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We study theoretically and experimentally the frequency and temperature dependence of resis-
tivity noise in semiconductor heterostructures δ-doped by Mn. The resistivity noise is observed to
be non-monotonous as a function of frequency. As a function of temperature, the noise increases
by two orders of magnitude for a resistivity increase of about 50%. We study two possible sources
of resistivity noise – dynamic spin fluctuations and charge fluctuations, and find that dynamic spin
fluctuations are more relevant for the observed noise data. The frequency and temperature depen-
dence of resistivity noise provide important information on the nature of the magnetic interactions.
In particular, we show how noise measurements can help resolve a long standing debate on whether
the Mn-doped GaAs is a p-d Zener/Ruderman-Kittel-Kasuya-Yosida (RKKY) or double exchange
ferromagnet. Our analysis includes the effect of different kinds of disorder such as spin-glass type
of interactions and a site-dilution type of disorder. We find that the resistivity noise in these struc-
tures is well described by a disordered RKKY ferromagnet model dynamics with a conserved order
parameter.

PACS numbers: 75.50.Pp, 72.70.+m 73.21.Fg, 73.63.Hs, 75.75.-c,

I. INTRODUCTION

The mechanism of magnetic ordering in dilute mag-
netic semiconductors (DMSs) has traditionally attracted
much attention of investigators. One of the issues
being most intensely studied1–12 concerns the micro-
scopic nature of magnetism in bulk DMSs; in particular,
whether the microscopic interaction governing the fer-
romagnetism (FM) is of Zener/RKKY type or double-
exchange type. Let us recall that the Zener/RKKY
model is applicable when the effective coupling between
local magnetic moments and the spins of charge carriers
is smaller than the carrier bandwidth, and, this model is
widely used in the context of magnetism in the Kondo
lattice systems13–16. On the other hand, the double ex-
change model is believed to describe the magnetism in
manganites17 and double perovskites18 where the Hund’s
rule coupling is known to be large compared to the car-
rier bandwidth. While the ordering of local moments of
magnetic metal in both cases is mediated by the charge
carriers of the semiconductor (SC) host, the two mod-
els differ in the relative importance of the magnitudes
of the effective coupling of the local moments with the
spins of charge carriers and the intersite hopping inte-
grals (in other words the bandwidth for charge carriers).
The current opinion is that both mechanisms of FM can
take place in bulk DMSs. The conditions of the realiza-
tion of either mechanism strongly depend not only on
the concentration of magnetic metal ions, but also on

the character of their distribution in the SC host. The
last factor plays an important role in FM ordering in
bulk DMSs and is crucially driven by the details of their
growth technology. Besides, technological or fabrication
aspects drastically affect the character of fluctuations of
crystal-field and exchange potentials in the SC host as
well as the degree of ionization of magnetic metal atoms
and effective concentration of carriers supplied by them
when doping the host. These aspects also determine the
relative importance of phase segregation in the system,
as well as the contribution of wide and narrow bands in
the spectrum of carriers to the coupling between local
magnetic moments of the metal.

An emerging trend in the studies of DMSs concerns
the investigation of hybrid layered heterostructures (in
the following we shall also use the term “2D DMS struc-
tures”) containing magnetic ultrathin metal layers (so-
called δ-layers) embedded into a nonmagnetic SC het-
erostructure. This interest in 2D DMS structures has a
twofold motivation. The first one is practical: present-
day microelectronic devices have a planar geometry and
it becomes necessary to understand the mutual interac-
tion of different parts of the structure such as the δ-layer
and quantum wells. A number of studies of 2D DMS
structures have been reported in the literature19–28. In
Refs. 20,21, the FM state in Mn δ-doped GaAs/AlGaAs
heterostructures was observed at rather high tempera-
tures. However, these devices have low mobility values
because the authors of Refs. 20,21 aimed at achieving the
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highest possible hole density just in the vicinity of Mn
ions to maximize the Curie temperature TC . Note here
that Mn ions are responsible not only for magnetism but
also act as acceptors and a source of the random potential
that limits mobility. Second, properties of 2D magnets
are often qualitatively different from those of their bulk
counterparts, and studies in heterostructures can some-
times clarify issues of basic research on two-dimensional
magnetism in solids. Issues peculiar to the heterostruc-
tures, such as magnetic anisotropy, limit their use in a
general 2D ferromagnet problem. However for properties
such as the frequency dependence of the magnetization
noise, the universality of the behavior is not sensitive to
issues such as magnetic anisotropy since the universality
is dictated by other properties such as the existence of a
conserved order parameter, and heterostructures provide
a good platform. Note also that as we have studied resis-
tivity noise of the hole gas in the 2D quantum well, our
analysis will be useful for studies of magnetic impurity
effects in low-dimensional conductors. It is also perhaps
worth observing here that the idea of using resistivity
noise for probing magnetization dynamics that we de-
velop here is not specifically for heterostructures and can
be adapted for the study of other 2D ferromagnets.

As a rule, in the bulk DMSs there are no insurmount-
able problems in obtaining detailed information on FM
ordering from direct magnetic measurements although it
is often difficult to correctly interpret the obtained data
in terms of some specific theoretical model. In 2D DMS
structures, the situation turns out to be more compli-
cated and direct magnetic measurements that are able to
detect FM ordering in the metal layers are often tedious,
troublesome, and sometimes even spurious as opposed to
the bulk DMSs. Moreover, direct measurements of the
magnetization are impractical given the small size of the
magnetically active region in 2D DMS structures. In such
a situation, an indirect retrieval of magnetic character-
istics (for example, from resistivity and Hall effect mea-
surements) becomes decisive, whereas for the bulk DMSs,
it is in general a subsidiary tool. However, even in the
bulk DMSs, the resistivity anomaly, which is a peak or
shoulder at the temperature dependence of resistivity, is
widely used as an evidence for the onset of significant FM
correlations and the measure of TC .

10 In an earlier paper
(Ref. 29), it was demonstrated that in contrast to the re-
sistivity anomaly in bulk DMSs, which typically appears
near (and above) the Curie temperature, the resistivity
anomaly observed in 2D DMS structures typically appear
far below the mean-field Curie temperature and may even
exist in the absence of an actual magnetic phase transi-
tion. Nevertheless, the resistivity anomaly (a peak or
shoulder) in 2D DMSs can be also regarded as an indi-
cation of the onset of significant FM correlations).20,29

The use of indirect experimental methods to re-
veal magnetic properties in 2D DMS structures intro-
duces additional considerations into the interpretation
of data compared to bulk samples. For example, mag-
netic proximity effects and long-range Coulomb inter-

action between different components of such structures
have a crucial influence on the magnetic and trans-
port characteristics of the system. Recently, struc-
tures with a single FM δ-layer deposited near or in-
side the SC quantum well (QW) forming the 2D chan-
nel of conductivity have emerged as a test system to
study magnetic proximity effects. For example, in
Ref. 19, photoluminescence polarization was observed in
Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As structures with a 0.5
monolayer of MnAs placed at 5 nm from a GaAs QW.
Crucially, these structures had a gate, which allowed
shifting holes from the QW to the FM layer. It was
shown that the holes in the QW are spin-polarized and
that their degree of polarization strongly increases (from
0.4% to 6.3%) with the “pressing” gate voltage. In the
control structures, lacking the FM δ-layer, the photolu-
minescence polarization was not observed. Induced pho-
toluminescence polarization effect was recently observed
in other structures such as GaAs/InxGa1−xAs/GaAs
(x ≈ 0.2) containing Mn δ-layer separated from the In-
GaAs QW by a 3-5 nm thick GaAs spacer.30 It is clear
that the aforementioned results can hardly be explained
by a simple tunneling of holes from the QW to FM layer
through the spacer, since even under a pressing voltage
the characteristic depth of such tunneling does not ex-
ceed 1 nm.

