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We consider the one-dimensional XX-model in a quasi-periodic transverse-field described by the
Harper potential, which is equivalent to a tight-binding model of spinless fermions with a quasi-
periodic chemical potential. For weak transverse field (chemical potential), h < hc, the excitations
(fermions) are delocalized, but become localized for h > hc. We study the non-equilibrium relaxation
of the system by applying two protocols: a sudden change of h (quench dynamics) and a slow
change of h in time (adiabatic dynamics). For a quench into the delocalized (localized) phase, the
entanglement entropy grows linearly (saturates) and the order parameter decreases exponentially
(has a finite limiting value). For a critical quench the entropy increases algebraically with time,
whereas the order parameter decreases with a stretched-exponential. The density of defects after an
adiabatic field change through the critical point is shown to scale with a power of the rate of field
change and a scaling relation for the exponent is derived.

I. INTRODUCTION

Non-equilibrium relaxation in a closed quantum sys-
tem following a change of some parameter(s) in the
Hamiltonian (such as the amplitude of the transverse
field, h(t)) is of recent interest, both experimentally and
theoretically. Considering the speed of variation of the
parameter, we generally discriminate between two lim-
iting processes. For the quench dynamics, the parame-
ter is modified instantaneously, which experimentally can
be realized in ultra cold atomic gases1–11 using the phe-
nomenon of Feshbach resonance. In this process the evo-
lution of different observables after the quench is of in-
terest, as well as the possible existence and properties of
the stationary state, in particular in integrable and non-
integrable systems12–62. In the other limiting relaxation
process, in the so called adiabatic dynamics the parame-
ter is varied very slowly, usually linearly in time, such as
h(t) = t/τ across a phase-transition point. In this case
one is interested in the density of defects, which are pro-
duced when the system falls out of equilibrium close to
the critical point63–80.

Most of the results for non-equilibrium quantum relax-
ation are obtained for homogeneous systems, for which
the eigenstates are generally extended. As a consequence
after a quench the general (time- and space-dependent)
correlation functions decay exponentially, which can be
explained (even quantitatively) within a semi-classical
theory18,37,42,43. In the stationary state thermalization is
expected to hold for non-integrable models16–26 whereas
for integrable models it was a general belief that the sta-
tionary state is described by a so called generalized Gibbs
ensemble (GGE). Very recent studies58–62 show, however,
that the GGE is not generally correct. When it does not
work it is due to the fact that the generalized eigenstate
thermalization hypothesis fails and it strongly appears
to be linked with the presence of bound states in the
spectrum.

Concerning adiabatic dynamics, variants of the Kibble-
Zurek scaling theory63–65 are found to hold: the density
of defects scales as τ−κ and κ is related to the static
critical exponents z and ν, as well as to the dimension of
the system.

Among inhomogeneous quantum systems, random
quantum spin chains have most frequently been stud-
ied in the context of non-equilibrium relaxation81–85.
In these disordered one-dimensional systems, the eigen-
states are localized even in the presence of interactions,
which prevents thermalization after a quench. Conse-
quently an unusual relaxation can be observed: after a
(non-critical) quench both the average entanglement en-
tropy and the magnetization approach a non-vanishing
stationary value. After a critical quench (i.e. a quench
to the critical point), the dynamics is ultra-slow: the en-
tanglement entropy grows in time as ln ln t82–85, whereas
the magnetization behaves as [ln(t)]−A with a disorder
dependent exponent, A86. For the adiabatic dynamics
the defect density is found to scale as67 1/ ln2(τ), which
is a consequence of the equilibrium dynamical scaling
relation87: ξ ∼ ln2(τ), ξ being the correlation length.

Localization of eigenstates can exist in non-disordered
systems, too, as for instance in quasi-periodic systems. A
well known example is the Aubry-André model88, which
is a one-dimensional hopping model with a specific quasi-
periodic potential denoted as Harper’s potential89. This
model could be experimentally realized by ultra cold
atomic gases in optical lattices having two periodic opti-
cal waves with different incommensurate wavelengths90.
For weak quasi-periodic potential the eigenstates are ex-
tended, but they become localized for a sufficiently strong
potential. A similar scenario has been predicted for in-
teracting particles: sufficiently strong quasi-periodic po-
tential leads to many-body localization91,92. The quench
dynamics in the Aubry-André model for hard-core bosons
has been studied recently93, where the GGE scenario was
shown to be valid in the extended phase, but fails in the
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localized phase.
In the present paper we revisit the non-equilibrium re-

