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Abstract. We study the quantum dynamics resulting from preparing a one-

dimensional quantum system in the ground state of initially two decoupled parts

which are then joined together (local quench). Specifically we focus on the transverse

Ising chain and compute the time-dependence of the magnetization profile, ml(t), and

correlation functions at the critical point, in the ferromagnetically ordered phase and

in the paramagnetic phase. At the critical point we find finite size scaling forms for

the nonequilibrium magnetization and compare predictions of conformal field theory

with our numerical results. In the ferromagnetic phase the magnetization profiles are

well matched by our predictions from a quasi-classical calculation.
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1. Introduction

Recently there has been an increased interest in nonequilibrium relaxation processes in

closed quantum systems following a sudden change of the parameters of the Hamiltonian

(quantum quench) [1, 2, 3, 4, 5, 6, 7, 17, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20].

Theoretically during the initial period (t < 0) the system is described by a Hamiltonian

H0 with ground state |Ψ0〉, which is suddenly changed to a new Hamiltonian, H, for

time t ≥ 0. The new state of the system - in the Schrödinger picture - is time-dependent:

|Ψ(t)〉 = exp(−itH)|Ψ0〉 , (1)

and so is with an operator, say O, which is expressed at time t > 0 in the Heisenberg

picture as:

O(t) = exp(−itH)O exp(itH) . (2)

Generally one is interested in the relaxation of the local order-parameter,

mr(t) = 〈Ψ0|Or(t)|Ψ0〉 , (3)

at site, r or the time-dependence of the autocorrelation function:

Gr(t, t
′) = 〈Ψ0|Or(t)Or(t

′)|Ψ0〉 . (4)

After long times, t ≫ 1, the system is expected to relax to a stationary state, in which

one measures the correlation function:

Ct(r1, r2) = 〈Ψ0|Or1(t)Or2(t)|Ψ0〉 . (5)

Most often one considers global quenches, when the parameters are modified uniformly

at all points of the sample. Experimentally this process can be realized with ultracold

atomic gases in optical lattices [21, 22, 23, 24]. After a global quench a quantum system is

expected to relax to a thermal (or thermal-like) state, such that the local magnetization

(as well as the autocorrelation function) vanishes exponentially, mr(t) ∼ exp(−t/τ),

with a relaxation (or phase coherence) time τ . Similarly, the correlation function in the

stationary state behaves as:

Ct(r1, r2) ∼ exp(−|r1 − r2|/ξ) , (6)

with a finite non-equilibrium correlation length, ξ. This thermalization of the system

is generally explained in terms of quasi-particles [5, 25], which are emitted during

the quench at each point of the sample and which travel with a constant velocity, v.

Quasi-particles which are originated at nearby sites (which are within the correlation

length) are quantum entangled, but other quasi-particles are incoherent. Incoherent

particles reaching a reference point, r, will result in the reduction of the value of

a local observable and this process is responsible for the exponential decay of the

(auto)correlation function. In a system with boundaries these quasi-particles are

reflected at the boundaries, which results in more complicated time-dependence, among

others reconstruction of the local magnetization [19].
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Besides global quenches one also considers local quenches, when the parameters are

modified only at a restricted region of the system [26, 27]. Experimentally this type

of problem can be realized in the x-ray absorption problem in metals [29], where the

creation of a hole plays the role of a local defect and when a conduction electron fills

the hole this potential is suddenly switched off. Nonequilibrium dynamics following a

local quench has been first studied in the context of the entanglement entropy, S, in

critical quantum spin chains [26, 27, 28]. If we consider two disconnected half chains for

time t < 0, which are suddenly joint together for t ≥ 0, then the time-evolution of the

entanglement entropy of the two half chains is found to evolve in time asymptotically

as:

S(t) = c

3
log t+ c1 , (7)

where c is the central charge of the Virasoro algebra and c1 is a non-universal constant.

In view of Eq.(7) basic informations about the critical properties of quantum spin chains,

such as the value of the central charge, can be obtained through nonequilibrium local

quench dynamics. The result in Eq.(7), which has been first obtained numerically for

a free-fermion model [26], has been derived through conformal invariance [27]. It has

also been generalized for different positions of the defect [26, 27], as well as for varying

strength of the defect in quantum Ising and XX-chains [30]. For a large finite chain of

total length, L, the appropriate expression is conjectured to be [30]:

SL(t) =
c

3
log

∣∣∣∣
L

π
sin

πt

L

∣∣∣∣+ c1 . (8)

The conformal mapping, which has been used for the calculation of the entanglement

entropy can be applied [27] to study the time-dependence of one-point functions (such as

the local magnetization in Eq.(3)), as well as two-point functions (such as the correlation

function in Eq.(5)) in a critical quantum spin chain. In contrary to global quenches

these results indicate a power-low relaxation as well as power-low type correlations in

the stationary state. This is understandable within the quasi-particle picture, since at

a local quench the quasi-particles are expected to be emitted only at a restricted region

of the sample and therefore these are quantum entangled. If these quasi-particles arrive

after time t to different positions of the chain, say r1 and r2, will result in correlations.