In 2D DMS structures containing spatially separated
2D hole gas in the QW and FM δ-layers, the mutual
influence of these two subsystems has three effects that
have a bearing on the magnetic properties. First, inter-
penetration of the wave function tails between the QW
and the FM layers polarizes the spins of itinerant charge
carriers in the QW and modifies the effective coupling be-
tween local spins in the FM layer.19,31 Second, quantum
fluctuations in the QW stabilize magnetic order in the
FM layer, suppressing at the same time the amplitude
of the magnetic moment and the transition temperature
with respect to those found by mean-field estimates.32

Third, electrostatic charge redistribution occurs between
the QW and the FM layers due to their different density
of states and depths; and as a result, modification of the
magnetic characteristics of the FM layer occurs even on
purely classical grounds.33

Recently, different ways have been proposed to de-
scribe self-consistently ferromagnetic ordering and spin
polarization of charge carriers in the 2D DMS structures
under discussion. Assuming that Mn atoms form isolated
paramagnetic centers inside the δ-layer, the authors of
Refs. 31 proposed a model of indirect RKKY-type ex-
change coupling between local moments of Mn atoms in
the δ-layer via the ”tails” of the wave function of itinerant
hole states in QW. In the framework of the same assump-
tion about of a localized character of the hole states in
the δ-layer, the authors of Ref. 34 formulated the problem
in terms of the Anderson-Fano model of configuration in-
teraction between the localized hole states at Mn centers
and itinerant hole states in the QW. In the framework of
the method of Ref. 34, the spin splitting of itinerant hole
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states in an external magnetic field is strongly enhanced
due to their hybridization with localized hole states. This
leads to a resonant enhancement of the interband radia-
tion recombination of itinerant holes and causes circular
polarization of the luminescence in QW.

On the other hand, an alternative approach based
on the assumption of an itinerant character of the hole
states in both the QW and FM δ-layer was successfully
used35,36. It has been shown that a thin layer of FM
metal located in a bulk SC matrix induces quasi-2D spin-
polarized collective states and a half-metallic type of an
electron spectrum of the system is formed35,36. These
states (called also confinement states) have rather ex-
tended character along the structure axis of growth be-
cause of their small binding energies, so they penetrate
deep into the spacer and can reach the QW. It may
be shown (see the next Section) that hybridization of
confinement states in the FM δ-layer, with one-electron
states in QW leads to the spin polarization of carriers in
the QW.

In the model35,36, the holes in the QW play mostly an
“observer” (passive) role in the exchange coupling inside
the δ-layer, although this does not mean that they have
no effect on the FM ordering in the system.31,34 If one
assumes an easy-plane character of magnetic anisotropy
of the “free” δ-layer (i.e. in the absence of the QW), then
introducing a QW near the δ-layer can drastically change
the type of magnetic anisotropy. As a result, the easy axis
of magnetization appears to be directed along the normal
to the δ-layer plane.37 Experiments19,22,30 as well as re-
cent direct measurements of magnetic anisotropy26 give
clear indication of the existence of such an orientational
transition.

In addition to the effects of induced spin polarization
of holes in the QW and the reorientation of magnetiza-
tion in the FM δ-layer, there exist purely electrostatic
(Coulomb) effects of charge redistribution between these
two subsystems. As it was shown in Ref. 29, the long-
range fluctuations of electrostatic potential, which are
inevitable due to an inhomogeneous distribution of mag-
netic metal ions over the FM δ-layer, are projected onto
the QW and give rise to similar fluctuations of electro-
static potential in the QW. Due to this fact, the trans-
port measurements involving charge carriers in the QW
can reveal some tiny details of disorder in the distribu-
tion of magnetic metal ions in the FM δ-layer, the latter
being inaccessible by the direct magnetic measurements.

It is evident from the above discussion that in compar-
ison with bulk DMS systems, 2D DMS structures have a
number of additional experimental and theoretical com-
plications arising from the use of indirect probes for mag-
netism as well as the interplay between the magnetic δ-
layer and the QW. The choice of the indirect probe is
dictated not only by the convenience of measurement,
but also by the level of detail one is seeking as regards
the properties.

Resistivity measurement, although an indirect probe
of magnetism, is one of the most widely used probes in

both bulk and 2D DMS systems given its simplicity. In
both systems, the observation of an anomaly in the tem-
perature dependence of the resistivity is associated with
the onset of significant ferromagnetic correlations. Un-
fortunately, such a measurement is unsuitable for shed-
ding light on the microscopic interactions governing FM:
both the RKKY and double-exchange models can de-
scribe the resistivity anomaly observed in DMSs. This is
not surprising since as far as such static properties are
concerned, both can be described by effective Heisenberg
models. The differences manifest themselves, however,
in the dynamic properties such as the autocorrelation
function, since the damping of magnetic excitations is
sensitive to the microscopic details governing the fluc-
tuations. In the following, we shall show how the mag-
netization dynamics can be probed through resistivity
noise measurements. While our analysis is applied to
2D DMS structures, we note that this method of deduc-
ing the mechanism of FM from the analysis of dynamic
susceptibility is quite general and can be used for other
systems.

In this paper, we present a theoretical and experimen-
tal study of resistivity noise as an indirect probe of mag-
netic dynamics in 2D DMS structures δ-doped by mag-
netic atoms. We show how resistivity noise can distin-
guish between RKKY/Zener and double-exchange mech-
anisms. We find that in our structures the noise mea-
surements are consistent with a disordered RKKY pic-
ture. The experiments reported in this paper were per-
formed using the GaAs/InxGa1−xAs/GaAs QW struc-
ture δ-doped by Mn. Such structures produced by se-
lective doping exhibit a high enough hole mobility (more
than 2000 cm2/V · s at 5 K) and show clear evidence of a
2D excitation spectrum as well as FM at moderately high
temperatures of about 30K22,23. In Fig. 1, we illustrate a
schematic layout of the fabricated structures. Similar 2D
heterostructures were also reported elsewhere; however,
the ferromagnetic ordering was obtained at a much lower
(millikelvin) range of temperatures.25,26,28.

Depending on Mn content, the samples of the type
presented in Fig. 1 exhibit metallic or activation con-
ductivity on both sides of the metal-insulator transition.
The insulating samples are most interesting as they can
give us valuable insights into the mechanism of ferromag-
netism in these DMS heterostructures and we will focus
on the sample very close to the percolation transition
since it demonstrates some features of both metallic and
insulating behavior.

The rest of the paper is organized as follows. In Sec. II,
we clarify the role of magnetic proximity effects in the
interplay of ferromagnetism and carrier transport in 2D
DMS structures with a spatially separated FM δ-layer
and the QW. In Sec. III, we present our model for the
resistivity noise in QW and obtain its relation to charge
and magnetization dynamics in the FM δ-layer. It is
shown how magnetization dynamics is sensitive to the
microscopic nature of FM correlations and can be used to
distinguish between RKKY and double-exchange types of
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Figure 1: (Color online) Layout of the Mn δ-doped
GaAs/InxGa1−xAs/GaAs QW heterostructures used in this
work and in Ref. 29. The carbon (C) layer is a nonmagnetic
source of holes. Noise measurements reported in this paper
correspond to Sample 4 in Ref. 29, an insulating sample on
the border of a percolative metal-insulator transition.

coupling. Disorder effects are also analyzed. In Sec. IV,
we compare these findings with our experimental data
on frequency and temperature dependence of resistivity
noise. It is argued that the data supports the picture of
a disordered RKKY type of FM over a double-exchange
type of FM. Section V contains a discussion of our results.