laxation properties of the Aubry-André model. New fea-
tures of our study are the following. We consider a mag-
netic model, the S = 1/2 XX-chain in a quasi-periodic
transverse field, which - after a Jordan-Wigner transfor-
mation - is equivalent to a tight-binding model of spinless
fermions in a quasi-periodic chemical potential. We study
the non-equilibrium dynamics after a sudden change of
the amplitude of the transverse field and compute the dy-
namical evolution of the entanglement entropy, as well as
the relaxation of the magnetization. We investigate sep-
arately, when the quench is performed to the extended or
to the localized phase, as well as to the transition point.
We also study adiabatic dynamics, which has not been
considered before, and calculate the density of defects
which are created during the process, when the ampli-
tude of the transverse field is passed linearly through the
localization-delocalization transition point.
The paper is organized as follows: The model and the

observables of interest are introduced in Sec.II. Results
for the quench dynamics and the adiabatic dynamics are
shown in Secs.III and IV, respectively. Our paper is
closed by a discussion in the last section.

II. MODEL AND OBSERVABLES

A. Quasi-periodic XX-chain

We consider the spin-1/2 XX-chain in the presence of
a position dependent transverse field, which is defined by
the Hamiltonian:

H = −J

4

L
∑

n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1)−

L
∑

n=1

hnσ
z
n , (1)

in terms of the σx,y,z
n Pauli-matrices at site n. In the cal-

culation we apply either periodic boundary conditions,
thus σx

L+1 ≡ σx
1 and σy

L+1 ≡ σy
1 , or free boundary con-

ditions, when the first sum in Eq.(1) runs up to L − 1.
In the following we fix J = 1 and use a quasi-periodic
potential:

hn = h cos(2πβn) (2)

where β is an irrational number: typically we use β =√
5−1
2 the inverse of the golden mean, which is the “most”

irrational number. Using the Jordan-Wigner transfor-
mation the Hamiltonian is expressed in terms of fermion
creation (c†n) and annihilation (cn) operators

94:

H = −1

2

L−1
∑

n=1

(c†ncn+1 + c†n+1cn)− h

L
∑

n=1

cos(2πβn)c†ncn ,

(3)
thus in Eq.(3) we have a tight-binding model of spin-
less fermions in a quasi-periodic chemical potential. (For
periodic boundary conditions there is an extra term in

Eq.(3): (c†Lc1+c†1cL) exp(ıπN )/2, whereN =
∑L

n=1 c
†
ncn

is the number of fermions.)
This type of potential appears first in Harper’s

paper89, in which he showed that Hamiltonian in Eq.(3)
for h = 1 describes an electron on a square lattice in a
perpendicular magnetic field. Introducing a new set of
fermion operators ηq through the canonical transforma-
tion:

ηq =
L
∑

n=1

φq,ncn , (4)

with
∑L

q=1 φq,nφq,n′ = δn,n′ the Hamiltonian in Eq.(3) is
transformed to a diagonal form:

H =
∑

q

ǫq
(

η†qηq − 1/2
)

. (5)

Here the energy of modes, ǫq, and the components of
vectors, φq,n satisfy the almost Mathieu equation95:

1

2
φq,n−1 + hnφq,n +

1

2
φq,n+1 = −ǫqφq,n . (6)

There is a vast literature about properties of the al-
most Mathieu equation, as well as on the properties
quasi-periodic Hamiltonians both in mathematical96 and
physical97 points of view.

B. Aubry-André duality

Following Aubry and André88 a new set of fermion
operators are introduced:

ck =
1√
L

∑

n

exp(i2πkβn)cn (7)

which are eigenstates of the momentum operator with
eigenvalue: k = kFn−1modFn, where Fn is the n-th
Fibonacci number and L = Fn. In terms of these the
Hamiltonian is given by:

H = −h

2





L
∑

k=1

(c†
k
ck+1 + c†

k+1
ck)−

2

h

L
∑

k=1

cos(2πβk)c†
k
ck



 .