Besides the conformal results which are mentioned above several problems

connected with local quench dynamics are still unexplored. To our knowledge there

are no numerical investigations, which could be used to check the validity of the

conformal conjectures. There are no results about the autocorrelation function and

no information is known about nonequilibrium relaxation following a local quench to

the ordered or to the disordered phase of a quantum spin chain. In this paper we

aim to fill this gap and perform detailed numerical investigations about these open

questions. As a model we use the transverse Ising spin chain, which is a prototypical

quantum system having ordered and disordered phases as well as a quantum critical

point [31]. Using free-fermionic techniques [32, 33, 31] we have studied numerically the

nonequilibrium relaxation processes for the magnetization, the autocorrelation and the
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equal-time correlation function in large finite systems. Most of our investigations are

performed at the quantum critical point, so that we could compare our results with the

conformal predictions. However, we also studied quenches to the ordered and to the

disordered phases and these results are then compared with semi-classical calculations..

The structure of the paper is the following. The model and the numerical method

of the calculation is introduced in Sec.2. Results of the calculations at the critical point,

in the ferromagnetic and in the paramagnetic phases are presented in Sections 3, 4 and

5, respectively. Our conclusions are summarized in Sec.6.

2. Model

The system we consider in this paper is the transverse Ising chain of finite length L with

open boundaries defined by the Hamiltonian:

H = −1

2

[
L−1∑

l=1

Jlσ
x
l σ

x
l+1 +

L∑

l=1

hlσ
z
l

]
, (9)

in terms of the Pauli-matrices σx,z
l at site l and bond strengths Jl, which are all equal

Jl = 1 except the central bond JL/2, which is JL/2 = 0 for time t ≤ 0. Similarly,

the transverse fields are homogeneous, hl = h, except at the central sites, which are

hL/2 = hL/2+1 = 0 for time t ≤ 0 for fixed-spin boundary conditions. (For free-spin

boundary conditions these are hL/2 = hL/2+1 = h for time t ≤ 0, too.) Generally we

measure distances from the defect and use the variable:

r = l − L

2
. (10)

The order-parameter operator of the system is, σx
l , what should be inserted in the

formulae of the autocorrelation and the correlation functions, see in Eqs.(4) and

(5), respectively. For the local magnetization in Eq.(3) one should have: mr(t) =

limb→0+ b〈Ψ0|σx
r (t)|Ψ0〉b, where |Ψ0〉b is the ground state of the initial Hamiltonian (9)

in the presence of an external longitudinal field b. According to [34] this can be written

as the off-diagonal matrix-element of the Hamiltonian (9):

mr(t) = 〈Ψ0|σx
r (t)|Ψ1〉 , (11)

where |Ψ1〉 is the first excited state of the initial Hamiltonian (t < 0). For fixed-spin

boundary condition the ground-state is exactly degenerate with |Ψ1〉. In the initial state

and in the thermodynamic limit, L → ∞, there is spontaneous ferromagnetic order in

the system, mr(0) > 0, for h < hc = 1. On the contrary, for stronger transverse fields,

h > hc, the magnetization is vanishing. At the quantum critical point the magnetization

vanishes as a power-law: mr(0) ∼ L−x, for bulk spins: r = O(1), and m±L/2(0) ∼ L−xs,

for surface spins. Here the magnetization exponent x and the surface magnetization

exponent xs is known exactly: x = 1/8 and xs = 1/2.

The Hamiltonian in Eq.(9) can be expressed in terms of free fermions [32, 33, 31],

which has been used in previous studies of its non-equilibrium properties [35, 18, 19].

The magnetization profile, as well as the (auto)correlation functions can be expressed
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in terms of Pfaffians, which are then evaluated as the square-root of an antisymmetric

matrix, which has a rank O(L). In the following Sections we use these techniques to

calculate different nonequilibrium quantities.

3. Local quenches at the critical point

3.1. Conformal field theory - a reminder

Here we recapitulate the basic results by Calabrese and Cardy [27] about the use of

conformal field theory for local quenches at the critical point. The system is represented

in a space-time region with coordinates: (r, t) and the two parts of the chain are

decoupled for t < 0 and these are joined at t = 0 and we measure the properties

of the system at t > 0. In the path integral formalism one introduces damping

factors: exp(−ǫH), so that in Eq.(2) we have exp(−ıtH) → exp(−ıtH − ǫH) and

exp(ıtH) → exp(ıtH − ǫH). For computational simplicity the operators are inserted

at imaginary times: τ = ıt and one works in the complex plane z = r + ıτ . Here,

due to the local quench we have two cuts starting at ±ıǫ and ending at ±ı∞. This is

represented in the left panel of Fig.1.

z

2ε

w

Figure 1. (Color online) Space-time region z = r + ıτ with two cuts starting at ±ıǫ

(left) which is mapped to the half-plane w through the conformal transformation in

Eq.(12). At the end of the calculation one should take τ → ıt.

