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Noise-induced Regime Shifts: A Quantitative Characterization
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Diverse complex dynamical systems are known to exhibit abrupt regime shifts at bifurcation
points of the saddle-node type. The dynamics of most of these systems, however, have a stochastic
component resulting in noise driven regime shifts even if the system is away from the bifurcation
points. In this paper, we propose a new quantitative measure, namely, the propensity transition
point as an indicator of stochastic regime shifts. The concepts and the methodology are illustrated
for the one-variable May model, a well-known model in ecology and the genetic toggle, a two-
variable model of a simple genetic circuit. The general applicability and usefulness of the method
for the analysis of regime shifts is further demonstrated in the case of the mycobacterial switch to
persistence for which experimental data are available.

PACS numbers: 05.10.Gg, 05.40.Ca, 02.30.Oz

I. INTRODUCTION

Dynamical systems are known to undergo sudden
regime shifts at critical parameter values, termed the bi-
furcation points, with the different regimes defined by dis-
tinct sets of attractors of the dynamics [1]. Recently, a
large number of studies have been devoted to the inves-
tigation of regime shifts in complex dynamical systems
and processes ranging from ecosystems, climate change,
population collapse and financial markets [2–5] to epilep-
tic seizures and asthma attacks [6, 7]. Examples of sud-
den regime shifts include the collapse of vegetation un-
der semi-arid conditions, the transition from a clear to a
turbid lake, catastrophic shifts in fish or wildlife popu-
lations [2–5], transitions from one stable gene expression
state to another in natural and synthetic genetic circuits
[8–10] and the sudden deterioration of complex diseases
[11]. The regime shifts, in most of the cases studied, are
brought about by abrupt transitions from bistability to
monostability via the saddle-node bifurcation [1, 2]. The
state of a dynamical system at a specific time t is defined
in terms of the magnitudes of one or more key variables
at time t. In the steady state, the rates of change in the
magnitudes of the variables are zero. In the case of monos-
tability, there is only one single stable steady state. The
region of bistability is distinguished by the coexistence of
two stable steady states separated by an unstable steady
state. The two stable steady states correspond to low and
high values of the variable, designated as the L and H
states respectively. The bistable region separates two re-
gions of monostability with the L and H states being the
respective stable steady states. At a saddle node bifurca-
tion point, one of the stable steady states merges with the
unstable steady state leading to a reduction in the num-
ber of physical solutions, from three to one, beyond the
bifurcation point. Figure 1 illustrates the saddle-node bi-
furcation in the case of the May model [12], a well-known
model in ecology. In the original model, a population of
herbivores at a constant density is considered, the popula-
tion being sustained by vegetation of biomass x. The rate
equation describing the changes in the biomass amount is
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Figure 1. Biomass x versus the maximum grazing rate pa-
rameter c in the steady state of the May model the dynamics
of which are described by Eq. (1). The solid lines represent
the stable steady states and the dot-dashed line the branch of
unstable steady states. The points c = c1 and c = c2 repre-
sent the lower and upper bifurcation points respectively. The
parameter values used are r = 1, K = 10 and x0 = 1. The in-
set shows the plot of the steady state probability distribution
Pst(x) versus x in the presence of additive noise of strength
d1 = .25. The maximum grazing rate parameter c = 2.3. The
extrema points correspond to the stable steady states of the
deterministic dynamics, with x1 and x3 representing the stable
steady states which are separated by an unstable steady state
x2.

given by

dx

dt
= rx

(

1−
x

K

)

−
cx2

x2
o + x2

(1)

The first term on the right hand side represents the logis-
tic growth of the biomass at the rate r, K being the car-
rying capacity with the growth rate becoming zero when
x = K. The second term corresponds to the rate of loss
of the biomass due to its consumption by the herbivores.
The parameter c is the maximum loss rate of the biomass
or equivalently the maximum grazing rate. The loss rate



2

 0

 1

 2

 3

 4

 5

 6

 7

 2  2.1  2.2  2.3  2.4  2.5

x 1
/2

c

d1=0.15

d1=0.20

d1=0.25

 0
 2

00
 4

00
 6

00
 8

00

 2.3  2.32  2.34  2.36  2.38  2.4

dx
1/

2/
dc

c

Figure 2. The equipartition point x1/2 (Eq. (4)) versus the
parameter c for three different strengths of the additive noise,
d1 = .15 (solid line), d1 = .20 (dashed line) and d1 = .25 (dot-
dashed line). The other parameter values are r = 1, K = 10

and x0 = 1. The inset shows the plots of
dx1/2

dc
versus c for the

three noise strengths. The peak positions define the propensity
transition point c∗.

saturates when x is much larger than a characteristic value
x0. The May model has been applied to various other eco-
logical problems, e.g., the exploitation of fish populations
[13], dynamics of spruce budworms [13] and harvesting of
macrophytes [14]. Figure 1 shows the steady state values
of the biomass x

(

dx
dt = 0

)

versus the maximum grazing
rate parameter c. The other parameter values are r = 1,
K = 10 and x0 = 1 in appropriate units. The solid lines
represent the stable steady states separated by a branch
(dot-dashed line) of unstable steady states. The param-
eters chosen fall in a region of parameter space exhibit-
ing bistability. The lower (c1) and upper (c2) bifurcation
points separate a region of bistability from two regions of
monostability. At the upper bifurcation point c2, a saddle
node bifurcation takes place and there is an abrupt regime
shift from the H (high value of biomass) to the L (low
value of biomass) state. The transition to the collapsed
biomass state is not reversible with the reverse transition
from the L to the H state occurring at the lower bifur-
cation point c1. This is the phenomenon of hysteresis, a
characteristic feature of regime shifts of the type shown
in Figure 1. At c1, a saddle node bifurcation occurs with
the L state losing stability.