II. MAGNETIC PROXIMITY EFFECT IN 2D

DMS STRUCTURES WITH REMOTE FM

δ-LAYER AND QUANTUM WELL

Before proceeding to the point at issue of our work,
in this section we shall try to shed additional light on a
key physical problem of the systems under consideration,
namely, how magnetic correlations in the FM δ-layer af-
fect charge transport in the QW. Let us recall the mi-
croscopic Anderson-type model for a single FM δ-layer
embedded into the SC host proposed in Refs. 35,36. It
has been shown that FM order in such system can be
attributed to the intrinsic physical properties of the δ-
layer. The relevant effects described by this model are
the hybridization of the electron states of the metal and
semiconductor atoms, the strong charge and spin redis-
tributions around the δ-layer, and the electron-electron
correlation on the metal atom. Following Refs. 35,36,
confinement states in the form of quasi-2D spin-polarized
subbands located within the SC band gap arise in the
host near the δ-layer. This leads to the half-metallic
character of the electron spectrum of the system. Un-
der certain approximations, a picture of the low energy

branches of these confinement states can be qualitatively
reproduced by a simple phenomenological Hamiltonian
Hδ :

Hδ = Hhost + Vδ(z). (1)

Here the 3D Hamiltonian Hhost describes itinerant elec-
tron states in a bulk SC, Vδ(z) is the effective one-
dimensional spin polarized potential of the charge car-
riers in a single FM δ-layer

Vδ(z) = −[V1 + V2e · σ]δ(z + L) < 0, (V1, V2) > 0. (2)

The z axis is oriented along the direction of the struc-
ture growth, the FM δ-layer lies in the z = −L plane,
δ(z) is the delta-function, V1 and V2 are parameters de-
rived from the model described in Ref. 36, σ is the vector
composed of the Pauli matrices in the spin space, e is the
unit vector along the direction of magnetization of the
FM δ-layer.
Let us introduce the energy parameters ωα(q) < 0

specifying the positions of the spin-polarized subbands
of confinement states described by Hamiltonian (1) for
a single FM δ-layer in the absence of the QW, with
the wave functions φα(q, z) and characteristic lengths

λα(q) = 1/
√
2m|ωα(q)| (q is the crystal momentum in

the (x, y) plane perpendicular to the z axis, α = ±
is the spin-projection index in the diagonal representa-
tion for the σ matrix. Below, we discuss a half-metallic
regime, when |ω−(q)| < |ω+(q)| and the φ−(q, z) states
are empty at all q, while the φ+(q, z) states are partially
occupied depending on the Fermi level position.
The low-energy branches in the spectrum of charge car-

riers in a single nonmagnetic QW are successfully mod-
eled by a phenomenological Hamiltonian HQW

HQW = Hhost + VQW (z). (3)

Here VQW (z) is an effective one-dimensional potential of
the charge carriers in a single nonmagnetic QW:

VQW (z) = −U(z) < 0. (4)

Without the effects of charge redistribution between
the FM δ-layer and QW one can simply assume that
U = U0 > 0 at 0 < z < W and U = 0 at z < 0 and z >
W , where W is the nominal QW thickness; the charge
redistribution leads to a more intricate form of U(z) due
to appearance of a QW/spacer interface.
Let us introduce the energy parameters εnα(q) < 0

specifying the position of the nth spin-degenerate sub-
band of 2D states in the spectrum of QW described by
Hamiltonian (3) of a single QW in the absence of the
FM δ-layer (n = 0, 1, . . .). The corresponding wave func-
tions ψnα(q, z) exponentially decay with |z| away from

QW, |z| ≫ lnα(q), where lnα(q) = 1/
√
2m|εnα| are char-

acteristic lengths, and m is the effective mass of charge
carriers. In the simplest case, only one spin-degenerate
subband of 2D states, ψ0α(q, z) with the parameters
ε0α(q) = ε0(q) and l0α(q) = l0(q), exists in the QW.
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The states ψ0α(q, z) are partially occupied depending on
the Fermi level position.
Let us now treat the 2D DMS structure containing

both the FM δ-layer and the QW as a triple layer quan-
tum system with an effective one-dimensional potential
V (z) composed of two wells with different widths and
depths separated by the barrier (spacer) of width L. We
can write the model Hamiltonian Hstruct describing the
low-energy states of the charge carriers in the following
form:

Hstruct = Hhost + V (z). (5)

Evidently, the effective potential V (z) cannot be cor-
rectly modeled as a simple sum of the potentials VQW (z)
and Vδ(z), due to a strong redistribution of the carriers
between the QW and FM δ-layer. In principle, using
an appropriate form of V (z), one can calculate (analyti-
cally or numerically) the eigenenergies and eigenstates of
Hamiltonian (5) at all values of the spacer thickness L,
but this method seems to be tedious. However, to reveal
the main physics of the magnetic proximity effect be-
tween the FM δ-layer and QW in the quantum structure
described by Hamiltonian (5), we consider only the situa-
tion of a relatively thick spacer, L≫ max{l0(q), λα(q)}.
We assume that the minima of ε0(q) and ωα(q) lie at
q = 0 and the occupation number of φ+(q, z) states in
FM δ-layer significantly exceeds that of ψ0α(q, z) states
in the QW. Thus, in the half-metallic regime we have
|ω+(q)| > |ε0(q)| > |ω−(q)| and λ−(q) > l0(q) > λ+(q)
and the Fermi level µ < 0 lies between two minima,
|ω−(0)| and |ε0(0)|, i.e. |ω+(0)| > |ε0(0)| > |µ| > |ω−(0)|.
This corresponds to the fact that the charge carrier den-
sity in the FM δ-layer is much higher than that in the
QW.
We now write the wave function χα(q, z) of the system

with Hamiltonian (5) in the variational form

χα(q, z) = Aα(q)ψ0α(q, z) +Bα(q)φα(q, z), (6)

where Aα(q) and Bα(q) are coefficients obeying an evi-
dent normalization condition:

|Aα(q)|2 + |Bα(q)|2 + 2Aα(q)Bα(q)Sα(q) = 1, (7)

Sα(q) =

ˆ

ψ0α(q, z)φα(q, z)dz. (8)

Note that the functions ψ0α(q, z) and φα(q, z) are not
orthogonal, so Sα(q) 6= 0.
Obviously, this simplest approach treats only qualita-

tively the problem of interference of the charge carrier
states of two subsystems as a simple superposition of
the wave functions ψ0α(q, z) and φα(q, z). Moreover, it
is unable to capture in full measure possible resonance
effects (for example, arising additional bound states).
However, even with such an approximate method, we
can project the states φα(q, z) of the FM δ-layer onto

the states ψ0α(q, z) of QW using a redefinition V (z) =

Ṽδ(z) + VQW (z), where Ṽδ(z) = V (z) − VQW (z) and

treating Ṽδ(z) as a small perturbation to VQW (z) at
L ≫ max{l0(q), λα(q)}. Omitting the cumbersome but
straightforward calculations, we write the final expression
for the energy spectrum of the charge carriers in QW in
the second order of the perturbation series expansion in
terms of Ṽδ(z):

EQW
α (q) = ε0(q) + ∆QW

α (q), (9)

where

∆QW
α (q) ≈ Ṽ

′α
δ (q) + [Ṽ

′′α
δ (q)]2/[ε0(q)− ωα(q)], (10)

Ṽ
′α
δ (q) =

ˆ

ψ0α(q, z)Ṽ
α
δ (q)ψ0α(q, z)dz, (11)

Ṽ
′′α
δ (q) =

ˆ

ψ0α(q, z)Ṽ
α
δ (q)φα(q, z)dz. (12)

The approach discussed above, although very rough,
nevertheless captures the main physics of the magnetic
proximity mechanism acting in our system due to the
tunneling of confined spin-polarized charge carriers from
the FM δ-layer to the QW. As we see from Eq. (9),
the energy bands EQW

α (q) originating from the non-
magnetic QW states become spin-polarized due to their
quantum interference with the spin-polarized states of
the FM δ-layer. It can be easily shown that to expo-
nential accuracy, the spin splitting of the states in the

QW ∆QW (q) = ∆QW
+ (q) − ∆QW

− (q) contains different
contributions decreasing at L ≫ max{l0(q), λα(q)}, but
the principal contribution at λ−(q) > l0(q) > λ+(q)
is ∆QW (q) ∼ exp[−2L/λ−(q)]. Note that the lengths
{l0(q), λα(q)} decrease at large values of the crystal mo-
mentum, q > {l0(0), λα(0)}−1 , i.e. corresponding com-
ponents of ∆QW

α (q) are exponentially vanishing. That is
why, using Eq. (9), we shall limit ourselves only to the
range of small crystal momenta q ≪ {l0(0), λα(0)}−1.
Qualitative estimates show that for our system, λ−(0) ∼
3− 4 nm, l0(0) ∼ 1− 1.5 nm, and λ−(0) ∼ 0.5− 0.8 nm,

so for the hole densities in QW nQW
h ∼ q2F < 1017 m−2,

our approximation seems to be reasonable (here qF is the
Fermi crystal momentum of holes in the QW).
Thus, we regard the energies given by Eq. (9) (at small

wavevectors q ≪ {l0(0), λα(0)}−1) as eigenvalues of an

effective 2D Hamiltonian Heff
QW of charge carriers in the

carriers in QW

Heff
QW = ε0(−i∇ρ) + U0 + J0e · σ, (13)