This geometry is mapped by the Joukowsky transformation:

w =
z

ǫ
+

√(
z

ǫ

)2

+ 1, z = ǫ
w2 − 1

2w
, (12)

into the half plane, Re w > 0. At the boundaries of the slits in the z-plane as well as at

the surface of the w-plane one should impose boundary conditions, which can be either

free or fixed spin boundary conditions. In the w-plane the asymptotic form of the one-

and two-point functions are generally known due to conformal invariance [36, 37, 38, 40].

These results are then transformed back to the z plane and at the end of the calculation

one analytically continues the final result as τ → ıt.
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We note that the conformal results obtained in this way are valid for infinitely long

chains, i.e. for L → ∞.

3.2. Magnetization

We have calculated the relaxation of the magnetization in the transverse-field Ising

chain following a local quench starting with two different type of initial state. First, we

consider an initial state with fixed spins at the defect, in which case the initial defect

magnetization stays finite. In this type of setting one can make a direct comparison

with the conjectures of conformal invariance. In the second type of calculation in the

initial state we use free boundary conditions at the defect. Then we calculate the time-

dependence of the off-diagonal order-parameter in Eq.(11), which has a vanishing initial

value at the defect in the thermodynamical limit.

3.2.1. Fixed-spin boundary condition In this section in the initial state, t < 0, the two

half chains are prepared with fixed spins at the boundaries: 〈σx
L/2〉 = 〈σx

L/2+1〉 = 1,

which is obtained by fixing hL/2 = hL/2+1 = 0 in the Hamiltonian in Eq.(9). We use the

superscript, (+), to refer for fixed-spin boundary condition. The magnetization profile

in the initial state is known from conformal invariance [37, 38]:

m(+)
r (t = 0, L) ∼

∣∣∣∣
L

2π
sin π

2r

L

∣∣∣∣
−x (

cosπ
r

L

)xs

, (13)

which behaves close to the defect: m(+)
r (t = 0) = A|r|−x, |r| ≪ L/2. This is the

well-known result by Fisher and de Gennes [39].

After the local quench, for t > 0, we take hL/2 = hL/2+1 = 1 (and JL/2 = 1) and

study the evolution of the magnetization. In the limit |r| ≪ L/2 the conformal mapping

in the Sec.3.1 leads to the result [27]:

m(+)
r (t) =





A|r|−x t < r,

A
(

ǫ
t2−r2

)x
t > r .

(14)

This can be interpreted, that for t < r the magnetization keeps its initial value until the

quasiparticles from the defect arrive at t = r and afterwards for r ≪ t ≪ L/2 the decay

is given by m(+)
r (t) ∼ t−2x. This decay involves twice of the magnetization exponent

and this behaviour is similar to that of the equilibrium autocorrelation function at the

critical point.

In order to check the conformal result in Eq.(14) we have calculated the time-

dependence of the magnetization in finite chains of length up to L = 256. For the

largest chain and for different values of r the relaxation of the magnetization is shown

in Fig.2. In agreement with the quasi-particle picture and with the results of conformal

invariance the local magnetization stays unchanged until t < r, which is followed by

a fast decrease. Due to the finite size of the system the magnetization has a finite,

L-dependent limiting value and for t > L/2 the magnetization starts to increase.

We have studied in more detail the behavior of the magnetization at the defect:

l = L/2, i.e. for r = 1. For short times, 1 ≫ t ≫ L/2, the decay is compatible
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Figure 2. (Color online) Temporal evolution of the magnetization at the critical

point after a local quench having fixed spins at the defect in the initial state in a finite

system of length L = 256.
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Figure 3. (Color online) Temporal evolution of the magnetization at the defect after

a local quench from a fixed spin at the critical point. In the main panel the scaled

profiles are shown for different values of L, where the curve with the dashed line is

given in Eq.(15). In the inset the log-log plot of m
(+)
1 (t, L) is shown for L = 256, where

the conformal prediction for L → ∞ is given by the dashed straight line.

with the conformal prediction: m
(+)
1 (t) ∼ t−1/4 is seen in the inset of Fig.3 in

which the magnetization is shown as a function of time in a log-log plot. For

longer time the boundaries of the chain start to influence the relaxation and the

critical defect magnetization is expected to satisfy the scaling behavior: m
(+)
1 (t, L) =

b−2xm
(+)
1 (t/bz, L/b), when lengths are rescaled by a factor b > 1. In this relation the

dynamical exponent is z = 1 and by taking the scaling factor as b = t in the limit L ≫ t

we recover the conformal result: m
(+)
1 (t) ∼ t−2x. It is more interesting to take b = L,

when one obtains: m
(+)
1 (t, L) = L−2xµ

(+)
1 (t/L). Here the scaling function µ

(+)
1 (τ) for

small τ = t/L behaves as: µ
(+)
0 (τ) ∼ τ−2x. Numerical results for the scaling function

for different values of L are shown in the main panel of Fig.3, which is found to be well
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Figure 4. (Color online) Temporal evolution of the local magnetization profiles at

the critical point after a local quench with free boundary conditions in the initial state.