In the case of deterministic time evolution of a dynam-
ical system, there are two ways in which regime shifts
occur: (i) at the bifurcation points and (ii) on applying
large perturbations in the region of bistability. The unsta-
ble steady state sets a threshold for switching transitions
between the L and H states. Consider the system to be
initially in the H state. A sufficiently large perturbation
reduces the magnitude of the dynamical variable below
the threshold, thereby bringing about a transition to the
L state. Another way of bringing about regime shifts is
through noise-induced transitions [2, 15–17]. The time
evolution in complex dynamical systems exhibiting regime
shifts is, in general, stochastic in nature [18] due to the
probabilistic nature of the processes associated with the

dynamics. Stochasticity gives rise to fluctuations in the
magnitude of the dynamical variable (say, the biomass)
which, if sufficiently strong, cause transitions between the
L and H states away from the bifurcation points. The oc-
casional switch to an alternative regime in the presence of
stochasticity is known as “flickering” [2] and is responsible
for the appearance of a bimodal steady state probability
distribution in the region of “bistability”. Noise-induced
excursions from the stable steady states result in a broad-
ening of the distribution around the steady states. The
steady state distribution is achieved when the probability
of the H to the L state transition is the same as that of
the reverse transition. The bifurcation theory of stochas-
tic dynamical systems is not as well-formulated as that
in the case of deterministic dynamics. Kepler and Elston
[19] have defined stochastic bifurcation in terms of the
number of critical (singular) points in the steady state
probability density function. Song et. al. [20] have in-
vestigated the stochastic bifurcation structure of cellular
networks through specifying four quantities as a function
of the bifurcation parameter: (i) the number of distinct
subpopulations (or peaks in the steady state probability
distributions), (ii) the locations of the peaks in terms of
the measurable variable x, (iii) the variability in x for
each subpopulation and (iv) the fractions of the whole
population represented by the subpopulations. The total
probability distribution is expressed as a mixture of com-
ponent distributions, one for each subpopulation. The
term subpopulation is used in a generalized sense, the
number of subpopulations being equal to the number of
distinct peaks in the probability distribution. For exam-
ple, in the region of bistability (Figure 1), one has two
subpopulations, L and H and the corresponding proba-
bility distributions arise due to noise-induced broadening
of the steady state levels. Guttal and Jayaprakash [13]
have investigated the impact of noise on bistable ecological
systems. They have shown that the region of bistability
is diminished in the presence of small amounts of noise
whereas for noise beyond a critical strength, bistability
vanishes altogether. In the latter case, the dynamical sys-
tem can undergo abrupt regime shifts frequently. In gen-
eral, however, noise can induce new types of dynamic be-
haviour with significant differences from the deterministic
dynamics [18, 21–24]. To give a few examples, Samoilov
et. al. [23] have shown that for the enzymatic futile cycle,
a common biomolecular network motif, external noise can
generate dynamic bistability through stochastic switch-
ings. Zakharova et. al. [21] have demonstrated that noise
can enhance the region of bistability, characterized by a
bimodal probability distribution between a steady state
and a limit cycle, beyond the bistable region obtained in
the deterministic case. In the case of a model based on
autoactivating gene expression, Karmakar and Bose [22]
have shown that noise-induced bistability is possible in a
region of parameter space for which there is no bistabil-
ity in the deterministic case. To and Maheshri [24] have
illustrated this concept in a recent experiment. In this
paper, we propose a new framework for the quantitative
characterization of noise-induced regime shifts in bistable
systems. The methodology has a clear physical interpreta-
tion and is easy to implement. We focus on two models to
illustrate the methodology, the May model and the genetic
toggle [25] describing a simple genetic circuit in which the
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protein products of two genes repress each other’s syn-
thesis. The May model is a one-variable model whereas
the genetic toggle is a two-variable one, thus demonstrat-
ing the general applicability of the methodology proposed
in the paper. in Section II, we introduce the concept of
the propensity transition point (PTP) which may be con-
sidered as an indicator of stochastic regime shifts. As
an example, we consider the one-variable May model for
which the steady state probability distribution is obtained
by solving the appropriate Fokker-Planck equation. In
Section III, the steady-state probability distributions are
obtained for both the May model and the genetic toggle
using the Gillespie simulation algorithm [26]. We further
analyze available experimental data to determine the PTP
in the case of stochastic regime shifts from the normal to
the persister subpopulation in mycobacteria subjected to
stress in the form of nutrient depletion [27, 28].

