9

.5
8

)
3

2
.8

6
(±

5
1

.7
3

)
–

M
K

C
e
m

b
d
(h

m
)

0
.1

4
(±

0
.0

9
)

2
9

.6
9

(±
9

.8
5

)
9

6
.1

9
(±

1
.6

0
)

1
3

.7
8

(±
2

1
.3

3
)

1
8

.3
3

(±
2

9
.5

6
)

2
.7

1
(
±

0
.7

1
)

M
K

C
r
n

d
0

.0
8

(±
0

.0
7

)
1

7
.9

4
(±

6
.9

1
)

9
3

.2
4

(±
3

.3
4

)
6

.9
6

(±
9

.3
9

)
1

7
.7

0
(±

2
8

.2
9

)
2

.2
9

(
±

0
.1

1
)

M
L

F
S

0
.5

8
(
±

0
.2

6
)

7
9

.5
4

(
±

1
1

.8
8

)
1

0
0

.0
0

(
±

0
.0

0
)

3
0

.8
6

(
±

3
8

.7
9

)
1

6
.5

9
(
±

3
1

.2
8

)
2

5
.2

3
(
±

3
6

.2
9

)

E
M

b
a

s
e
d

2
8

.6
6

(±
4

2
.2

8
)

2
0

2
.5

8
(±

3
3

9
.0

2
)

6
1

.8
7

(±
5

0
.4

8
)

2
9

8
.5

7
(±

2
8

1
.7

9
)

2
5

.9
8

(±
6

3
.7

0
)

2
7

.8
3

(±
1

3
.7

0
)

K
n

n
0

.2
6

(
±

0
.2

6
)

5
2

.1
8

(
±

1
6

.3
4

)
9

7
.6

5
(
±

1
1

.6
2

)
1

9
.6

4
(±

2
5

.6
2

)
2

2
.0

4
(
±

3
0

.0
7

)
7

.4
7

(
±

2
.3

8
)

w
K

n
n

0
.2

6
(
±

0
.2

6
)

5
4

.9
4

(
±

1
6

.0
2

)
9

8
.2

4
(
±

1
1

.1
7

)
2

0
.9

0
(
±

2
7

.1
6

)
2

2
.2

0
(
±

3
0

.2
6

)
7

.6
1

(
±

2
.4

0
)

123

734 Mach Learn (2017) 106:713–739

T
a

b
le

1
co

n
ti

n
u

ed

A
lg

o
ri

th
m

T
O

Y
L

T
O

Y
G

1
T

O
Y

G
0
.1

T
O

Y
L

G
1

D
R

E
A

M
R

C
V

1
/R

C
V

2

N
u

m
b

er
o

f
m

is
si

n
g

v
ie

w
s

=
3

(T
O

Y
an

d
R

C
V

1
/R

C
V

2
)

an
d

5
(D

R
E

A
M

)

M
K

C
e
m

b
d
(h

t)
0

.0
5

(±
0

.0
4

)
1

2
.8

7
(±

3
.4

0
)

8
9

.8
8

(±
3

.2
6

)
5

.1
3

(±
7

.1
7

)
2

0
.0

4
(±

3
0

.5
8

)
1

.6
9

(
±

0
.8

5
)

M
K

C
a

p
p

0
.1

0
(±

0
.0

5
)

1
2

.0
4

(±
3

.7
1

)
8

9
.6

9
(±

5
.5

4
)

5
.7

2
(±

7
.8

8
)

2
0

.4
3

(±
3

0
.3

9
)

2
.9

1
(
±

3
.1

5
)

M
K

C
s
d

p
0

.4
1

(±
0

.3
5

)
8

6
.2

1
(±

5
5

.8
4

)
1

7
.5

9
(±

9
.3

7
)

4
3

8
.9

2
(±

6
2

4
.2

1
)

9
7

.7
9

(±
8

9
.5

1
)

–

M
K

C
e
m

b
d
(h

m
)

0
.1

6
(±

0
.1

0
)

3
2

.7
0

(±
1

0
.6

3
)

9
5

.4
3

(±
1

.7
5

)
1

5
.9

1
(±

2
3

.3
1

)
2

2
.1

3
(±

3
3

.2
9

)
2

.4
5

(
±

1
.5

4
)