(J0, U0) =
1

2
[∆QW

+ (0)∓∆QW
− (0)], (14)
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where ρ is a 2D lateral vector in the (x, y) plane, e is the
unit vector along the arbitrary quantization axis. Hamil-
tonian (13) describes 2D carriers in the QW moving in an
“external” homogeneous field induced by their quantum
interference with the spin-polarized carriers in the FM δ-
layer. This field has the “Coulomb” (U0) and “exchange”
(J0) components.
Let us now suppose that due to the lateral long-range

fluctuations of the Mn density within the FM δ-layer on
length scales exceeding λ−(0) ∼ 3 − 4 nm, the compo-
nents U0 and J0 become slowly varying functions of ρ due
to the corresponding variation of the potentials Ṽ α

δ in
Eq. (10). In other words, we may treat U0(ρ) and J0(ρ)
as slowly varying components of an effective random field
projecting the long-range disorder from the FM δ-layer
to the QW. We can also include in U0(ρ) the “true”
long-range fluctuating Coulomb potential φ(ρ) of charge
carriers provided by their inhomogeneous distribution in
the δ-layer. The effective random field (U0(ρ), J0(ρ))
may induce a percolative metal-insulator transition in
the QW and the formation of an inhomogeneous struc-
ture with the activation-type conductivity. In this situa-
tion, the QW can be considered as a set of metallic FM
droplets separated by insulating spacers. It is evident
from Eq. (13) that for a hopping between ith and jth
FM droplets with different orientations (ei, ej) of their
magnetic moments, a charge carrier in the QW has to
overcome an additional energy barrier J0[1 − (ei · ej)]
resulting from the effect of the proximity-induced spin
polarization.

III. MODELS

In this section, we first of all recall some important
methodological aspects of our preceding study29 of the
GaAs/InxGa1−xAs/GaAs QW structure δ-doped by Mn
and discuss existing principal difficulties of an adequate
description of magnetism in these multi-component sys-
tem. Strictly speaking, there is no universal model of
magnetism in 2D DMS structures and the choice of a suit-
able description of FM ordering in such structures is in
some aspects more difficult than that in bulk DMSs. For
example, let us qualitatively discuss the Zener/RKKY
and double exchange pictures of magnetism in the con-
text of the GaAs/InxGa1−xAs/GaAs QW structure δ-
doped by Mn earlier studied in Ref. 29. These structures
demonstrate an activation character of conductivity and
the key problem is how their FM behavior may be medi-
ated by the holes both in the QW and in the δ-layer. Let
us suppose that the effect of “external” holes in the QW
on the FM ordering in the δ-layer is less significant than
that of “intrinsic” holes in the δ-layer itself. The sur-
face density of manganese ions estimated for the sample
studied in the paper (see Sec. IV, sample 4 in Refs. 29
is nMn ≈ 0.4 · 1018 m−2), corresponding to the inter-
manganese distance of about 1.6 nm. We consider nMn

as a nominal concentration of local magnetic moments in

the δ-layer. Unfortunately, we are unable to directly ex-
tract from the conductivity measurements the density of
charge carriers (holes) in the δ-layer, nδ

h, due to their low
mobility. We can roughly treat nMn as an upper limit
for nδ

h, while the compensation between acceptors and
donors in the δ-layer can diminish this estimate by an
order of magnitude. Assuming further, that only holes
in the QW participate in the conductivity, it is possible
to determine a lower limit for nδ

h as being of the order of

the hole density in the QW, nQW
h . Taking nQW

h ≈ 2 ·1016
m−2 ≪ nMn, from the conductivity data, we obtain the
inter-hole distance in the δ-layer rδh falling within the
1.6–7 nm range.

A naive estimate of the hole effective radius in the
δ-layer (aδh) in the model of a single shallow acceptor
gives aδh ≈ aB ≈ 5.3 nm, where aB is the Bohr radius
of a light hole in GaAs. This value can be treated as
an upper limit for aδh, while it is obviously overestimated
and even exceeds the thickness of the δ-layer. In the
more realistic model of a single deep impurity acceptor,
we obtain aδh ≈ 0.9 nm for the heavy hole in GaAs using
experimentally known binding energy EMn ≈ 90 meV for
Mn2+ ion in GaAs. This value can be treated as a lower
limit for aδh. So, we get an estimate 0.9 nm < aδh < 5.3
nm.

At rδh < 2aδh, i.e. at a sufficiently high hole density, the
Zener/RKKY mechanism is relevant for our system and
describes well the FM ordering in the δ-layer within the
framework of an effective Heisenberg spin Hamiltonian
with an effective coupling via itinerant holes. On the
other hand, the magnetism in the polaron model arises
by double exchange mechanism which is relevant at a
sufficiently low concentration of the holes in the δ-layer,
such that rδh > 2aδh. In the polaron percolation picture
of Kaminski and Das Sarma38, the holes are localized at
the length scale of aδh with strong Hund’s rule coupling
to Mn atoms.

The above estimates are a priori unable to show pref-
erence to one or another model of ferromagnetism in our
system, due to evident uncertainties in the parameters rδh
and aδh. Thus, we have to present additional arguments
supporting or rejecting the model under consideration.
In the following, we analyze the peculiarities of dynamic
spin fluctuations in different models and calculate the
frequency and time dependence of the resistivity noise
power. We show that magnetization dynamics is sensi-
tive to the microscopic nature of FM correlations and
thus can be used to distinguish between Zener/RKKY
and double-exchange models of FM.

Now, let us come back to the main issue of this pa-
per. In an earlier work,29, we had studied the role of
charge disorder and magnetization in the Mn δ-layer on
the resistivity of the quantum well. At low charge carrier
densities, the random distribution of ionized Mn atoms in
the Mn layer creates a fluctuating potential for the holes
and leads to accumulation of holes in droplets. Conduc-
tion takes place through hopping of holes between the
droplets. The building of magnetic correlations between
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the charge droplets gives rise to a dip/shoulder-like fea-
ture in the temperature dependence of resistance. The
temperature dependence of the resistivity of the droplet
phase in these DMS heterostructures was modeled as

ρ(T ) = ρ0e
∆/T+(J0/T )(1−〈cos θij〉), (15)

where θij is the angle between the orientations of the
magnetizations Si and Sj associated with the neighbor-
ing ith and jth droplets, respectively, and 〈cos θij〉 ∝
〈Si ·Sj〉. The temperature dependence of the static mag-
netic correlation for a 2D ferromagnet above the transi-
tion temperature will in general take the form

〈Si · Sj〉 ∼ e−Rij/ξM (T ),

where ξM is the magnetic correlation length. The static
magnetic susceptibility χ0 is related to ξM through
χ0(T ) ∼ Tξ2M . The two mechanisms that are generally
considered for ferromagnetism in DMS systems are dou-
ble exchange and p-d Zener/RKKY. The low-energy exci-
tations of both these models are known to have same the
dispersion relation ωq ∝ q2 and as far as static properties
are concerned, both can be represented by an effective
Heisenberg model of spins at low energies. Therefore, the
two models predict the same behavior of the resistivity
and cannot distinguish between the two mechanisms of
ferromagnetism in the Mn layer. For a Heisenberg model
of spin interactions,

HHeisen = −
∑

〈ij〉
JijSi · Sj , (16)

the magnetic correlation length is given by

ξM (T ) ∼ a
√

JS/TeπTC/2T . (17)

The real system is likely to deviate from an isotropic
Heisenberg ferromagnet due to spin-orbit interactions as
well as the 2D distribution of the Mn doping. For in-
stance, for a uniaxial ferromagnet, we have

HHeisen = −J
∑

〈ij〉
Si · Sj −K

∑

i

(Siz)
2. (18)

For this uniaxial magnet Sz is a conserved order param-
eter. For small but finite K > 0, the model shows Ising-
type behavior at sufficiently low temperatures, undergo-
ing a transition to a ferromagnetically ordered state39 at
a temperature T0 ≪ TC :

T0 ∼ TC
ln(π2J/K)

. (19)

For temperatures TC ≫ T ≫ T0, the correlation length is
approximately given by Eq. (17). As the temperature ap-
proaches T0, Eq. (17) for the magnetic correlation length
should perhaps be replaced with a power law,

ξM ∼ a/(T/T0 − 1)γ , (20)

where γ = 1.25 for the limiting case of the Ising model.
For a general anisotropic Heisenberg model, the order
parameter is not conserved. In Ref. 29, we considered
an isotropic Heisenberg model and obtained quantitative
agreement with the resistivity of the insulating samples
over a broad temperature range.