II. EQUIPARTITION AND PROPENSITY

TRANSITION POINTS

In the case of stochastic dynamics, the probability dis-
tribution P (x) of a random variable x can be deter-
mined using a number of analytical and numerical meth-
ods [26, 29, 30]. The cumulative distribution function
PC(x) is defined to be

PC(x
′) =

∫ x′

0

P (x)dx (2)

where 0 ≤ x′ ≤ ∞. Let x1/2 be the median of the distri-
bution P (x) marking the equipartition point of the distri-
bution. One can write

∫ x1/2

0

P (x)dx =

∫ ∞

x1/2

P (x)dx =
1

2
(3)
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Figure 4. (a) The equipartition point x1/2 (Eq. (4)) versus c

for different strengths of the multiplicative noise: d2 = 0 (solid
line), d2 = .1 (dashed line) with d1 = .15 in each case. The
other parameter values are r = 1, K = 10 and x0 = 1. (b)
The cumulative residual entropy, SC (Eq. (15)) versus c for
the two different values of the multiplicative noise strength as
in (a). The PTP c∗ is included for comparison.

or,

PC

(

x1/2

)

= 1− PC

(

x1/2

)

=
1

2
(4)

We consider the steady-state probability distribution (SS-
PD), which changes as a bifurcation parameter, e.g., the
parameter c in the May model, is changed. One can
compute the variation of x1/2 versus the bifurcation pa-
rameter using Eq. (4). We illustrate this in the case of
May model. The SSPD, Pst(x), is obtained by solving the
Fokker-Planck equation in the steady-state. In the case of
stochastic dynamics, the one-variable Langevin equation
including both additive and multiplicative noise terms is
given by

dx

dt
= f(x) + g(x)ε(t) + Γ(t) (5)

where Γ(t) (additive noise) and ε(t) (multiplicative noise)
are Gaussian white noises with zero mean and correla-
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tions:

〈Γ(t)Γ(t′)〉 = 2d1δ(t− t′)

〈ε(t)ε(t′)〉 = 2d2δ(t− t′) (6)

In Eq. (6), d1 and d2 denote the strengths of the additive
and multiplicative noises respectively, we further assume
that there is no correlation between the two types of noise.
The first term in the right hand side of Eq. (5) describes
the deterministic dynamics, e.g., for the May model f(x)
is given by the right hand side expression in Eq. (1). The
Fokker-Planck equation, a rate equation for the proba-
bility distribution P (x, t), is obtained from the Langevin
equation as [29, 30]:

∂P (x, t)

∂t
= −

∂

∂x
[A(x)P (x, t)] +

∂2

∂x2
[B(x)P (x, t)] (7)

where

A(x) = f(x) + d2g(x)g
′(x) (8)

and

B(x) = d1 + d2[g(x)]
2 (9)

The SSPD is given by [29, 31, 32]

Pst(x) =
N

B(x)
exp

[
∫ x A(x)

B(x)
dx

]

=
N

{d2[g(x)]2 + d1}
1

2

× exp

[
∫ x f(x′)dx′

d2[g(x′)]2 + d1

]

(10)

where N is the normalization constant. Equation (10) can
be rewritten in the form

Pst(x) = Ne−φF (x) (11)

where

φF (x) =
1

2
ln
[

d2[g(x)]
2 + d1

]

−

∫ x f(y)dy

d2 [g(y)]
2 + d1

(12)

defines the “stochastic potential” of the dynamics. The
inset of Figure 1 shows the SSPD, Pst(x), versus x for the
May model in the presence of only additive noise (g(x) =
0, d2 = 0) for the parameter values r = 1, K = 10, x0 =
1, c = 2.3 and d1 = 0.25. In this case, φF (x) reduces to

φF (x) =
1

2
ln d1 −

1

d1

∫ x

f(y)dy (13)

The deterministic potential φD(x) is given by

φD = −

∫ x

f(y)dy (14)

Comparing Eqs. (13) and (14) one finds that the extrema
points of φF (x) and φD(x) are identical with the min-
ima (maximum) corresponding to stable (unstable) steady
states. In the SSPD Pst(x), the stable steady states corre-

spond to the maxima points x1 and x3 whereas the min-
imum point x2 represents the unstable steady state. We
first consider the case when only additive noise is present,
i.e., d1 6= 0 and d2 = 0 in Eq. (6). Figure 2 shows the
variation of x1/2 with c for the parameter values r = 1,
K = 10, x0 = 1 and different values of the noise strength
d1 = .15 (solid line), d1 = .2 (dashed line) and d1 = .25
(dot-dashed line). The deterministic bifurcation points
have values c1 = 1.788 and c2 = 2.604. As c is increased
from a low value, one notices a transition of x1/2 from
a high to a low value. The transition is sharp for low
values of the additive noise and becomes smeared as the
noise strength d1 is increased. The point x = x1/2 pro-
vides a quantitative measure of which subpopulation is the
preferred (dominant) subpopulation in the steady state.
The L subpopulation corresponds to x values in the range
0 ≤ x ≤ x2, the rest of the SSPD is associated with the
H subpopulation. For low values of c, x1/2 is > x2 and
the H subpopulation is more dominant. As c increases,
x1/2 shifts towards x2 and the L subpopulation becomes
the more preferred one when x1/2 is < x2. One can de-
fine a propensity transition point (PTP) c∗ at which the
preferred subpopulation changes its character from H to