approximated by the function B [sin(πτ)]−2x, thus we have the conjecture:

m
(+)
1 (t, L) ∝ L−2x

[
sin

(
π
t

L

)]−2x

. (15)

3.2.2. Free-spin boundary condition In this section in the initial state the two half

chains have free boundary conditions, which means that in Eq.(9) we have hL/2 =

hL/2+1 = 1 and JL/2 = 0. In this settings no conformal results are available, therefore

we study numerically the properties of the profiles of the off-diagonal order parameter,

mr(t) in Eq.(11) in finite systems. The results are shown for L = 128 in Fig. 4.

Initially (at t = 0) the ground state magnetization profiles are identical and

independent in both disconnected parts of the system. The functional form is known

from conformal invariance [40] and the complete profile has the finite size scaling form

mr(t = 0, L) ∝ L−x
∣∣∣∣sin

2πr

L

∣∣∣∣
xs−x

. (16)

Close to the defect, i.e. for |r| ≪ L/2 the behavior of the profile follows from the scaling

relation, that mr(t = 0, L) = b−xmr/b(t = 0, L/b), with a rescaling factor, b > 1. Now

taking b = L, we arrive to the form: mr(t = 0, L) = L−xm̃(r/L), where the scaling

function, m̃(ρ) for small argument behaves as m̃(ρ) ∼ ρxs−x. This is compatible with

the conformal result in Eq.(16), if we replace ρ by its sinusoidal extension: sin(2πρ).

In Fig. 4 one observes a quasi-periodic time-dependence of the profile with the

characteristic initial double peak being exchanged against a single peak at times

T = L/2, 3L/2, . . . and re-occurring at times T = L, 2L, . . .. Let us focus first on the

time-dependence of the magnetization at the central cite, m1(t, L), which is expected to
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Figure 5. (Color online) Scaling plot of the local magnetization at the defect, m0(t),

after a local quench at criticality for different system size L. The conjectured result in

Eq.(17) is shown by a full line. Inset: Log-log plot of m0(t) vs. t for L = 256. The

straight line is proportional to t1/4.

satisfy the same type of scaling relation as m
(+)
1 (t, L), thus: m1(t, L) = b−2xm1(t/b, L/b).

As before taking b = L we arrive to: m1(t, L) = L−2xµ̃1(t/L), where the scaling

function, µ̃1(τ), for small argument should behave as µ̃1(τ) ∼ τxs−2x. In this way

we obtain: m1(t, L) = L−xstxs−2x, which is in agreement with the L-dependence of the

magnetization at the defect at t = 0, see in Eq.(16). Furthermore we have for the

relaxation for small times: m1(t) ∼ t1/4, which agrees well with the numerical data

shown in the inset of Fig. 5. The form of the scaling function can be conjectured using

the same substitution, ρ → sin(2πρ), as for t = 0. In this way we obtain:

m1(t, L) ∝ L−2x

∣∣∣∣sin
2πt

L

∣∣∣∣
xs−2x

(17)

Fig. (5) displays a corresponding finite size scaling plot for the first period which shows

a good data collapse (a corresponding scaling plot for larger values of t/L is equally

good, data not shown) and thus confirms our conjecture (17), which probably can be

derived rigorously from conformal invariance.

Next we consider t = L/2, when the profile has its maximum at r = 0 and it is

minimal at the two ends of the chain, r = ±L/2, i.e. at l = 1 and l = L. Let us

consider the profile for small l and use the scaling transformation: ml(t/L = 1/2, L) =

b−2xml/b(t/L = 1/2, L/b), which leads to the result: ml(t/L = 1/2, L) = L−2xµ(l/L) ,

with b = L. The scaling function, µ(y), for small argument is expected to behave in

the same way as for t = 0, thus µ(y) ∼ yxs−x. Furthermore having the substitution:
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Figure 6. (Color online) Scaling plot of the local magnetization mr(t) after a local

quench at criticality for different system size L at time t = L/2, see Eq.(18).

y → sin(2πy) we arrive to the conjecture:

mr(t = L/2, L) ∝ L−2x

∣∣∣∣cos
πr

L

∣∣∣∣
xs−x

, (18)

where we use the variable r. Fig. 6 displays a corresponding finite size scaling plot

which shows a good data collapse and thus supports our conjecture (18).