M
K

C
r
n

d
0

.0
8

(±
0

.0
6

)
2

0
.5

6
(±

4
.8

8
)

9
4

.5
4

(±
3

.2
6

)
7

.9
5

(±
1

0
.7

6
)

2
1

.0
4

(±
3

0
.5

8
)

1
.3

8
(
±

0
.2

9
)

M
L

F
S

8
.5

5
(
±

3
.0

8
)

9
9

.9
2

(
±

0
.2

3
)

1
0

0
.0

0
(
±

0
.0

0
)

3
2

.1
7

(
±

3
2

.2
8

)
2

1
.5

4
(
±

3
0

.9
4

)
1

0
0

.0
0

(
±

0
.0

0
)

E
M

b
a

s
e
d

2
1

.4
6

(±
4

0
.7

3
)

1
0

1
.8

7
(±

6
3

.3
1

)
5

5
4

.0
8

(±
9

0
.0

0
)

2
3

1
.9

8
(±

4
1

6
.3

0
)

6
0

.4
7

(±
2

4
5

.8
8

)
2

9
.7

6
(±

1
2

.2
8

)

K
n

n
0

.3
9

(
±

0
.3

3
)

6
2

.3
2

(
±

1
4

.9
4

)
1

1
2

.7
9

(
±

1
3

.2
2

)
2

4
.9

3
(
±

3
3

.5
7

)
2

7
.5

4
(
±

3
6

.8
8

)
8

.6
6

(
±

1
.9

9
)

w
K

n
n

0
.3

8
(
±

0
.3

3
)

6
6

.9
4

(±
1

4
.7

4
)

9
7

.9
6

(
±

4
.5

2
)

2
7

.4
8

(
±

3
6

.9
0

)
2

7
.5

7
(
±

3
6

.7
0

)
8

.8
5

(
±

1
.9

9
)

T
h

e
sm

al
le

st
A

R
E

fo
r

ea
ch

se
tu

p
ar

e
b

o
ld

fa
ce

d
.
T

h
e

fi
g

u
re

s
ar

e
A

R
E

av
er

ag
ed

o
v
er

al
l

v
ie

w
s

an
d

5
ra

n
d

o
m

v
al

id
at

io
n

an
d

te
st

p
ar

ti
ti

o
n

s
w

it
h

d
if

fe
re

n
t

m
is

si
n
g

en
tr

ie
s

(s
ta

n
d
ar

d

d
ev

ia
ti

o
n

in
p

ar
en

th
es

es

123

Mach Learn (2017) 106:713–739 735

6.2.2 Results

Table 1 shows the Average Relative Error (34) for the compared methods. It shows that the

proposed MKC methods generally predict missing values more accurately than Knn, wKnn,

EMbased and MLFS. In particular, the differences in favor to the MKC methods increase

when the number of missing views is increased.

The most recent method MLFS performs comparatively for the DREAM data-set and

the data-set with linear kernels (TOYL). But it deteriorates very badly with the increased

of non-linearity of kernels, i.e., TOYG1 and TOYLG1. For highly non-linear sparse kernels

(TOYG0.1) and for RCV1/RCV2 data-set with large amount of missing views the MLFS

fails to predict.

The EMbased sometimes has more than 200% error and higher (more than 200%) variance.

The most accurate method in each setup is one of the proposed MKC’s. MKCembd(hm) is

generally the least accurate of them, but still competitive against the other compared methods.

We further note that:

– MKCembd(ht) is consistently the best when different views have different kernel func-

tions or eigen-spectra, e.g., TOYLG1 and DREAM (Fig. 2). Better performance of

MKCembd(ht) than MKCembd(hm) in DREAM data gives evidence of applicability of

MKCembd(ht) in real-world data-set.

– MKCapp performs best or very close to MKCembd(ht) when kernel functions and eigen-

spectra of all views are the same (for instance TOYL, TOYG1 and RCV1/RCV2). As

MKCapp learns between-view relationships on kernel values it is not able to perform well

for TOYLG1 and DREAM where very different kernel functions are used in different

views.

– MKCsdp outperforms all other methods when kernel functions are highly non-linear

(such as in TOYG0.1). On less non-linear cases, MKCsdp on the other hand trails in

accuracy to the other MKC variants. MKCsdp is computationally more demanding than

the others, to the extent that on RCV1/RCV2 data we had to skip it.