L. The inset of Figure 2 shows the variation of
dx1/2

dc
versus c for d1 = .15, d1 = .2 and d1 = .25, with the re-
spective peak positions being c∗ = 2.364, c∗ = 2.371 and
c∗ = 2.378. For larger magnitudes of noise below some
critical strength, the variation is more smeared but one

can still identify a peak position c∗ at which
dx1/2

dc attains
its maximum value. In the presence of large additive noise,
flickering becomes prominent and bistability is destroyed.
When only additive noise is present and at c = c∗, x1/2

is equal to x2, the minimum of the SSPD. The justifica-
tion of this statement comes from the definition of x1/2.
As already discussed, the point x1/2 belongs to the pre-
ferred subpopulation. At the propensity transition point
c = c∗, both the subpopulations are equally preferred, i.e.,
x1/2 = x2, the boundary point separating the L and H
subpopulations. As already mentioned, in the presence of
only additive noise, the point x2 coincides with the unsta-
ble steady state solution in the deterministic case. The
cumulative residual entropy defined as [33]

SC = −

∫

x

Pc(x) lnPc(x)dx (15)

with Pc(x) as given in Eq. (2), attains its maximum value
at c = cR which is close to c∗. For d1 = .15, cR = 2.343.
Let PL and PH be the probabilities of belonging to sub-
populations L and H respectively. PL and PH can be writ-
ten as PL(t) =

∫ x2

0
P (x, t)dx and PH(t) =

∫∞

x2

P (x, t)dx.

The time evolutions of PL(t) and PH(t) are given by

dPL(t)

dt
= −kLPL(t) + kHPH(t)

dPH(t)

dt
= −kHPH(t) + kLPL(t) (16)

where kL and kH are the stochastic transition rates for
the L → H and H → L transitions respectively. In the

steady state, dPL(t)
dt = 0, dPH(t)

dt = 0 and one gets

PHS

PLS
=

kL

kH
(17)
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Figure 5. (a) Variation of the equipartition point X1/2 with the
bifurcation parameter c. The graph shows a sharp fall in the
values of X1/2 in a small range of c values. The insets (i) and
(ii) show the variations of the cumulative residual entropy, SC ,
and the first derivative of X1/2 w.r.t. the bifurcation parameter

c,
dX1/2

dc
, respectively, as functions of c.

dx1/2

dc
attains a sharp

maximum at c∗ = 22.9, the PTP. The cumulative residual
entropy also becomes maximum near c∗. The SSPDs for three
values of c spanning the PTP are shown in (b),(c) and (d).

where ‘S’ in the suffix indicates the steady state proba-
bilities. In the case of weak noise, one can write [34]

τL ≃
1

kL

τH ≃
1

kH
(18)

where τL and τH denotes the mean first passage times
(MFPTs) for exits from the domains of the L and H sub-
populations respectively. The exits are brought about by
noise and a higher value of the MFPT indicates a greater
stability of the steady state from which the exit occurs.
At the PTP c∗, PHS = PLS which leads to the equality
τL = τH . For weak noise, kH and kL are given by the
approximate expressions [34],

kH =
d1

2π

√

|φ′′
F (x2)|φ′′

F (x3)e
φF (x3)−φF (x2)

kL =
d1

2π

√

|φ′′
F (x2)|φ′′

F (x1)e
φF (x1)−φF (x2) (19)

where φ′′
F (x2) denotes the double derivative of φF with

respect to x. Figure 3 shows the plots of the MFPTs
τL and τH (determined using Eqs. (13), (18) and (19))
versus the bifurcation parameter c. The other parameter
values are r = 1, K = 10, x0 = 1 and d1 = .15. The
intersection point of the two curves, cτ , at which τL = τH ,
is approximately equal to c∗ (cτ = 2.360, c∗ = 2.364). The
numerical result supports the analytic argument, using
Eqs. (16) and (18), that τL = τH at the PTP c = c∗.

We next consider the general case when additive and
multiplicative noise terms are present in the Langevin
equation, Eq. (5). We assume that the multiplicative
noise is associated with the rate constant r in Eq. (1)
with g(x) (Eq. (5)) given by

g(x) = x
(

1−
x

K

)

(20)

In this case, the extrema points x1, x2 and x3 of the SSPD
no longer coincide with the deterministic steady state val-
ues. As before, the equipartition point x1/2 can be deter-
mined as a function of c. Figure 4 (a) shows the variation
of x1/2 versus c for the parameter values r = 1, K = 10
and x0 = 1. Figure 4 (b) shows the cumulative residual en-
tropy (Eq. (15)) versus the bifurcation parameter c. The
peak position cR is close to the PTP c∗ in the presence
of only additive noise. Entropy-like quantities are mea-
sure of uncertainty about the values of random variables.
In the case of a bimodal probability distribution, the un-
certainty is maximal when the component subpopulations
are equally preferred. In the presence of only additive
noise and at c = c∗, the equipartition point x1/2 = x2,
the boundary point separating the ranges of x values cor-
responding to the two subpopulations. In this case, both
the subpopulations are equally preferred leading to a max-
imal value of the cumulative residual enrtopy (maximal
uncertainty) close to c∗. When both additive and multi-
plicative noise terms appear in the Langevin equation (Eq.
(5)), the difference between cR and c∗ increases. The dif-
ferences between the values of x2 and c∗, the PTP, and
cR and c∗ provide a measure of the multiplicative noise
present in the system.