Combining the scaling forms (17) and (18) the ratio R = m
(L)
l=L/2(t = τ)/m

(L)
l=τ (t = L/2)

is given by

R =
(
sin π

τ

L

)−x

. (19)

3.3. Spatial correlations

The spatial correlation function, Ct(r1, r2) in Eq.(5), has also been studied by conformal

field theory [27] and various analytical predictions have been made in an infinite system

in the continuum limit. In this section we will compare our results for finite lattice

systems with free boundaries with these predictions. We note that before the quench

the two halves of the system are disconnected and free, i.e. hL/2 = hL/2+1 = 1 and

JL/2 = 0. Without the restriction of generality we take r1 > |r2| > 0 and consider two

cases: 1) both sites of reference are at the same side of the defect (r2 > 0), and 2) the

two sites are at different side of the defect (r2 < 0).

Case 1: r2 > 0 For short times, t < r2(< r1), the behavior of the correlation

function can be obtained in the quasi-particle picture. In this case the quasi-particles

(which can be called as signals) starting at the defect and propagating with a speed

v = 1 does not reach any point of reference, thus the correlations keep their initial
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value: Ct(r1, r2) = C0(r1, r2) ∝ |r1−r2|−2x. This result follows also from conformal field

theory and consistent with our numerical data depicted in Fig. 7 a and b.

For intermediate times, r2 < t < r1, the signals reach the closest site at r2 but not

yet the remote site at r1, see 7 a and b. The prediction from conformal field theory [27]

is

Ct(r1, r2) =

{
(r1 + r2)(r2 + t)ǫ

(r1 − r2)(r1 − t)4r1(t2 − r22)

}x

× F

(
2r1(r2 + t)

(r1 + r2)(r1 + t)

)
(20)

with

F (η) =
(√

1 +
√
η −

√
1−√

η
)
/
√
2 ∼ √

η for η → 0 (21)

and ǫ is the regularization parameter in Eq.(12). In Fig. 7b a comparison with our

numerical data for a specific r1 and r2 is shown. As expected for a lattice model our

data display characteristic oscillations in the considered regime around the monotonous

continuum result (20).

For a more quantitative comparison we first look at the asymptotic behavior of

Ct(r1, r2) for fixed small t and r2. The conformal field theory predicts according to (20)

and (21)

Ct(r1, r2) ∝ r−2x−xs

1 = r
−3/4
1 for t < r2 ≪ r1 (22)

which agrees well with our lattice result as shown in Fig. 7c. Moreover, for fixing the

ratios ρ2 = r2/t < 1 and ρ1 = r1/t > 1 (20-21) predicts in the limit t → ∞
Ct(r1, r2) ∝ t−3x = t−3/8 for ρ2 < 1 ρ1 > 1 t → ∞ . (23)

This is also consistent with our finite lattice data as seen in Fig. 7d for ρ2 = 1/2 and

ρ1 = 2.

In the long-time regime, for t > r1 the signals have also reached the remote site

at r1, and both points of reference has the information of the joining of the two halves

of the system. Consequently Ct(r1, r2) approaches a time-independent value (c.f. Fig.

20a and b), given by the equilibrium bulk correlation function, which is proportional to

|r1 − r2|−2x.

Case 2: r2 < 0, i.e. the two reference sites are at the different sides of the defect.

Initially, at t = 0, the two magnetization operators are located in separate, independent

subsystems, thus their correlations should vanish. As long as after the quench no signal

reaches the site at r2 (i.e. for t < |r2|) the correlation function should be expected to

be zero. (Strictly speaking Ct(r1, r2) can be exponentially small, the only contributions

coming from signals propagating outside the “light-cone”.) This is clearly visible in our

results shown in Fig. 8a. Surprisingly this disagrees with the conformal field theory

result [27] which predicts

Ct(r1, r2) =
1

|4r1r2|x
· F

(
ǫ2r1|r2|

(r21 − t2)(r22 − t2)

)
for t < |r2| . (24)
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Figure 7. (Color online) A: Spatial correlation function Ct(r1, r2) as a function of

time t for both sites of reference being at the same side of the defect (i.e. r1 ≥ r2 > 0).

The system size is L = 256, as in the other panels. B: Comparison of the data of A

for r2 = 10, r1 = 30 with the conformal field theory result (20). C: Ct(r1, r2) in the

intermediate time regime (r2 < t < r1) for small r2 and t as a function of r1. In the

limit r1 → ∞ this should approach r
−3/4
1 according to the conformal field theory result

(22). D: C(r1, r2; t) in the intermediate time regime for r2 = t/2 and r1 = 2t as a

function of t that should decay as t−3/8 according to the conformal field theory result

(23).

This could be rectified by setting ǫ = 0, but this would be at variance with the results for

r2 > 0, for which the regularization parameter should be non-vanishing. The problem

with the conformal derivation could be related to the fact, that in the transformation

(12) points in the z plane with Re(z2) = r2 < 0 and |r2| ≫ ǫ are transformed to |w2| ≪ ǫ.

However, the scaling form of the correlation function in the semi-infinite w-plane is valid

only in the continuum limit, i.e. for Re(w2) ≫ 1.