(8)
Note that Eq.(8) is in the same form as that in Eq.(3),

thus the Hamiltonian satisfies the duality relation:

H(h) = hH(1/h) . (9)

Through Eq.(9) the small h regime of the Hamiltonian,
in which the eigenstates are extended in the real space
are connected with the large h regime, in which the eigen-
states have extended properties in the Fourier space, thus
these are in the real space localized. The localization
transition takes place at the self-duality point, thus the
critical amplitude of the field is hc = 1. For h > 1 the
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localized states have a finite correlation length, ξ, which
is given by88:

ξ =
1

ln(h)
, h > 1 , (10)

for all eigenstates of H. Similar conclusion holds for the
eigenvectors, φq,n in Eq.(6) which are used to diagonalize
the Hamiltonian in Eq.(5). The φq,n-s are localized in the
h > 1 regime with the same correlation length given in
Eq.(10) and for large |h| these are given by:

φq,n = δn,nq
, ǫq = −h cos(2πβnq), |h| ≫ 1 . (11)

C. Observables in the quench dynamics

In the quench process the amplitude of the transverse
field is suddenly changed from a value of h0 for t < 0 to
another value, say h for t > 0 and the Hamiltonians are
denoted by H0 and H, respectively. For t < 0 the system

is in the ground state of the initial Hamiltonian, |Ψ(0)
0 〉,

while for t > 0 its time-evolution involves the new Hamil-
tonian, H, and given by |Ψ0(t)〉 = exp(−iHt)|Ψ(0)

0 〉, thus
generally |Ψ0(t)〉 is not an eigenstate of H. We set ~ to
unity through out this paper. The expectation value A(t)

of an observable, Â, is given by 〈Ψ(0)
0 |ÂH(t)|Ψ(0)

0 〉, where
ÂH(t) = exp(iHt)Â exp(−iHt) is Â in the Heisenberg
picture. One can calculate time-dependent correlation
functions in similar way.
In the actual problem we calculate the

entanglement entropy Sℓ(t) of the first ℓ spins
of the chain and the rest of the system, which
is defined as: Sℓ(t) = Trℓ [ρℓ(t) ln ρℓ(t)]. Here
ρℓ(t) = Trn>ℓ|Ψ0(t)〉〈Ψ0(t)| is the reduced density
matrix with |Ψ0(t)〉 being the state of the complete
system at time t obtained after solving the Schrödinger
equation. In a homogeneous chain for L → ∞ and ℓ ≫ 1
the entanglement entropy has two different regions37.
For t < ℓ/vmax, where vmax is some maximal velocity
of quasi-particles, the entanglement entropy increases
linearly: Sℓ(t) ∼ t; while for t > ℓ/vmax, its saturates
as Sℓ(t) ∼ ℓ. For random quantum spin chains, due to
localized excitations the entanglement entropy saturates
at a finite value, except at the critical point, where there
is an ultra-slow increase of the form82: Sℓ(t) ∼ ln ln t.
In the one-dimensional Fibonacci quasi-crystal, where
the spectrum of excitations is singular continuous96, the
entropy grows in a power-law form: Sℓ(t) ∼ tσ, with
0 < σ < 1 being a function of the quench parameters98.
Another observable we calculate is the

local order-parameter (magnetization), ml(t), at a
position l in an open chain. Here we follow the method
of Yang99 and define ml(t) for large L by the off-diagonal

matrix-element: ml(t) = 〈Ψ(0)
0 |σx

l (t)|Ψ
(0)
1 〉, where |Ψ(0)

1 〉
is the first excited state of H0. In a homogeneous

chain of infinite length (L → ∞), the magnetization
for a bulk site l ≫ 1 has an exponential decay42,48,

both in time: ml(t) ∼ exp(−t/τ̃) for t < l/vmax and

in space: ml(t) ∼ exp(−l/ξ̃) for t ≫ l/vmax. Here
the non-equilibrium relaxation time, τ̃ , and the non-
equilibrium correlation length, ξ̃ are given functions of
the quench parameters, h0 and h. For random quantum

spin chains the local magnetization relaxes to a finite
limiting value, except at the critical point, where the
decay is logarithmically slow86: mb(t) ∼ [ln t]−A and
A depends on the form of the disorder. In the one-
dimensional Fibonacci quasi-crystal the relaxation of the
bulk magnetization is given in a stretched-exponential
form98: mb(t) ∼ exp(−C/tµ). Here the exponent µ
and the exponent of the entanglement entropy, σ, are
found to be close to each other, at least in the so called
non-oscillatory phase.