III. GILLESPIE SIMULATION

The stochastic time evolution of a dynamical system
can be studied through computer simulation based on the
Gillespie algorithm [26]. We now discuss briefly the salient
features of the Gillespie algorithm, more detailed discus-
sions can be obtained from Refs. [26, 35–37]. Let M
be the number of reactions controlling the time evolution
of molecular numbers in a dynamical system. Each re-
action is characterized by a reaction propensity aµ (µ =
1, 2, · · · ,M) with aµ(t)dt defining the probability that the
reaction µ occurs in volume V in the time interval (t, t+dt)
given the state of the system at time t. The propensity
aµ(t) is a product of two parts, the reaction rate cµ for
reaction µ and the number of possible reactions µ in vol-
ume V . One also defines a reaction stoichiometry matrix
S which is an N × M matrix where N is the number of
reactants (different species of molecules) in the dynamical
system. The element Sij (i = 1, · · · , N, j = 1, · · · ,M)
denotes the change in the number of reactant i molecules,
from Xi to Xi + Sij , when the jth reaction takes place.
The deterministic rate equation can be written in a com-
pact form

dX

dt
= S.ν (21)

The Gillespie algorithm monitors time evolution by ob-
taining information firstly on the time of occurrence of
the next reaction given the state of the system in terms
of molecular numbers at time t and secondly the reaction

type. Let us define a quantity a0 as a0 =
∑M

µ=1 aµ. With
knowledge of the state of the system at time t, the prob-
ability that the next reaction occurs in the time interval
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Figure 6. (a) The α1-α2 phase diagram for the genetic toggle.
The other parameter values are K = 500, β1 = β2 = 2 and
γ = 1. The steady-state probability distributions Pst(U, V ) for
three different values of α1 are shown in the insets (i) α1 = 50,
(ii) α1 = 60 and (iii) α1 = 70 with α2 kept fixed at 60. The
variations of U and V versus the parameter α1 for α2 = 60
are shown in (b) and (c) respectively. The solid lines in each
plot represent the stable steady states and the dotted line the
branch of unstable steady states.

t+ τ and t+ τ + dτ and is of type µ is Pµ(τ)dτ where

Pµ(τ) = aµ exp(−a0τ)

=
aµ

a0
a0 exp(−a0τ)

= P2(µ)P1(τ) (22)

where P1(τ) = a0 exp (−a0τ) and P2(µ) =
aµ

a0

. The Gille-
spie algorithm generates two random numbers r1and r2
using a standard uniform random number generator. The
time τ is then given by [26]

τ =
1

a0
ln

(

1

r1

)

(23)

The reaction type µ is taken to be the integer for which
the condition

µ−1
∑

ν=1

aν < r2a0 ≤

µ
∑

ν=1

aν (24)

is satisfied. The random number τ obtained from Eq.
(23) is generated according to the probability distribution
P1(τ) whereas Eq. (24) generates the random integer µ
according to the probability distribution P2(µ). Once the
pair (τ, µ) is determined, the time t is advanced by τ , i.e.,
t → t + τ and the molecular number Xi’s (i = 1, · · · , N)

are adjusted according to the reaction µ. The SSPD
P (Xi) of a molecular type can be computed by combining
the data over a sufficiently large interval of time after the
steady state conditions are achieved. A rigorous approach
to the study of the stochastic time evolution of a system
of N chemical species participating in M chemical reac-
tions is based on the chemical master equation [26, 35].
The chemical master equation is a time-evolution equa-
tion for the probability P (x, t|x0, t0) that the system is
in the state x = (x1, · · · , xN ) where xi, i = 1, · · · , N , is
the number of molecules of the ith species at time t. The
chemical master equation involves the reaction propensity
aµ(µ = 1, 2, · · · ,M) defined earlier. An exact, analytic so-
lution of the chemical master equation is, however, possi-
ble only in a few cases. The Gillespie algorithm simulates
the temporal trajectories of x(t) starting from a given
initial state. The probability distribution P (x, t|x0, t0)
is computed from the knowledge of an ensemble of sam-
ple trajectories, with the computed value approaching the
exact solution in the limit of large ensemble size. The
‘exact’ Gillespie algorithm is, however, computationally
prohibitive when the number of chemical species, N , and
the number of reactions, M , become large. Approximate
versions of the Gillespie algorithm have been developed
[35, 38] to reduce the computational complexity. The
Langevin and Fokker-Planck equations provide approxi-
mate approaches to the solution of the master equation
and are less rigorous than the simulation approach based
on the Gillespie algorithm. Gillespie has shown [38, 39]
how to derive the chemical Langevin equation from the
chemical master equation. The “white-noise” form of the
chemical Langevin equation is

dxi(t)

dt
=

M
∑

j=1

Sijaj(x(t))

+
M
∑

j=1

Sij

√

aj(x(t))Nj(0, 1), (i = 1, · · · , N)

(25)

where S is the reaction stoichiometry matrix defined ear-
lier and Nj(0, 1) represents a unit normal random variable
with mean zero and variance one. While the chemical
Langevin equation provides an explicit structure to the
noise terms in terms of the reaction propensity, the major-
ity of studies utilizing the Langevin formalism start with
equations of the type shown in (5). The choice is dictated
by the simplicity of the calculational scheme with specific
focus on the separate effects of additive and multiplicative
noise. The Langevin equation can be demonstrated to be
mathematically equivalent to the Fokker-Planck equation
[40]. The latter is further obtained through a Taylor series
expansion of the master equation (Kramers-Moyal expan-
sion) and retaining terms only upto the second derivative
term.