Fig. 3 ARE (34) for different proportions of missing samples. Values are averages over views and random

validation and test partitions. The value for TOY are additionally averaged over all 4 TOY data sets

123

736 Mach Learn (2017) 106:713–739

Figure 3 depicts the performance as the number of missing samples per view is increased.

Here, MKCembd(ht), MKCapp and MKCembd(hm) prove to be the most robust methods over

all data sets. The performance of MKCsdp seems to be the most sensitive to amount of

missing samples. Overall, EMbased , Knn, and wKnn have worse error rates than the MKC

methods.

6.3 Comparison of performance of different versions of the proposed approach

Figure 4 shows how relative prediction error (ARE) of MKCembd(ht), MKCapp and MKCsdp

vary with two properties of given data-sets. Namely, (1) difference among eigen-spectra of

kernel of different views(x axis) and (2) non-linearity of kernels for all views(y axis). For

this experiment, we consider 3rd, 4th and 5th views of TOY data. Here all views have been

generated from same embedding. Non-linearity of kernel function varies with combination

of linear and Gaussian kernel where the kernel with of the Gaussian kernel varies among 5,

1 and 0.1.

The heterogeneity of eigen-spectra of all kernels are calculated as average mean square

difference of eigen-spectra of each pair of kernels. The non-linearity of kernel is indicated by

the average of the 20th eigen-values of all views. Each circle indicates amount of prediction

error by MKCembd(ht), MKCapp and MKCsdp where radius of each circle is proportional

to “log(ARE) + T hr”. A constant “T hr” was required to have positive radii for all circles

for better visualization. We further note that:

– The performance of MKCembd(ht) is the best among these three methods for all most all

cases.

Fig. 4 The changes of prediction error (bigger size of circle indicates the more ARE) for MKCembd(ht)(red),

MKCapp(blue) and MKCsdp(green) with increase of the non-linearity and the heterogeneity of kernel func-

tions used in different views. It show EMbased (red) performed best for almost all cases while for highly

non-linear kernel MKCsdp(green) performed better. Text at center of each circle indicates kernel functions

used in 3 views for that data-set: “L”=linear and “g(w)”= Gaussian with width w (Color figure online)

123

Mach Learn (2017) 106:713–739 737

Table 2 Average running time over all views and for TOY, over all 4 data sets

Algorithm TOY (mins) DREAM (mins) RCV1/RCV2 (h)

Number of missing views = 1 (TOY and RCV1/RCV2) and 1 (DREAM)

MKCembd(ht) 5.00(±2.04) 0.86(±0.29) 45.93(±2.27)

MKCapp 2.91(±0.39) 1.89(±0.62) 16.59(±0.28)

MKCsdp 14.82(±4.39) 1.13(±0.11) –

MKCembd(hm) 0.15(±0.07) 0.05(±0.03) 0.28(±0.02)

MKCrnd 2.71(±0.53) 0.85(±0.18) 4.21(±0.56)

MLFS 0.15(±0.01) 0.01(±0.01) 1.72(±0.11)

EMbased 0.50(±0.19) 0.03(± 0.05) 0.03(±0.00)

Number of missing view = 2 (TOY and RCV1/RCV2) and 3 (DREAM)

MKCembd(ht) 7.58(±2.18) 1.13(±0.12) 25.86(±0.36)

MKCapp 2.78(±0.68) 1.29(±0.25) 34.42(±1.28)

MKCsdp 25.65(±5.43) 1.97(±0.34) –

MKCembd(hm) 0.11(±0.05) 0.03(±0.01) 0.47(±0.02)

MKCrnd 1.33(±0.59) 1.34(±0.19) 3.63(±0.50)

MLFS 0.14(±0.01) 0.01(±0.02) 2.61(±1.01)

EMbased 0.45(±0.08) 0.06(±0.06) 0.03(±0.00)

Number of missing views = 3 (TOY and RCV1/RCV2) and 5 (DREAM)

MKCembd(ht) 6.83(±2.14) 3.39(±1.11) 24.39(±2.13)

MKCapp 2.20(±0.66) 3.64(±1.79) 20.26(±1.72)