D. Density of defects in the adiabatic dynamics

In adiabatic dynamics, the amplitude of the transverse
field in Eq.(2) is varied linearly: h = h(t) = t/τ and we
are interested in the density of defects created during this
process. At the starting point, at t = −∞ the ground
state of the system, denoted by Ψ0(−∞), is a classical
product state, since the spins follow the direction of the
local field. It is σz

n = 1 (c†ncn = 1) for cos(2πβn) > 0 and
σz
n = −1 (c†ncn = 0) for cos(2πβn) < 0.
In the following we consider the length of the chain

an even number, so that in that state Ψ0(−∞) the to-
tal magnetization is zero and it is half-filled in terms of
fermions. As time goes on the system evolves according
to the time-dependent Schrödinger equation: its state at
time t satisfies the relation: dΨ/dt = −iH(t)Ψ(t), with
the boundary condition: Ψ(−∞) = Ψ0(−∞). Solving
the eigenvalue problem of the Hamiltonian at time t re-
sults in a ground state Ψ0(t), which generally differs from
Ψ(t), obtained through dynamic evolution. Our goal is to
determine how far is Ψ(t) from the true ground state as
a function of the parameter τ . This is quantified by the
total excitation probability, P , which can be calculated
in the fermionic description in the following way. First,
we notice that the Heisenberg equation of motion for the
operators cn,H(t) are linear67, since the Hamiltonian in
Eq.(3) is quadratic. From this follows that the evolution

of vectors, φ̃q,n(t), which enter in the the diagonaliza-
tion of the Hamiltonian in Eq.(6) satisfy the differential
equation:

i
dφ̃q,n

dt
=

1

2
φ̃q,n−1 + hnφ̃q,n +

1

2
φ̃q,n+1 , (12)

with the boundary condition: φ̃q,n(−∞) = φq,n(−∞),
where the latter are given in Eq.(11). Note, that φq,n(t),
which denotes the equilibrium value of the vector evalu-
ated with the potential at time t trough Eq.(6) is gener-

ally different from its dynamically evolved value: φ̃q,n(t)
and from this can we calculate the excitation probability.
To do so we note that at the starting state at t =

−∞ half of the fermionic states in Eq.(8) are occupied,



4

these are denoted by Q−, whereas the other half of the
fermionic states, the excited ones, denoted by Q+, are
empty. By strictly adiabatic time evolution the excited
states would stay empty. The amount of excitations than
can be measured through the excitation probability:

Pt =
2

L

∑

q∈Q+

∑

q′∈Q−

pq,q′ , (13)

in terms of the partial excitation probabilities:

pq,q′ =

∣

∣

∣

∣

∣

∑

n

φ̃q,n(t)φq′,n(t)

∣

∣

∣

∣

∣

2

. (14)

Note that Pt is normalized in the sense that 0 ≤ Pt ≤ 1.
In the actual calculation we have taken two limiting

final states: i) t = 0, when the quench is performed at
the middle of the extended phase and ii) t = ∞, when the
quench goes across the extended phase and ends at the
other limiting side of the localized phase. In the first case
the localization-delocalization transition point is crossed
once at h = −1, while in the second protocol it is crossed
twice, at h = ±1.

III. QUENCH DYNAMICS

In the (sudden) quench dynamics we have used β =

(
√
5−1)/2, the inverse golden-mean ratio for the param-

eter of the Harper potential and the length of the finite
chains were fixed to a Fibonacci number Fn. We have
calculated the entanglement entropy and the local mag-
netization up to L = F17 = 1597.

A. Entanglement entropy

The entanglement entropy, Sℓ is calculated between a
block of length, ℓ = Fn−2 and its environment of length
Fn−1 with periodic boundary conditions. (For details of
the calculation of the entanglement entropy in the free-
fermion basis see the Appendix of Ref.[100].) We used the
ground state corresponding to the initial field h0 = 0 as
the initial state and then made quenches to the extended
(0 < h < 1) and to the localized phases (h > 1), as well
as to the critical point (h = 1). Numerical results for
Sℓ(t) are shown in Figure 1.
The dynamics of the entanglement entropy has two

different regimes (as for homogeneous chain): for short
times it is an increasing function of time and for long
times it saturates to some value. For quenches to the
extended phase the time-dependence in the initial period
is linear, Sℓ(t) ≈ α(h)t and the saturation value is S̃ℓ ∼
ℓ. This behavior is qualitatively similar to homogeneous
system. Estimates of the prefactor of the linear term,
α are shown in Fig. 2. Starting from h = h0 = 0 α is
first increasing, has a maximum around h = 0.5 and then
decreasing to 0 at h = 1.
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S
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)

t

h=0.5
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t1.00

t0.43

 0.01

 0.1

 1

 0.01  0.1  1

1/
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(h
)

log(h)

L = 987
L = 1597
L = 2584
diffusion

log(h)
(log(h))0.5

FIG. 1: (Color online) Dynamical entanglement entropy af-
ter a quench from h0 = 0 to different values of h (upper
panel). Saturation values of the entanglement entropy and
the limiting value of the width of the wave packet (diffusion)
in the localized phase show a power-law divergence close to
the transition point (lower panel).