We next report the results of the Gillespie simulation
in the cases of the May model and the genetic toggle.
The simulation tracks stochastic time evolution without
distinguishing between additive and multiplicative types
of noise. The rigorous Gillespie simulation approach is
valid only for unimolecular and bimolecular reactions [38].
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Figure 7. (a) Variation of the equipartition point U1/2 obtained
from the SSPD of U with the bifurcation parameter α1. The
other parameter values are α2 = 60, K = 500, β1 = β2 = 2 and
γ = 1. The graph shows a sharp fall in the values of U1/2 in a
small region of α1 values with decreasing α1. The insets (i) and
(ii) show the variations of the cumulative residual entropy, SC ,
and the first derivative of U1/2 w.r.t. the bifurcation parameter

α1,
dU1/2

dα1

, respectively, as functions of α1.
dU1/2

dα1

attains a

sharp maximum at α∗
1 = 60, the PTP. The cumulative residual

entropy also becomes maximum near α∗
1. The SSPDs for three

values of α1 spanning the PTP are shown in (b),(c) and (d).

Since the simulation approach is computationally exhaus-
tive, approximation versions of the algorithm are often
in use. One such approximation involves the study of
a reduced model for which each reaction is a compos-
ite one representing the combined effects of multiple el-
ementary reactions [36]. The reaction propensity aµ(µ =
1, 2, · · · ,M) and the N ×M stoichiometry matrix S are
defined for a system of M composite reactions in which N
chemical species participate. The approximate approach,
though less rigorous, reproduces qualitatively the results
obtained using the rigorous simulation approach [36]. For
the May model, we have two composite reactions each of
which effectively represents a number of more elementary
reactions. Rewriting the biomass molecular number as X ,
the rate equation (1) can be recast as

dx

dt
= F1(X)− F2(X) (26)

with

F1(X) = rX

F2(X) =
rX2

K
+

cX2

X2
0 +X2

(27)

There are thus two composite reactions X −→ X + 1
and X −→ X − 1 with the reaction propensities given by
F1(X) and F2(X) respectively. The stoichiometry matrix
S is of size (1 × 2) with S11 = +1 and S12 = −1. Figure
5(a) shows the variation of the equipartition point X1/2

with the bifurcation parameter c. The other parameter
values are r = 1, K = 100 and X0 = 10. One notes
the sharp fall in the values of X1/2 in a small region of c
values. The required SSPD’s are computed by collecting
together the data in the Gillespie simulation over a large
period of time. The insets (i) and (ii) of Figure 5(a) show

the variations of the cumulative residual entropy, Sc, and

the first derivative
dX1/2

dc respectively as functions of the
bifurcation parameter c. The first derivative attains a
sharp maximum at c∗ = 22.9, the PTP. The cumulative
residual entropy, Sc, has its maximum value close to c∗.
Figures 5(b), (c) and (d) show the SSPDs for three values
of the bifurcation parameter spanning the PTP.

We next describe the results for the genetic toggle, a
two-variable model. The toggle circuit consists of two
genes synthesizing proteins with molecular numbers U and
V . The proteins repress each others’ synthesis. The dy-
namics of the model are described by the set of equations
[25]

dU

dt
=

α1

1 + V β1

K

− γU

= F1(U, V )− F2(U, V ) (28)

dV

dt
=

α2

1 + Uβ2

K

− γV

= G1(U, V )−G2(U, V ) (29)

The parameters α1, α2 denote the effective rates of syn-
thesis and γ the degradation rate constant, assumed to
be the same for the two proteins. The parameters β1 and
β2 are the indices indicating cooperativity in repression
and K is related to the binding constant of proteins. The
functions Fi(U, V ) and Gi(U, V ) (i = 1, 2) are:

F1(U, V ) =
α2

1 + Uβ2

K

, F2(U, V ) = γU

G1(U, V ) =
α1

1 + V β1

K

, G2(U, V ) = γV (30)

There are now four composite reactions (M = 4) with
reaction propensities µi, i = 1, · · · , 4. The stoichiometry
matrix S is of size 2× 4. The composite reaction scheme
is:

U −→ U + 1, µ1 = F1(U, V )

U −→ U − 1, µ2 = F2(U, V )

V −→ V + 1, µ3 = G1(U, V )

V −→ V − 1, µ4 = G2(U, V ) (31)

Also,

S =

(

1 −1 0 0
0 0 1 −1

)

(32)