After the signals reach the site at r2, i.e. for |r2| < t < r1, the conformal field theory

prediction is [27]

Ct(r1, r2) =

(
(r1 + r2)(r2 + t)ǫ

(r1 − r2)(r1 − t)4r1(t2 − r22)

)x

× F

(
2r1(r2 + t)

(r1 + r2)(r1 + t)

)
for |r2| < t < r1 . (25)

In Fig. 8b a comparison with our numerical data for a specific r1 and r2 is shown. As

expected for a lattice model our data display characteristic oscillations in the considered

regime around the monotonous continuum result (25).
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Figure 8. (Color online) A: Spatial correlation function Ct(r1, r2) as a function of

time t for the two sites of reference being at different sides of the defect: r1 > 0, r2 < 0

(r1 ≥ |r2|). The system size is L = 256, as in the other panels. B: Comparison of

Ct(r1, r2) with the conformal field theory result (25). C: Ct(r1, r2) for small |r2| and t

as a function of r1. In the limit r1 → ∞ this should approach r
−3/4
1 according to the

conformal field theory result (22). D: Ct(r1, r2) for r2 = t/2 and r1 = 2t as a function

of t that should decay as t−3/8 according to the conformal field theory result (23).

For fixed small t and r2 the conformal field theory predicts according to (25) and

(21) again for Ct(r1, r2) the asymptotic r1-behavior (22) as in the case r2 > 0. This agrees

well with our lattice result as shown in Fig. 8c. Moreover, for fixed ρ2 = r2/t > −1 and

ρ1 = r1/t > 1 (25) predicts in the limit t → ∞ the same asymptotic t-behavior (23) as

in the case r2 > 0. This is also in agreement with our lattice result as shown in Fig. 8d.

Finally for t > r1 the signal has also reached the site at r1 and Ct(r1, r2) approaches

again the time-independent equilibrium bulk value (c.f. Fig. 8), which is proportional

to |r1 − r2|−2x.

Summarizing our results confirm the predictions of the conformal field theory [27]

for the spatial correlation after a local quench at the critical point, except for the case

r2 < 0, t < |r2|.

3.4. Autocorrelations

We have also calculated the autocorrelation function, Gr(t, 0), as defined in Eq.(4). In

the following for simplicity we shall omit the second argument and use the notation

Gr(t). Using the quasi-particle picture we have the following expectations. Before the
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signal reaches the reference point, t < r, the autocorrelation function is the same as in

the equilibrium bulk system, thus asymptotically Gr(t) ∝ t−2x/z = t−1/4. For t > r,

when the signal has passed the reference point the equilibrium bulk decay of Gr(t)

should continue, thus in the complete time-window this behavior is observable.

 0.15
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 0.11

 0.09
 200 150 100 50

G
r(

t)

t

r=L/2-30

L=256
L=350
L=450

t-1/4

Figure 9. (Color online) Autocorrelation function Gr(t) after a critical quench for

different system sizes. The straight line corresponds to the equilibrium power law

t−1/4.

Our lattice results in Fig. 9 are in agreement with these expectations. In a finite

lattice of length L the autocorrelation function has a minimal value of ∼ L−1/4.

4. Quench in the ferromagnetic phase

In equilibrium in the ferromagnetic (FM) phase (h < 1) there is spontaneous order and

the bulk mb and the surface, ms, magnetizations are given by:

mb = (1− h2)xν , ms = (1− h2)xsν , (26)

respectively (the correlation length exponent is ν = 1). The magnetization profile has an

exponential variation in the surface region, the size of which is given by: ξs ∼ (1−h)−1,

close to the critical point. Here we follow the same protocol as in Sec.3.2.2: for t < 0 we

cut the system into two halves with free boundary conditions, which are then (at t = 0)

joined together with the coupling JL/2 = J = 1. We measure the temporal evolution

of the magnetization profile, mr(t), as defined in Eq.(11). The finite lattice results are

depicted in Fig. 10 for h = 0.5 and L = 128. In the initial state the magnetization profile

(mr(t = 0)) is essentially constant and given by mb, except close to the boundaries and

to the center. For t > 0 one observes again a quasi-periodic pattern and the period of

time T (h) is found to increase with increasing L and decreasing field h. It turns out

that the spatio-temporal evolution of the profile can be understood even quantitatively

within a quasi-classical picture.

As elaborated in [41] within the FM phase the dynamics of the local order parameter

in a system with boundaries after a global quench is very well described by a quasi-
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Figure 10. (Color online) Temporal evolution of the local magnetization profiles

after a local quench within the ordered (FM) phase, here h = 0.5, L = 128.

particle (QP) picture, where QPs are kinks that move with velocity ±vp through the

system. The QP energy is

ǫp =
√
1 + h2 − 2h cos(p) (27)

with p = (2n− 1)π/2L (n = 1, . . . , L) and the QP velocity is

vp =
∂ǫp
∂p

=
h sin(p)

ǫp
. (28)

The maximum velocity is given by:

v2max =
[√

(1 + h2)2 + 12h2 − (1 + h2)
]
/6 , (29)

for small h it is vmax ≈ h.