After a quench into the localized phase the entropy sat-
urates quickly to an ℓ independent value: S̃ℓ = S̃(h), h >

1. We have checked that close to the transition point S̃(h)
diverges:

S̃(h) ∼ | ln(h)|−σ′

, (15)

with an exponent: σ′ = 0.50(4), see in the lower panel of
Fig.1.
Finally, if the quench is performed to the transition

point the growth of the entropy is given in a power-low
form:

S(t) ∼ tσ , (16)

with an exponent σ = 0.43(5). Using phenomenologi-
cal scaling theory a relation between the exponents σ′

and σ can be derived in the following way. Under uni-
form scaling transformation, when lengths are rescaled
by a factor b > 1 the entanglement entropy behaves as:
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FIG. 2: (Color online) Prefactor of the linear part of the
dynamical entanglement entropy (left axis) and the relaxation
time (right axis) after a quench from h0 = 0 to different values
of h.

S̃(lnh, t) = bsS̃(b/ lnh, t/bz) for h ≥ 1, where we have
used the form of the correlation length in Eq.(10) and
z = 1 is the dynamical exponent. Now taking the scale
factor b = t1/z we obtain S̃(lnh, t) = ts/zŜ(t1/z lnh). At
the critical point, h = 1, the scaling function has the
limiting value limu→∞ Ŝ(u) = cst, thus σ = s/z = s.
Similarly, taking b = 1/ ln(h) we can show that σ′ = s,
thus σ = σ′ in agreement with the numerical results.

The properties of the dynamical entropy can be ex-
plained in terms of anomalously diffusing quasiparticles,
see in Sec. III C.

B. Local magnetization

The local magnetization, ml(t) is measured in a free
chain of length L = Fn at a position l = Fn−2, for tech-
nical details see the Appendix of Ref.[98]. In this re-
gion of the chain the local magnetization is practically
independent of l and we consider it as the bulk magne-
tization and will be denoted by mb(t). The numerically
calculated time-dependent bulk magnetizations after a
quench from h0 = 0 to different values of h are shown in
Fig.3. If the quench is performed to the extended phase
(0 < h < 1) the decay of magnetization is exponential:
mb(t) ∼ exp(−t/τ̃), as in the homogeneous system. Esti-
mates for the characteristic time, τ̃ (h) are given in Fig.2:
with varying h it has similar characteristic as the pref-
actor of the linear part of the entanglement entropy. If
the quench is performed to the localized phase h > 1 the
magnetization approaches a finite limiting value. Finally,
for the critical quench (h = 1) the decay is stretched ex-
ponential:

mb(t) ∼ A(t) exp(−Ctµ) , (17)

-60
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-40
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102 103 104 105

ln
|m

b|

t

h=1.5
h=0.5

h=0.99

-4

-3

-2

6 8 10

-ln
(-

ln
|m

b|
)

ln(t)

FIG. 3: (Color online) Bulk magnetization after a quench
from h0 = 0 to different values of h. In the inset quench to
the critical region is shown in agreement with the stretched-
exponential form in Eq.(17) (the straight lines have a slope
µ = 0.47).

where A(t) is some oscillatory function and µ = 0.47(5).
This is illustrated in the inset of Fig.3. This behavior
is interpreted in terms of quasiparticles in the following
section.