As is clear from the above discussion, resistivity mea-
surements in these DMS structures are unable to distin-
guish between RKKY and double-exchange mechanisms
since the static correlations in both cases can be de-
scribed by an equivalent effective Heisenberg model. It
is then natural to examine dynamic properties such as
the (frequency-dependent) resistivity noise. Resistivity
noise can of course also arise from charge fluctuations in
the puddles in the quantum well. However, if noise from
magnetic fluctuations dominates that from charge fluc-
tuations, resistivity noise can be a useful tool for probing
the microscopic origin of ferromagnetic interactions. This
happens to be true in our case.

We develop now a theory for the effect of magnetic
and charge fluctuations on the resistivity noise. We will
also examine the effect of various kinds of disorder on the
noise.

A. Resistivity noise from magnetic fluctuations

We consider the magnetic fluctuations first. We will
study the implication of increasing magnetic anisotropy
on the frequency dependence of the resistivity noise.

For homogeneously disordered magnets, it is known
that the resistivity noise Sρ(ω) = 〈|δρ(ω)|2〉 and the
magnetization noise SM (ω) = 〈|δM(ω)|2〉 are related
through40 Sρ(ω) = SM (ω)(dρ/dM)2. A similar relation
can be obtained for our phase-segregated model. We as-
sume that the magnetic moments in a droplet are aligned
with the polarization in the Mn layer directly above the
droplet and disregard fluctuations of the magnitude of
the droplet magnetic moment. Our model for resistiv-
ity is a simple nearest-neighbor hopping type and the
hopping is a function of the relative orientation of the
magnetizations at the sites of the two puddles in ques-
tion: ρ ≡ ρij(Mi ·Mj) = ρij(

∑

αM
α
i M

α
j ). Fluctuations

of the orientation of the magnetizations of the droplets
cause resistivity fluctuations. For our model of resis-
tivity, δρ/δMα

i = −(J0/T )ρM
α
j . We thus obtain δρ =

∑

α(
δρ

δMα
i
δMα

i + δρ
δMα

j
δMα

j ) = −(J0/T )
∑

α ρ(M
α
i δM

α
j +

Mα
j δM

α
i ). Here ρ and Mα

k refer to the static values,
and the time dependence is expressed in the fluctuations
δMα

k . The Greek labels refer to the orientation of the
magnetization and the Latin indices label the charge pud-
dles in the quantum well. i and j in the above expressions
refer to nearest-neighbor puddles in the quantum well
and are not summed over. The resistivity noise takes the
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form

Sρ(ω) =
∑

ij,αβ

(

δρ

δMα
i

)

(

δρ

δMβ
j

)

Cαβ(Rij , ω), (21)

where Cαβ(Rij , ω) =
´

dt eiωt〈δMα
i (t)δM

β
j (0)〉 is the

correlation function of the magnetization, α, β refer to
magnetization directions and i, j refer to neighboring
droplets. From Eqs. ((15)) and ((21)) it thus follows that

Sρ(ω)/ρ
2 ∼

(J0/T )
2
∑

α

[Cαα(0, ω) + 〈cos θij〉Cαα(Rij , ω)]

≈ (J0/T )
2
∑

α

[

Cαα(0, ω) + e−Rij/ξM (T )Cαα(Rij , ω)
]

.

(22)

The spin correlation function is related to the dynamic
susceptibility through the fluctuation-dissipation rela-
tionship,

Cαβ(q, ω) =
2T

ω
Im χαβ(q, ω).

B. Resistivity noise for different models of

magnetism

The magnetization dynamics is crucially dependent on
whether the order parameter is a conserved quantity. If
the order parameter is not conserved, then the spin re-
laxation has a finite lifetime even as q → 0. This is the
case for an Ising or anisotropic Heisenberg ferromagnet.
If the order parameter is conserved, then the spin re-
laxation lifetime diverges as q → 0. This would be the
case, for example, for a uniaxial or isotropic Heisenberg
ferromagnet. We follow the hydrodynamic approach of
Hohenberg and Halperin41 for low energy dynamics of all
these cases.
Consider first the case where the order parameter is not

a conserved quantity. This could be the case, for exam-
ple, for anisotropic magnets. Such a case corresponds to
Model A of Ref. 41, defined by the Markoffian equations
of motion

∂ψα(r, t)

∂t
= −Γ0

δF0

δψα(r, t)
+ θα(r, t) + Γ0hα(r, t),

F0 =

ˆ

dr

[

1

2
ξ−2
M ψ2 +

1

2
|∇ψ|2 + u0ψ

4

]

,

ψ2 =

n
∑

α=1

ψ2
α; ψ4 = (ψ2)2. (23)

θα(r, t) is a Gaussian white noise source,

〈θα(r, t)〉 = 0,

〈θα(r, t)θα′ (r′, t′)〉 = 2Γ0δ(r− r′)δ(t− t′)δαα′ , (24)

and hα(r, t) are arbitrary external fields. The dynamic
susceptibility for this model has the form

χ
(A)
αβ (q, ω) =

χ0(T )δαβ
1 + (qξM )2 − iωξ2M/Γ0

. (25)

The constant Γ0 will in general depend on ξM and q,
but the relaxation rate Γ0(q)/ξ

2
M = const. as q → 041.

At finite temperatures, the autocorrelation function will
exhibit an exponential relaxation with time,

Cαβ(Rij , t) ∼ δαβTe
−Γ0t/ξ

2

M−Rij/ξM .

The resistivity noise from magnetic fluctuations is of the
random telegraph type:

〈|δρω|2〉/ρ2 ∼ J2
0 ξ

2
M/TΓ0

1 + e−2Rij/ξM

(ωξ2M/Γ0)2 + 1
. (26)

Consider now the case where the order parameter is
conserved (Model B in the parlance of Ref. 41). This
would be the case, for example, for a uniaxial or isotropic
ferromagnet. The dynamical susceptibility has a form
similar to Eq. (25), except that now spin relaxation life-
time diverges as q → 0 so that χ(0, ω) = 0. The RKKY
and double exchange models as well as the pure Heisen-
berg model model fall in this category. For a pure Heisen-
berg model, the damping mechanism is magnon-magnon
scattering and one has Γ0(q)/ξ

2
M ∝ q2. Thus, in this case

χ
(B)
αβ (q, ω) =

χ0(T )δαβ
1 + (qξM )2 − iω/Dq2

. (27)

The autocorrelation function Cαβ(Rij , ω) is given by

Cαβ(Rij , ω) = δαβ
Tχ0

π

ˆ ∞

0

dq q
Dq2J0(qRij)

(Dq2(1 + (qξM )2)2 + ω2

= δαβ
Tχ0

πD

ˆ ∞

0

dy
y3J0(yRij/ξM )

(y2(1 + y2))2 + (ωξ2M/D)2
.

(28)

For separations Rij such that (ωξ2M/D)1/4Rij/ξM ≪ 1,
Eq. (34) has the following limiting behavior:

Cαβ(0, ω) ≈

δαβ
Tχ0

2πD

{

ln(D/ωξ2M )− 1 + 3π
2 (ωξ2M/D), ωξ2M/D ≪ 1

π
4 (D/ωξ

2
M )− π

4
√
2
(D/ωξ2M )2, ωξ2M/D ≫ 1 .

(29)

Equation ((29)) should be contrasted with the Lorentzian
behavior of the autocorrelation function for random tele-
graph noise. It is also useful to study the time depen-
dence of the autocorrelation function,

Cαβ(Rij , t) = δαβ
χ0

4π

ˆ

dq q
e−Dq2(1+(qξM )2)tJ0(qRij)

1 + (qξM )2
.