Consider now a QP, or kink, with momentum p. It moves uniformly with velocity

vp until it reaches one of the boundaries, where it is reflected and moves with velocity

−vp thereafter, and so forth. The trajectory of the kink is periodic in time, after a time

2Tp with

Tp = L/vp (30)

(including a reflection at the right and left boundary) it returns to the starting point

x0 with the initial direction and velocity vp. After a global quench QPs emerge pairwise

at random positions x0 with velocities +vp and −vp [18, 41] and therefore we assume

that after the local quench studied here QPs emerge also pairwise, but exclusively at

the central site, where the defect is located before the quench.
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The time dependent decay of the local magnetization mr(t) at a position r is then

determined by the probability q with which any given kink trajectory passes until time

t the site r an odd (!) number of times: Each passage of one of the two trajectories flips

the spin at site r and an even number of flips does not change the magnetization of site

r. Once q(t) is known the magnetization is given by

mr(t) = mr(t = 0) · exp(−2q(t)) . (31)

The probability q(t) is expressed as

q(t) =
1

π

∫ π

0
dp fp(h) qp(t) (32)

where qp(t) is the probability that any given QP trajectory passes the site r an odd

number of times, and fp(h) is the probability with which QPs with momentum p are

generated (per site), and we take assume that it is identical to fp after a global quench.

This is given for small h as [41]:

fp(h) =
1

4
h2 sin2(p) (33)

To calculate qp one concentrates first on times t < 2Tp and on lattice site r < 0

- the whole profile is of course symmetric with respect to a reflection at the center

mr(t) = m−r(t). The QPs emerging at the central site r = 1 and moving to the left

(vp < 0) pass the site r two times (once before the reflection at the left boundary and

once after the reflection) before they return (now with vp > 0) to their starting point.

These two times are t1 = |r|/vp and t2 = Tp − t1. Therefore the probability that this

QP trajectory passes r at times t < Tp exactly once is

q−p =





0 t < t1
1 t1 < t < t2
0 t2 < t < Tp

(34)

The associated partner (of the QP pair) that moves to the right (vp > 0) passes the site

r only after reflection at the right boundary and returns to the starting point, at times

t3 = Tp + t1 and t4 = 2Tp − t1. Therefore the probability that this QP trajectory passes

r at times t < 2Tp exactly once is

q+p =





0 t < t3
1 t3 < t < t4
0 t4 < t < 2Tp

(35)

For t > 2Tp one makes use of the Tp-periodicity of qp(t):

qp(t+ 2nTp) = qp(t), (n = 1, 2, . . .). (36)

With (32), (33), (34-36) one obtains ml(t) via numerical integration (or summation over

the discrete p-values for a lattice of finite size L), where we take the exact profile before

the quench (ml(t = 0)).

In Fig. 11 the comparison of this QP calculation with our exact data is shown. Fig.

11A displays the dynamical evolution of the local magnetization at h = 0.2 close to the
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Figure 11. (Color online) Local order parameter ml(t) within the FM phase (h < 1)

and comparison with QP calculation. A: mr(t) at h = 0.2 as a function of the distance

r from the defect for different fixed times t. B: ml(t) at h = 0.5 as a function of l for

different fixed times (L = 256, the defect is at l = 128). The full lines are the exact

data and the points are the predictions of the QP calculation. C-D: ml(t) for different

fields h < 1 as a function of the rescaled time t/T (h), where T (h) = L/vmax(h) = L/h,

i.e. T (h = 0.5) = 512, T (h = 0.2) = 2560, and T (h = 0.1) = 5120. The exact data and

the QP prediction can be discriminated by the smoother behavior of the latter.

defect. The system size, L = 256, is sufficiently large such that the boundary effects are

not yet visible for the times shown and the data are representative for an infinite system.

One sees that the initial magnetization drop at the defect (the defect spins are surface

spins at t = 0) is quickly filled and the profile approaches a constant magnetization

m̃b = limL,t→∞mr(t). Since the probability qp(t) for a QP with momentum p to pass

any site in the bulk is 1 in the the limit L → ∞ and t → ∞ the bulk magnetization is

predicted by the QP picture, according to (32) and (31), to be

m̃b = mb exp(−1/ξ) , (37)

with
1

ξ
=

1

π

∫ π

0
dpfp(h) . (38)

ξ is identical with the nonequilibrium correlation length measured during global quench,

as defined in Eq.(6). For fp(h) as in Eq.(33), which is exact for small h it is given by:

1/ξ = h2/4. For larger values of h corrections to the kink-like excitations should by

summed, which leads to the value [42, 20]: 1/ξ = − ln
[(
1 +

√
1− h2

)
/2
]
. For h = 0.2
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one gets m̃b = 0.985 which agrees well with the approximately constant magnetization

at t = 640 in Fig. 11A. We checked that also for larger values of h the QP prediction

for the asymptotic bulk magnetization m̃b in eq.(37) is good.