MKCsdp 178.1(±162.9) 4.94(±2.48) –

MKCembd(hm) 0.12(±0.08) 0.03(±0.02) 0.57(±0.00)

MKCrnd 1.83(±0.73) 1.31(±0.20) 2.81(±0.17)

MLFS 0.07(±0.05) 0.05(±0.01) 1.04(±0.40)

EMbased 0.45(±0.05) 0.10(±0.05) 0.03(±0.00)

The running times for Knn and wKnn are around 10−3 mins for all data sets

– Only when all views have similarly high non-linear kernel (top-left corner), MKCsdp

performs best among all. It also shows that the performance of MKCsdp improves with

increase of non-linearity.

– We can also see that with the increase of heterogeneity in kernels (increase of x-axis) the

performance of MKCapp deteriorates and is getting worse than that of MKCembd(ht).

6.4 Running time comparison

Table 2 depicts the running times for the compared methods. MKCapp , MKCembd(ht) and

MKCembd(hm) are many times faster than MKCsdp . In particular, MKCembd(hm) is competi-

tive in running time with the significantly less accurate EMbased and MLFS methods, except

on the RCV1/RCV2 data. As expected, Knn and wKnn are orders of magnitude faster but

fall far short of the reconstruction quality of the MKC methods.

7 Conclusions

In this paper, we have introduced new methods for kernel completion in the multi-view

setting. The methods are able to propagate relevant information across views to predict

123

738 Mach Learn (2017) 106:713–739

missing rows/columns of kernel matrices in multi-view data. In particular, we are able to

predict missing rows/columns of kernel matrices for non-linear kernels, and do not need any

complete kernel matrices a priori.

Our method of within-view learning approximates the full kernel by a sparse basis set of

examples with local reconstruction weights, picked up by ℓ2,1 regularization. This approach

has the added benefit of circumventing the need of an explicit PSD constraint in optimization.

We showed that the method generalizes and improves Nyström approximation. For learning

between views, we proposed two alternative approaches, one based on learning convex kernel

combinations and another based on learning a convex set of reconstruction weights. The

heterogeneity of the kernels in different views affects which of the approaches is favourable.

We related theoretically the kernel approximation quality of these methods to the similarity

of eigen-spaces of the individual kernels.

Our experiments show that the proposed multi-view completion methods are in general

more accurate than previously available methods. In terms of running time, due to the inherent

non-convexity of the optimization problems, the new proposals still have room to improve.

However, the methods are amenable for efficient parallelization, which we leave for further

work.

Acknowledgements We thank Academy of Finland (Grants 292334, 294238, 295503 and Center of Excel-

lence in Computational Inference COIN for SK, Grant 295496 for JR and Grants 295503 and 295496 for SB)

and Finnish Funding Agency for Innovation Tekes (Grant 40128/14 for JR) for funding. We also thank authors

of Lian et al. (2015) for sharing their software for MLFS.

References

Amini, M., Usunier, N., & Goutte, C. (2009). Learning from multiple partially observed views—An application

to multilingual text categorization. Advances in Neural Information Processing Systems, 22, 28–36.

Argyriou, A., Micchelli, C.A., & Pontil, M. (2005). Learning convex combinations of continuously parame-

terized basic kernels. In Proceedings of the 18th annual conference on learning theory (pp. 338–352).

Argyriou, A., Evgeniou, T., & Pontil, M. (2006). Multi-task feature learning. Advances in Neural Information

Processing Systems, 19, 41–48.

Bach, F., Lanckriet, G., & Jordan, M. (2004). Multiple kernel learning, conic duality, and the SMO algorithm.

In Proceedings of the 21st international conference on machine learning (pp. 6–13). ACM.

Bach, F., Jenatton, R., Mairal, J., & Obozinski, G. (2011). Convex optimization with sparsity-inducing norms.

Optimization for Machine Learning, 5, pp. 19–53.

Brock, G., Shaffer, J., Blakesley, R., Lotz, M., & Tseng, G. (2008). Which missing value imputation method

to use in expression profiles: A comparative study and two selection schemes. BMC Bioinformatics, 9,

1–12.

Cortes, C., Mohri, M., & Rostamizadeh, A. (2012). Algorithms for learning kernels based on centered align-

ment. Journal of Machine Learning Research, 13, 795–828.