Figure 6 shows the α1-α2 phase diagram of the genetic tog-
gle exhibiting two regions of monostability and one region
of bistability. The other parameter values are: K = 500,
β1 = β2 = 2 and γ = 1. The SSPDs Pst(U, V ) for three
different values of α1 and with α2 = 60 are shown in the
insets (i) α1 = 50, (ii) α1 = 60 and (iii) α1 = 70. These
have been computed using the Gillespie simulation algo-
rithm. The variations of the steady state values of U and
V versus the parameter α1 (α2 = 60) are shown in Fig-
ures 6(b) and 6(c) respectively. The branches of stable
steady states (solid lines) are separated by the branches
of unstable steady states (dotted lines). Figure 7 exhibits
the results obtained from the Gillespie simulation. Figure
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Figure 8. (a) The genetic toggle model exihibits pitchfork bi-
furcation with respect to the parameter K when α1 = α2. The
parameter values are α1 = α2 = 60, β1 = β2 = 2 and γ = 1.
The pitchfork bifurcation point is K = 900. The model shows
bistability for K < 900 and monostability for K > 900. The
insets show SSPDs for the cases (i) K = 500 and (ii) K = 1200.
(b) The variation of U1/2 against the bifurcation parameter K.
The plot does not provide a signature of stochastic bifurcation.

7(a) shows the variation of the equipartition point U1/2,
obtained from the SSPD of U , versus the bifurcation pa-
rameter α1. The other parameter values are α2 = 60,
K = 500, β1 = β2 = 2 and γ = 1. The SSPDs are ob-
tained by collecting data over 108 time points in the steady
state. One notes a sharp fall in the values of U1/2 in a
small region of α1 values when α1 is decreased from high
to low values. The insets (i) and (ii) exhibit the variations

of the cumulative residual entropy, Sc, and
dU1/2

dα1

respec-

tively versus the bifurcation parameter α1.
dU1/2

dα1

attains
a sharp maximum at α∗

1 = 60, the PTP. The cumulative
residual entropy also attains its maximum values for α1

close to α∗
1. The SSPDs for three values of α1, spanning

the PTP, are shown in Figures 7(b), (c) and (d).

The sharp fall of the equipartition point (median) U1/2

in the vicinity of the PTP is a unique characteristic of
the saddle-node bifurcation. The pitchfork bifurcation
is another type of bifurcation involving a transition be-
tween bistability and monostability. The genetic toggle
exhibits pitchfork bifurcation as a function of the param-
eter K when the effective synthesis rate constants α1 and

α2 are kept equal. Figure 8(a) demonstrates the bifur-
cation with the steady state value of U plotted against
K. The solid lines represent stable steady state and the
dot-dashed line the unstable steady state. The parameter
values are α1 = α2 = 60, β1, β2 = 2 and γ = 1. The
pitchfork bifurcation point K = 900 separates a region
of bistability (K < 900) from a region of monostability
(K > 900). The insets of Figure 8(a) show the SSPDs
determined using the Gillespie algorithm for (i) K = 500
and (ii) K = 1200. Figure 8(b) shows the variation of
U1/2 against K. In this case, there is no distinguishing
feature in the plot providing a signature of stochastic bi-
furcation. The numerical evidence of a propensity transi-
tion thus enables one to distinguish between the pitchfork
and saddle node bifurcations as the basis for noise-induced
regime shifts. We note here that since the propensity tran-
sition point as an indicator of stochastic regime shifts is
not an appropriate indicator of the pitchfork bifurcation,
it cannot also distinguish between the cases of pitchfork
bifurcation and the absence of bifurcation. In the latter
case, since only one population is present, the variation of
the equipartition point as a function of the bifurcation pa-
rameter is expected to be featureless, a trait shared with
the pitchfork bifurcation.

There is recent experimental evidence that microor-
ganisms take recourse to noise-induced regime shifts as
a strategy for survival under stress [27, 28, 41, 42]. In
the case of mycobacteria, stresses like nutrient deple-
tion activate the stringent response pathway involving the
two component system MprAB, the sigma factor SigE
and the stringent response regulator Rel. The enzyme
polyphosphate kinase 1 (PPK1) regulates the pathway by
catalysing the synthesis of polyphosphate required for the
activation of MprB. Multiple positive feedback loops and
molecular sequestration of the sigma factor [27, 43] cre-
ate the potential for bistability, i.e., alternative attrac-
tor states. Stochastic gene expression gives rise to fluc-
tuations in the levels of key regulatory proteins like Rel
which, if sufficiently strong, can bring about regime shifts
from one attractor state (low Rel level) to another (high
Rel level). The total mycobacterial population divides
into two distinct subpopulations L and H corresponding
to low and high Rel levels respectively. The stringent
response pathway, activated by Rel proteins, is initiated
in the H subpopulation. It is this subpopulation which
adapts to stress and is designated as the persister sub-
population. The other subpopulation, termed the normal
subpopulation, is unable to survive under stress. When
exposed to antibiotic drugs, the normal subpopulation is
killed while the persisters are able to survive. The persis-
ters have slow growth rates and low rates of metabolic ac-
tivity. They stay dormant for long periods of time waiting
for the opportune moment to revive and restart the my-
cobacterial infection. Single cell analysis via flow cytom-
etry provides experimental evidence of regime shifts from
the L to the H subpopulation in a mycobacterial popu-
lation subjected to nutrient depletion till the stationary
phase is reached [27, 28]. The experiments were carried
out on M.smegmatis which shares similar genetic circuitry
with M.tuberculosis, the pathogen responsible for tuber-
cular infection. The existence of persisters acts against
the total eradication of the tubercular infection. The ma-
jor goal of an effective drug treatment is to eliminate the
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Figure 9. (a) Variation of equipartition point x1/2 versus in-
ducer concentration I (in nM). The insets show the variation of