Fig. 11B compares the exact data for the local magnetization profile of a finite

system for different times after the quench with those of the QP prediction at h = 0.5.

The agreement is very good for the times shown and a few sites away from the defect

(r = |L/2− l| > 5). The rapid filling of the initial sharp dip of the profile at the center

(see Fig. 11A) is not correctly captured by the present QP picture. To understand this

process one should assume, that the QP-s are emitted in a region of size ξs around

the defect and these QP-s are quantum entangled and these correlated particles are

responsible for the rapid increase of the magnetization at the defect.

The predicted (quasi)-period is governed by the maximum QP velocity and given

by

T (h) = L/vmax ≈ L/h . (39)

This agrees well with the dynamical behavior of ml(t) shown in 11 C-D displaying the

exact data and the QP prediction for ml(t) at fixed sites l for different fields h < 1

as a function of the rescaled time t/T (h). The agreement for the sites shown is good,

at longer times close to the defect (l ≈ L) deviations occur (see Fig. 11D) due to the

mechanism described above.

5. Quench in the paramagnetic phase

In the paramagnetic phase (h > 1) the magnetization is vanishing in the thermodynamic

limit, however, in a finite system there is a finite, L-dependent magnetization. Its

temporal evolution for h = 2 is depicted in Fig. 12 for L = 128. In contrast to the

dynamics at the critical point (c.f. Fig. 4) the evolution of ml(t) is not periodic in the

paramagnetic phase and approaches a stationary profile characteristic for the system

without defect.

Our results for the spatial correlation function Ct(r1, r2) within the paramagnetic

phase are depicted in Fig. 13. We find that for fixed r1 and r2 an asymptotic power law

in t with an exponent close to 3/2:

Ct(r1, r2) ∝ t−3/2 for t ≫ r1, |r2| . (40)

Finally the autocorrelation function after a local quench in the paramagnetic phase

decays as in the ground state without a defect, i.e.

Gt(r) ∝ t−1/2 . (41)

see Fig. 14.
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Figure 12. (Color online) Temporal evolution of the local magnetization profiles

after a local quench within the disordered (PM) phase, here h = 2, L = 128.
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Figure 14. (Color online) Autocorrelation function Gr(t) after a quench in the

paramagnetic phase for r = 10 (i.e. for a site in a distance 10 from the defect) for

different values of h in comparison with Gr(t) for a system without defect (“nd”).

6. Conclusions

We have studied the temporal evolution of different observables in the transverse Ising

chain following a local quench: for t < 0 the system consisted of two disconnected

halves which are joined together for t > 0 with the uniform bulk coupling, JL/2 = 1.

We have measured the magnetization profile, mr(t), as well as the correlation, Ct(r1, r2)

and the autocorrelation function, Gr(t1, t2). We have concentrated on the properties

of local quench in the critical state, but some calculations are also performed in the

ferromagnetic and in the paramagnetic phases, too.

For critical local quench several conjectures about mr(t) and Ct(r1, r2) are known

through conformal field theory, which are valid in the thermodynamic limit and in the

continuum approximation. Our exact finite lattice results have confirmed the conformal

conjectures, except for the early time behavior of the correlation function in which

the two reference points are at different sides of the defect. We have also studied

systematically the finite-size effects, in particular we have made conjectures about the

form of the magnetization profiles, both in space Eq.(18) and time Eq.(17), which

probably can be derived in some way, e.g. through conformal field theory.

Our results are explained within the frame of a quasi-particle picture, in which

during the quench kink-like excitations are created at the defect, which move semi-

classically, with a momentum-dependent velocity and result in the reduction of the

order-parameter in the system. In the ferromagnetic phase this type of semi-classical

calculation has lead to exact results, at least for a small transverse field, h. We expect,
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however, that following the same method as in the case of global quench, one can sum

the higher order contributions and in this way one obtains exact results about the

stationary value of the magnetization profile for general value of h < 1. This involves

the non-equilibrium correlation length, ξ, as measured at a global quench, see Eq.(37).

Our investigations can be extended and generalized in different directions. First,

one can consider another quantum spin chains, for which the conformal conjectures at

the critical point are expected to be satisfied in the same way as for the transverse Ising

chain. In the ferromagnetic phase the relation in Eq.(37) is expected to be valid and

in this way one can measure the non-equilibrium correlation length in an independent

procedure. A second way to generalize our results is to use different forms of the local

quench. One possibility is to use a non-zero defect coupling between the two subsystems

in the initial state and/or to have a non-uniform defect coupling, JL/2 6= J = 1, in the

final state. In the transverse Ising chain the local critical exponents are continuous

function of the strength of the defect [43, 44, 45], so that xs for a decoupled system

should be replaced by a defect exponent, xd. Finally, we can also study local defects

with a more complicated structure, which involve several lattice sites.
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