(30)
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At small separations Rij such that

(Rij/ξM )(ξ2M/Dt)1/4 ≪ 1, we may ignore the Bessel
function in Eq. (30) and obtain

Cαβ(0, t) ∼ δαβ
χ0

ξ2M

{

ln(ξ2M/Dt), Dt/ξ2M ≪ 1
(ξ2M/Dt)− 1

3 (ξ
2
M/Dt)2, Dt/ξ2M ≫ 1

.

(31)

Next, we consider the RKKY mechanism in a clean
metal. In this case, the magnons can decay into particle-
hole excitations for which one can show42 Γ0(q) ∼ γq.
However, in the presence of impurities, one must take
into account diffusion corrections43 which results in

χRKKY
αβ (q, ω) ≈ χs(T )δαβ

1 + (qξM )2 − iω/Dsq2
, (32)

where χs and Ds are the uniform spin susceptibility and
spin diffusion constant respectively for the disordered
system. Note that this gives us the same results for the
autocorrelation function as the pure Heisenberg model
with conserved spin dynamics. The mechanism of damp-
ing is however different - here it is magnon decay into
incoherent particle-hole excitations.

Finally let us consider the double exchange model for
which the spin wave life time is given by Γ0(q)/ξ

2
M ∝ q5

in two dimensions44,45. For this model, we have

χDE
αβ (q, ω) =

δαβχ
DE
0 (T )

1 + (qξM )2 − iω/Aq5
. (33)

The autocorrelation function Cαβ(Rij , ω) is given by

Cαβ(Rij , ω) = δαβ
Tχ0

π

ˆ ∞

0

dq q
Aq5J0(qRij)

(Aq5(1 + (qξM )2)2 + ω2

= δαβ
Tξ3Mχ0

πA

ˆ ∞

0

dy
y6J0(yRij/ξM )

(y5(1 + y2))2 + (ωξ5M/A)
2
.

(34)

For small enoughRij , the autocorrelation function for the
double exchange ferromagnet has the following limiting
behavior

Cαβ(0, ω) ≈

δαβ
Tξ3Mχ0

πA

{

π
8 cos(π/5)

1
(ωξ5M/A)3/5

, ωξ5M/A≪ 1
π
14

1
(ωξ5M/A)

, ωξ5M/A≫ 1
.

(35)

Thus, at long times, the autocorrelation function (and
consequently the resistivity noise) for the 2D double ex-
change ferromagnet decays as Cαβ(0, t) ∼ 1/t2/5. This is
to be contrasted with the 1/t decay for the Heisenberg
and disordered RKKY ferromagnets. As we shall see in
the following, the experimental data on resistivity noise
is consistent with the RKKY model and not the double
exchange model.

C. Disorder effects

In Sec. III B, we considered the effect of disorder on
the dynamic susceptibility of the holes in the Mn layer.
We found that unlike the case of a clean metal where
Γ0(q) ∼ γq, weak localization effects give us Γ0(q) ∼
Dsq

2 instead. Thus, the magnetization dynamics of dis-
ordered RKKY magnets incorporating weak localization
effects and a purely Heisenberg magnet are the same. In
this section, we discuss the effects of disorder arising from
randomness in the positions of the Mn spins. We model
such disorder in the form of site dilution and randomly
varying exchange interaction, respectively, starting from
a uniform Heisenberg model.

First, we consider a nearest-neighbor Heisenberg model
with a fraction c = 1 − p of missing sites, which mimics
random concentration of Mn atoms. c = 1−p does not re-
fer to the monolayer doping density of Mn atoms; rather,
it refers to missing sites on an effective sublattice made of
the Mn atoms with a lattice constant of the order of the
typical inter-Mn separation. The exchange energy scale
in the model is set by the value at typical Mn-Mn separa-
tions. A missing site can be related to regions with no Mn
atoms on the sublattice. For p > pc (the critical thresh-
old for percolation), the ground state is ferromagnetic
and the low-energy spin dynamics is the same as that for
the pure Heisenberg model, albeit with a reduced zero-
temperature spin-wave stiffness.46. The temperature de-
pendence of the magnetic correlation length for T ≪ TC
is thus ξM ∼ exp[πTC(p)/2T ].

47 In particular, for the 2D
isotropic model on a square lattice, TC(p) ∼ (p− pc)

1.296

for p→ pc,
47 and TC(p) ∝ 1.33p2−0.33 for p ∼ 1.46 Thus

disorder due to site dilution will not affect the frequency
and temperature dependences of noise for T ≪ TC as
long as one remains above the site percolation threshold
on this sublattice. In actual systems, the long range of
exchange interactions means that the percolation transi-
tion may not occur and one remains in the Heisenberg
universality class even for random concentration changes.

Next, we consider a nearest-neighbor Heisenberg model
with random exchange interactions chosen with zero
mean. More realistically, the exchange interactions be-
tween pairs of spins will be a rapidly oscillating func-
tion of their separation. However, for the spin-glass state
we are describing, the long-range nature of the interac-
tion is not believed to play an important role and we
therefore discuss the nearest-neighbor Heisenberg model
with couplings of random sign as opposed to the ac-
tual system with random site positions. The low-energy
excitations of this model are gapless linearly-dispersing
magnons48 (as in a Heisenberg antiferromagnet), and the
lower critical dimension is two. The transverse suscep-
tibility at low temperatures is expected to behave like
χ(T ) ∼ eπTC/T as is the case for the Heisenberg ferromag-
net/antiferromagnet models. The dynamics of the spin-
glass depends on whether one has dissipative equations
of motion or the total spin is conserved.49 For dissipative
dynamics, Model A discussed above is evidently appro-
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priate while for conserved dynamics, the spin dynamics is
diffusive (like in Model B).48,49 To summarize, disorder
in the form of site dilution (while remaining above the
percolation threshold) as well as in the form of a rapidly
oscillating function of the inter-Mn separation does not
qualitatively change the results for Model A and Model
B dynamics discussed above for pure systems.
Finally, let us consider the case where the disordered

magnetic system is in a Griffiths phase. At a finite tem-
perature, the system is organized into clusters that are
weakly coupled to their neighbors but within the clus-
ters, the spins are ferromagnetically ordered (If the ex-
change coupling J to a neighboring spin is less than
the temperature T, we may regard the coupling to be
weak). The long-time behavior of the autocorrelation
function is dominated by the slow relaxation of atyp-
ically large, compact clusters. The relaxation of the
cluster spin is through spin diffusion. The probability
that a site i belongs to a cluster of size L is of the

order of e−c(L/ξ)2 , where ξ is the magnetic correlation
length, and c is a constant. The autocorrelation func-

tion, C(t) ∼ ∑

L e
−c(L/ξ)2−D′t/L2

is dominated by con-

tributions from clusters of size L2
∗ = ξ

√

D′t/c, whence50

C(t) ∼ e−2
√
D′ct/ξ.

The resistivity noise at low frequencies has the following
behavior

〈|δρω |2〉/ρ2 ∼ (J2
0 ξ

2/D′c)(1 + e−2Rij/ξ). (36)

D. Resistivity noise from charge fluctuations

Resistivity noise can arise from charge fluctuations due
to inter-droplet hopping. The effect of inter-droplet hop-
ping on the resistivity noise has been studied in the lit-
erature in the context of electronic phase separation in
manganites51, and we make a similar analysis for our
droplet phase. We begin with the ground state consist-
ing of a large number N of neutral (uncharged) droplets.
At finite temperatures, let N0 be the number of neutral
droplets andN± be the number of droplets with one extra
(less) charge. Evidently N+ = N− and N = N0 + 2N+.
Let EC denote the charging energy of the droplets, and
ω0 be the rate of escape of a hole from a charge-neutral
droplet. In equilibrium, N+ = Ne−EC/T . There are four
elementary charge transfer processes - (1) from one neu-
tral droplet to another, (2) from a droplet with one excess
charge to another with one deficient charge, (3) from a
droplet with one excess charge to a neutral droplet, and
(4) from a neutral droplet to another with one deficient
charge. The latter two processes do not involve a free
energy cost. At low temperatures, we may ignore pro-
cesses involving transfers of larger charges. The rates for
processes (1) and (2) are, respectively,

1

τ1,2(rij)
= ω0e

−rij/ξloc∓EC/T , (37)

where rij is the distance between the two droplets. For
processes (3) and (4) one has

1

τ3,4(rij)
= ω0e

−rij/ξloc . (38)

In the presence of magnetic correlations, we should re-
place ω0 by ωM = ω0e

−(J0/T )(1−cos θij). Similar consid-
erations also apply for the fluctuations of the number
of charged and neutral droplets; for example, for pro-
cess (2), δṄ+(t, ri) = −∑j δN+(t, ri)/τ2(rij), where the
summation is over all droplets with one deficient charge.
The average fluctuation of N+ is 〈δN2

+〉T = N+/2.
Resistivity fluctuations are related to fluctuations of

N+ through the following relationship51:

δρ

ρ
= −δN+

N+
(1− 2e−EC/T ).