Cristianini, N., Shawe-Taylor, J., & Lodhi, H. (2002). Latent semantic kernels. Journal of Intelligent Infor-

mation Systems, 18(2–3), 127–152.

Daemen, A., Griffith, O., Heiser, L., et al. (2013). Modeling precision treatment of breast cancer. Genome

Biology, 14(10), 1.

Gönen, M., & Alpaydin, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning

Research, 12, 2211–2268.

Graepel, T. (2002). Kernel matrix completion by semidefinite programming. In Proceedings of the 12th inter-

national conference on artificial neural networks, Springer (pp. 694–699).

Heiser, L. M., Sadanandam, A., et al. (2012). Subtype and pathway specific responses to anticancer compounds

in breast cancer. Proceedings of the National Academy of Sciences, 109(8), 2724–2729.

Kumar, S., Mohri, M., & Talwalkar, A. (2009). On sampling-based approximate spectral decomposition. In

Proceedings of the 26th annual international conference on machine learning (pp. 53–560). ACM.

123

Mach Learn (2017) 106:713–739 739

Lian, W., Rai, P., Salazar, E., & Carin, L. (2015). Integrating features and similarities: Flexible models for

heterogeneous multiview data. In Proceedings of the 29th AAAI conference on artificial intelligence (pp.

2757–2763).

Paisley, J., Carin, & L. (2010). A nonparametric Bayesian model for kernel matrix completion. In The 35th

international conference on acoustics, speech, and signal processing, IEEE (pp. 2090–2093).

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,

290(5500), 2323–2326.

Shao, W., Shi, X., & Yu, P.S. (2013). Clustering on multiple incomplete datasets via collective kernel learning.

In IEEE 13th international conference on, data mining (ICDM), 2013 (pp. 1181–1186). IEEE.

Trivedi, A., Rai, P., Daumé III, H., & DuVall, S.L. (2005). Multiview clustering with incomplete views. In

Proceedings of the NIPS workshop.

Tsuda, K., Akaho, S., & Asai, K. (2003). The em algorithm for kernel matrix completion with auxiliary data.

The Journal of Machine Learning Research, 4, 67–81.

Wang, P., Shen, C., & Van Den Hengel, A. (2013). A fast semidefinite approach to solving binary quadratic

problems. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1312–

1319).

Williams, C., Seeger, M. (2001). Using the nyström method to speed up kernel machines. In Proceedings of the

14th annual conference on neural information processing systems, EPFL-CONF-161322 (pp. 682–688).

Williams, D., Carin, L. (2005). Analytical kernel matrix completion with incomplete multi-view data. In

Proceedings of the ICML workshop on learning with multiple views.

Xu, M., Jin, R., & Zhou, Z.H. (2013). Speedup matrix completion with side information: Application to

multi-label learning. In Advances in neural information processing systems (pp. 2301–2309).

123

	Multi-view kernel completion
	Abstract
	1 Introduction
	2 Multi-view kernel completion
	2.1 Within-view kernel relationships
	2.2 Between-view kernel relationships

	3 Theoretical analysis
	3.1 Rank of the within-kernel approximation
	3.2 Relation to Nyström approximation
	3.3 Low-rank approximation quality
	3.4 Low-rank approximation quality of multiple kernel matrices

	4 Optimization problems
	4.1 MKCusing semi-definite programming (MKCsdp)
	4.2 MKC using homogeneous embeddings (MKCembd(hm))
	4.3 MKC using heterogeneous embeddings (MKCembd(ht))
	4.4 MKC using kernel approximation (MKCapp)

	5 Algorithms
	5.1 Algorithm to solve MKCembd(ht)
	5.2 Algorithm to solve MKCsdp
	5.3 Algorithm to solve MKCapp

	6 Experiments
	6.1 Experimental setup
	6.1.1 Data sets:
	6.1.2 Evaluation setup
	6.1.3 Compared methods

	6.2 Prediction error comparisons
	6.2.1 Average Relative Error (ARE)
	6.2.2 Results

	6.3 Comparison of performance of different versions of the proposed approach
	6.4 Running time comparison

	7 Conclusions
	Acknowledgements
	References