(i) the cumulative residual entropy, SC , and (ii)
∣

∣

∣

dx1/2

dI

∣

∣

∣
versus

the inducer concentration I . (b)−(d) Stationary phase prob-
ability distributions of Rel levels for I = 1.75 nM, 3 nM and
3.5 nM respectively.

population of persisters. In this context, it is of inter-
est to identify the PTP above which the subpopulation of
persisters becomes the dominant subpopulation.

The stochastic bifurcation analysis is carried out on
available experimental data [27, 44] with the ppk1 gene
designed to be tetracycline-inducible. Figure 9(b), (c) and
(d) shows the distribution of Rel levels in the stationary
phase of a population of M.smegmatis cells for three dif-
ferent inducer concentrations I (in nM). Figure 9(a) shows
the variation of the equipartition point x1/2 as a function
of I (in nM), the inducer concentration. The insets (i)

and (ii) show the variations of
∣

∣

∣

dx1/2

dI

∣

∣

∣
and the cumulative

residual entropy, Sc, respectively versus the inducer con-
centration I. The propensity transition to the persister
subpopulation is found to occur at low values of I.

IV. CONCLUDING REMARKS

The quantitative measure of regime shifts, namely, the
PTP, proposed in this Letter is of broad applicability
and can be computed both when the model dynamics
are known or when only the time series data are avail-
able. The physical interpretation of the PTP in terms of
a tipping of the balance towards one regime or the other
helps in identifying the parameter regime to be avoided
in order to forestall disastrous regime shifts. The varia-
tion of the equipartition point x1/2 versus a bifurcation
parameter provides advanced knowledge of the approach
to the PTP. A number of signatures of impending regime
shifts have been proposed so far in the scenario of the
saddle-node bifurcation [1, 2, 15, 16]. These include the
critical slowing down, rising variance and skewness of a
subpopulation probability distribution and the rising lag-
1 auto-correlation function, as a function of the bifurca-
tion parameter. If the model governing the dynamics of
the system of interest is known, one can calculate the re-
turn time (the time taken by a system to regain its stable
steady state after the system is weakly perturbed) using

the standard procedure of linear stability analysis [1, 45].
The return time diverges (critical slowing down) as a bi-
furcation point at which the steady state loses its sta-
bility is approached. A variety of techniques, e.g., the
linear noise approximation [30] can be used to calculate
quantities like the variance and the lag-1 autocorrelation
function. The demonstration of the skewness of a subpop-
ulation probability distribution as the bifurcation point is
approached requires the use of somewhat ad-hoc proce-
dures for obtaining a component probability distribution
from the total distribution [13, 15]. One of these is to
introduce suitable cut-off procedures to isolate a compo-
nent distribution which exhibits rising skewness as a bi-
furcation point is approached. The formalism developed
in this paper for a quantitative characterization of noise-
induced regime shifts is applicable even when only time
series data are available, without an adequate knowledge
of the underlying model. To make the analysis possible,
one has to identify a parameter θ which is a relevant bifur-
cation parameter. If time series data are available over a
sufficiently long interval of time, for which θ remains con-
stant, one can construct the probability distribution of the
relevant variable from the data itself. Similar probability
distributions can be computed for other values of θ if it is
a changing function of time. Several studies have recently
been undertaken on the early signatures of sudden regime
shifts [2, 3, 17] when only time series data are available.
As already discussed in the Introduction, regime shifts are
often noise-induced. Such transitions, depending on the
magnitude of the noise, may occur even when the system
is not close to a bifurcation point. The frequency of the
transitions is expected to increase in the vicinity of the
bifurcation point. The method developed in the present
study is based on the concept of the PTP which precedes
the bifurcation point. The sharp fall of the equipartition
point x1/2 in the vicinity of the PTP also serves as an
indicator of the system approaching a bifurcation point
apart from signifying a stochastic shift in the propensity
of the system to be in one of two alternative regimes. The
utility of the PTP formalism has been demonstrated for
both one-variable and two-variable models. The x1/2 ver-
sus bifurcation parameter plot further carries a distinctive
signature of the saddle-node bifurcation when the plot ex-
hibits a sharp fall. The sharp fall of x1/2 in the vicinity
of the PTP is an indicator of a stochastic regime shift.
Regime shifts are of common occurrence in wide ranging
dynamical systems. The shifts may be due to changing
parameters resulting in a bifurcation or due to a large per-
turbation causing a switch between one attractor state to
another across the border separating the basins of attrac-
tion of the attractors or due to noisy dynamics with the
fluctuations in key variables driving the regime shift. A
large number of studies [2, 3, 17] provide a quantitative
characterization of sudden regime shifts at the bifurca-
tion points. The present study focuses on a quantitative
indicator of stochastic regime shifts which has a simple
physical interpretation and is straightforward to compute.
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