This leads us to

〈|δρω |2〉
ρ2

= 〈δN2
+〉T

1− 2e−EC/T

N2
+

∑

j

2τ2(rij)

1 + (ωτ2(rij))2

= (1− 2e−EC/T )
∑

j

2τ2(rij)

1 + (ωτ2(rij))2
, (39)

where the sum ij is over all pairs of droplets correspond-
ing to process (2). The dominant contribution is from
relaxation to nearest neighbor droplets. This is espe-
cially true for the insulating samples where the inter-
droplet distance R > ξloc. Retaining only the nearest
neighbor contributions, the normalized resistivity noise
due to droplet charge fluctuations takes the form

〈|δρω|2〉
ρ2

≈ z(1− 2e−EC/T )
2τ2(R)

1 + (ωτ2(R))2
, (40)

where z is the droplet coordination number and

1

τ2(R)
≈ ω0e

−R/ξloc+EC/T−(J0/T )[1−exp(−R/ξM )]. (41)

The temperature dependence of τ2(R) is different from
that of the resistivity [see Eq. (15)] but nevertheless
shows an anomalous behavior around a temperature
where ξM (T ) ∼ R. In the low temperature limit where
R/ξM ≪ 1, τ2(R) ∼ e−EC/T . In the high temperature
regime, we have τ2(R) ∼ e−(EC−J)/T .

IV. COMPARISON WITH EXPERIMENT

The measurements of the resistivity noise were per-
formed with the sample, the structure of which is pre-
sented in Fig. 1. Parameters of this sample are as follows:
Mn content is 0.35 ML, and it corresponds to 2·1014 cm−2

surface concentration; the thickness of the spacer sepa-
rating Mn δ-layer and the QW is 3 nm; indium concen-
tration in the Ga1−xInxAs QW x=0.17 and so its depth
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is about 70 meV; the hole density p and their mobility
µp in QW are 1.4 · 1012 cm−2 (77 K) or 0.5 · 1012 cm−2

(5 K) and 2370 cm2/V·s (77 K) or 3400 cm2/V·s (5 K),
respectively. As it was shown Ref. 29, this sample is close
to the metal-insulator transition of the percolation type
having high enough value of resistance R(5K) = 19.7
kΩ and R(5K)/R(70K) ≈ 1.5. The temperature de-
pendence of its resistivity can be fitted to the Arrhenius
law with an activation energy ≈ 20 K. Ferromagnetic
ordering is established for this sample through observa-
tions of the anomalous Hall effect and resistivity anomaly
(peak at the temperature dependence of the resistance).
The direct magnetic measurements for samples from the
same set show magnetic hysteresis even for samples with
smaller Mn content.23 The temperature corresponding
to the onset of strong ferromagnetic correlations for this
sample was found to be about 30 K as measured by the
resistivity anomaly. As it was shown previously29, the
Mn δ-layer consists of FM droplets affecting the mag-
netic state in the QW giving rise to a set of metallic FM
droplets, which is responsible for metal-insulator transi-
tion. So, there are two characteristic temperatures: first
that corresponds to the FM ordering inside droplets and
the second related to the formation of the long-range FM
state in the sample, which can be treated as a kind of the
“FM percolation transition”. The characteristic temper-
ature found from the resistive anomaly corresponds to
the second case. At this temperature magnetic correla-
tions became significant.

A. Frequency and time dependence

The data (see Fig. 2) on the frequency dependence of
noise show fSρ(f) = f〈|δρf |2〉 (ω = 2πf) as a function
of frequency for a number of temperatures (mostly below
the resistivity peak). The noise is non-monotonous at all
these temperatures, and especially so at lower tempera-
tures. The curves at higher temperatures suggest more
than one relaxation time while the low temperature data
indicates a single relaxation time.
The data in Fig. 2 correspond to temperatures well

below the resistivity anomaly. This is the regime where
ferromagnetic correlations are significant. Note that the
resistivity noise amplitude decreases with increase of
temperature for the high frequency as well as the low-
frequency limits. Thus, we try power-law fits in the low-
and high-frequency range away from the peak in the re-
sistivity noise (see Fig. 3). This behavior is consistent
with both the magnetic and charge fluctuation models.
We will discuss the temperature dependence of resistivity
noise later in Sec. IVB.
We consider power-law fits at the low- and high-

frequency ends. At high frequencies, we find (see Fig. 3)
for example for the T = 4K data, Sρ(f) ∼ f−1.5, which
should be contrasted with a f−2 decrease expected for
a Lorentzian. At low frequencies, one can find a fit to
Sρ(f) ∼ A − Bf2 or Sρ(f) ∼ A − B ln f − Cf. The for-

Figure 2: (color online) Plots of the measured frequency de-
pendence of fSρ(f) = f〈|δρf |

2〉 for various values of the tem-
perature.
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Figure 3: (color online) Frequency dependence of noise at
T = 4K (solid curve) together with fits to the low and high
frequency regimes. At the low-frequency end, the dashed
curve and the dotted curve are fits to Sρ ∼ A − Bf2 and
Sρ ∼ A − B ln f − Cf, respectively. At the high-frequency
end, the fit is to Sρ ∼ Af−1.53.

mer would be consistent with a Lorentzian (no conserved
order parameter) while the logarithmic behavior in the
latter can arise from Model B dynamics (conserved order
parameter).
By analyzing the long-time behavior of Sρ(t), we find

that the agreement is better with Model B dynamics.
Fig. 4 shows the time dependence of the resistivity au-
tocorrelation function numerically obtained by a discrete
Fourier transform of the frequency data. The long-time
behavior shows a good fit to Sρ(t) ∼ A/t1.05+B ln(t/t0).
For disordered RKKY ferromagnets, one expects Sρ(t) ∼
1/t, while for the double exchange case, Sρ(t) ∼ 1/t2/5.

We found that fits to exponential relaxation, Sρ ∼ e−t/τ

or a Griffiths relaxation, Sρ ∼ e−
√

t/τ are not as good
as the power-law fits. The 1/t power-law relaxation sup-
ports the case of the RKKY ferromagnet.

In Fig. 5, the time traces of resistivity fluctuations are
shown, while the main stable contribution to the resis-



12

0.05 0.10 0.50 1.00

2´10-15

5´10-15

1´10-14

2´10-14

5´10-14

1´10-13

Sρ(t)

t(s)

Figure 4: (color online) Plot showing the long time depen-
dence of the resistivity autocorrelation function Sρ(t) ex-
tracted from the resistivity noise data at T = 4.0K (solid
curve) together with fits to a power-law time dependence
with logarithmic corrections. The dashed curve is a fit to
Sρ(t) = A/t1.05+B ln(t/t0), while the dot-dashed curve is a fit

to Sρ(t) = A/t2/5+B ln(t/t0). In two dimensions, Sρ(t) ∼ t−1

behavior is expected for a disordered RKKY ferromagnet (see

Eq. (32)) and Sρ(t) ∼ t−2/5 for double exchange ferromagnets
(see Eq. (33)). The logarithmic time dependence indicates
1/f noise contributions. The fit to the RKKY model is bet-
ter than to the double exchange.

tivity is subtracted. Note that the time traces of the
resistivity show distinct telegraph-like switching at low
temperature. This switching is not so prominent once
the temperature exceeds about 200 K: this is near to
but below the temperature, at which one observes the
anomalous peak in the resistivity and noise. The advent
of telegraph-like switching can be understood if the mag-
netic model has uniaxial symmetry instead of complete
rotational symmetry. This is possible given the planar
geometry of the structure. Nevertheless, at the moment
we are unable to say whether at still longer times, the
autocorrelation relaxation will remain a power law or be-
come exponential. The logarithmic term indicates 1/f
noise, possibly from other mechanisms.

B. Temperature dependence

Figure 6 shows the temperature dependence of the re-
sistivity noise at two difference frequencies. The tem-
perature range shown in in the figure corresponds to the
low frequency regime for both f = 10 and f = 150 Hz.
This can be deduced from Fig. 2 where the crossover fre-
quency (between the low- and high-frequency regimes)
for T ∼ 13 K is around 200 Hz, and the data in Fig. 6
are taken at T > 13 K. We analyze the temperature
dependence in the context of the magnetic and charge
fluctuation models we have developed above.
For models A and B as well as for the Griffiths picture,

the temperature dependence of the normalized resistivity

Figure 5: Time traces of resistivity fluctuations showing dis-
tinct telegraph-like switching at low temperatures. At tem-
peratures higher than around 20K, the telegraph-like switch-
ing is not so prominent.

noise is directly related to the temperature dependence
of the magnetic correlation length ξM , as well as the co-
efficients Γ0 (Model A) and D (Model B). In all cases,
〈|δρω|2〉/ρ2 ∼ ξ2M . We do not yet know the contribution
to Γ0 and D from the change of hole resistivity with
temperature. Suppose the holes in the quantum well do
contribute to Γ0 and D. In this case, as the temperature
is reduced, Γ0 and D can show a decrease mirroring the
resistivity, and that it has an anomaly when the corre-
lation length becomes comparable with the inter-droplet
separation.

For models A and B in the low-frequency regime, in
accordance with Eqs. (26) and (29), we fit the temper-
ature dependence data in Fig. 6 to 〈|δρω |2〉 = Cρ2ξ2M ,
where C is a constant. The exponential temperature de-
pendence of ρ and ξM together with the scatter in the
data makes it difficult to extract the sub-leading power-
laws and logarithms; thus, we do not attempt to distin-
guish models A and B here. For the charge fluctuation
model, following Eq. (40), we tried fitting the data to
〈|δρω|2〉 = Mρ3 exp(−2∆/T ), where M is a constant.
We consider TC and ∆ > 0 as fitting parameters. We
could not obtain a satisfactory fit for the charge fluctua-
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Figure 6: (color online) Temperature dependence of the resis-
tivity noise Sρ(f) measured at f = 10 Hz (solid curve) and
f = 150 Hz (dashed curve).
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Figure 7: (color online) Temperature dependence of the resis-
tivity noise Sρ(f) for f = 150 Hz (dots) and a fit (solid curve)

to our model of magnetic fluctuations, Sρ(f) ∼ Cρ2eπTC/T .
The fit corresponds to TC = 53.22 K. The model does not
take into account changes in the damping parameters Γ0 or
D across the resistivity anomaly.

tion result for any positive value of ∆.

Fig. 7 shows the resistivity noise data for f = 150 Hz
and a fit to our model of magnetic fluctuations. Possible
variation of Γ0 or D across the resistivity anomaly is not
taken into account in the fit. From this fitting we have
got TC = 53.22 K that by two times exceeds the temper-
ature of the resistance anomaly and maximum of Sρ(f)
versus temperature, while it is in a good agreement with
TC = 49 K, which was found from fitting of the resistivity
temperature dependence.29 That additionally proves the
earlier result that there are two characteristic temper-
atures in such systems: the local Curie temperature at
which ferromagnetic ordering occurs inside the magnetic
droplets and the global Curie temperature of the long-
range ferromagnetic ordering establishment at the scale
of the whole sample “magnetic percolation transition”.

V. DISCUSSION

We experimentally studied and analyzed the resistivity
noise in 2D DMS structures. We have shown how noise
measurements can be used to probe the microscopic dy-
namics governing ferromagnetism in DMS heterostruc-
tures. For insulating DMS systems, we obtained a rela-
tion between the resistivity noise and the spin autocorre-
lation function which enables us to probe magnetization
dynamics through transport measurements. We stud-
ied a number of microscopic models describing ferromag-
netism in the Mn δ-layer motivated by the hydrodynamic
approach of Hohenberg and Halperin.41 The models stud-
ied fall into two broad classes: (a) those where the order
parameter is not a conserved quantity (Model A) such as
Ising magnets and (b) those where the order parameter
is conserved (Model B) such as uniaxial Heisenberg fer-
romagnets, RKKY ferromagnets, and double-exchange
ferromagnets. Model B dynamics, where observed, can
be very useful in understanding the microscopic origin of
ferromagnetism. In particular, we showed that resistivity
noise arising from magnetization fluctuations of RKKY
and double-exchange ferromagnets are qualitatively dif-
ferent and can thus be used to address the long stand-
ing question of whether ferromagnetism in DMS systems
arises from an RKKY or a double exchange mechanism.
We also analyzed the effect of disorder on the magneti-
zation dynamics.
Our results are summarized as follows.
(a) The resistivity noise for uniaxial Heisenberg ferro-

magnets as well as disordered RKKY ferromagnets de-
creases as Sρ(t) ∼ 1/t for times long compared with the
time scale τ = ξ2M/D of spin diffusion over the magnetic

correlation length. In contrast, Sρ(t) ∼ 1/t2/5 for a dou-
ble exchange ferromagnet. These cases all involve a con-
served order parameter. When the order parameter is not
conserved, such as in an Ising ferromagnet (or an antifer-
romagnet), the resistivity noise has a random-telegraph
behavior and follows Sρ(t) ∼ e−Γ0t at long times. The
differences arise from the momentum dependence of the
damping rate Γ(q) of magnetic fluctuations. Γ(q) = Γ0

for the Ising case; Γ(q) ∼ Dq2 for uniaxial Heisenberg
ferromagnets and disordered RKKY ferromagnets; and
Γ(q) ∼ Aq5 for the 2D double exchange case.
(b) Magnetic disorder in the form of site dilution and

random sign of nearest neighbor exchange interaction was
considered. As long as one remains above the classical
percolation threshold, site dilution was seen to degrade
the Curie temperature and spin stiffness but otherwise
retain the same dynamics as the undiluted case. This
is in effect a confirmation of the validity of the Harris
criterion in our systems. When the sign of inter-impurity
exchange interaction varies randomly, as may be the case
at low Mn density together with an RKKY interaction
of the Mn atoms, the ground state is a spin glass instead
of a ferromagnet. It was shown that the damping rate of
magnetic fluctuations for this case also goes as Γ(q) ∼
Dq2.
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(c) Fluctuations of charge in the puddles in the quan-
tum well result in a random telegraph noise of the form
Sρ(t) ∼ e−t/τ at long times. In terms of frequency, this
is a Lorentzian behavior that has been obtained in Sec.
III D and discussed in relation to the experimental data
in Sec. IVA.
(d) Our experimental data indicate that Sρ(t) ∼ 1/t,

which is evidence in favor of a disordered RKKY ferro-
magnet for these samples. However, as we have discussed
in Sec. II and Sec. III, the RKKY behavior is not uni-
versal, and depends on sample parameters such as the
ratio of the inter-hole distance and the Bohr radius in
the Mn layer. The temperature dependence of resistiv-
ity noise qualitatively agrees with the theory although
the agreement is not as good as the frequency or time
dependence.
(e) Our method of probing the microscopic interac-

tions governing ferromagnetism is not specific to 2D DMS

structures and can prove useful in the study of other fer-
romagnetic systems.
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in Physics, Ed. by W. Pötz, J. Fabian, and U. Hohenester.
Vol. 712 (Springer, Berlin, 2007), pp. 1-46.

5 Semiconductor spintronics and quantum computation, Ed.
by D.D. Awschalom, D. Loss, and N. Samarth (Springer,
Berlin, 2002).

6 L.M. Sandratskii and P. Bruno, Phys. Rev. B 66, 134435
(2002).
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