C. Quasiparticle interpretation

Non-equilibrium quench dynamics is well described
within the framework of a semiclassical theory18,37,42,43.
It is based on the concept of quasiparticle that are pro-
duced uniformly in the system during the quench and
which move classically after production. We regard
these quasiparticles as wave packets, which are local-
ized at some site at t = 0 and which perform after-
wards a diffusive motion. Following previous studies in
quasicrystals98,101 we construct the wave packet connect-
ing sites n and n′ at time t in the form:

Wn,n′(t) =
∑

q

cos(ǫqt)φq,nφq,n′ , (18)

in terms of the eigenvectors and eigenvalues of Eq.(6) cal-
culated with the amplitude h, i.e. after the quench. Due
to normalization of the eigenvectors Wn,n′(0) = δn,n′ .
The width of the wave-packet created at site n after time
t is given by:

d(n, t) =

[

∑

n′

(n− n′)2|Wn,n′(t)|2
]1/2

, (19)

which is than averaged over the starting positions, thus
d(t) = d(n, t).
We have calculated d(t) for different values of the am-

plitude of the transverse field and these are shown in
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FIG. 4: Time-dependent width of the wave packet at differ-
ent amplitudes of the transverse field.(Color online)

Fig.4. In agreement with previous studies102 d(t) grows
linearly in the extended phase (0 < h < 1) thus the
quasiparticles move ballistically. From this follows - re-
peating the arguments of the semiclassical theory43 - thus
the dynamical entropy grows linearly and the bulk mag-
netization has an exponential decay. In the localized
phase (h > 1) the width of the wave-packet stays finite,

d(t) → d̃.. We have checked that close to the transition
point this limiting value scales as the localization length
in the system: d̃ ∼ ξ, see in the lower panel of Fig.1.
Finally, at the transition point (h = 1) the width of

the wave packet grows algebraically with time: d(t) ∼
tD, where the diffusion exponent is estimated as D =
0.477(10). In the semiclassical theory the anomalous dif-
fusion of quasiparticles manifests itself in the modified
form of the dynamical entanglement entropy in Eq.(16)
and of the bulk magnetization in Eq.(17). The corre-
sponding exponents, σ, µ and D should be equal, which
is indeed satisfied within the error bars of the numerical
estimates.

IV. ADIABATIC DYNAMICS

The adiabatic dynamics is calculated numerically in
systems of finite size L = 2Fn with β = Fn−1/Fn as an
approximant of the inverse golden mean ratio. (In the
fermionic representation in Eq.(3) for simplicity we used
the so called c-cyclic boundary condition, see in Ref.94.)
We set |hmax| = 10 for the largest amplitude of the trans-
verse field and checked that the numerical results are sta-
ble: they do not change if we used instead |hmax| = 20.
The differential equation in Eq.(12) is integrated numeri-
cally using a Runge-Kutta method with adaptive stepsize
in time to keep the relative error less than 10−6.
Numerical results of the excitation probability as a

function of the time-scale, τ is shown in Fig.5 for the two
types of final states, with t = 0 and t = ∞, respectively.
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FIG. 5: Excitation probability as a function of the time-scale,
τ , after an adiabatic process from h = −∞ to h = 0 (upper
panel) and to h = ∞ (lower panel) calculated in finite systems
of sizes L = 2Fn with n = 13, 14, . . . , 18.(Color online)

In the first case, t = 0 the largest Fibonacci parameter
in the calculation was n = 18, while for t = ∞ it was
n = 17. In both cases the excitation probability has an
asymptotic power-law dependence:

Pt(τ) ∼ At(τ)τ
−κ , (20)

but the prefactors, At(τ) have different functional forms.
In the first case with t = 0 when the localization-
delocalization transition is crossed once (at h = −1) the
prefactor has a weak, approximately log-periodic oscil-
lating form: A0(τ) ∼ sin2(log(τ/τ0)). This type of log-
periodic oscillations are due to discrete scale invariance
and these are often present in quasi-periodic and aperi-
odic systems103. Due to this correction the decay expo-
nent, κ can only be estimated with some uncertainty:

κ = 0.45(5) . (21)

In the second protocol with t = ∞ when the localization-
delocalization transition is crossed twice (at h = −1 and
h = 1) the prefactor has oscillations in τ , A∞(τ) ∼
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sin2(τ/τ∞ + cst.) with τ∞ ≈ 0.15, to which also a log-
periodic correction is supplemented. This oscillatory
phase is analogous to the Stückelberg oscillations104,105

of a periodically driven two-level system which arises due
to the interference of probability amplitude between the
ground and the excited state, when the region of avoided
level crossing is passed twice. In the second case due to
the oscillations the estimate of κ is somewhat less accu-
rate. We checked, however, that the numerical data in
Fig.5 are compatible with the estimate for κ in Eq.(21).
In the following we explain the numerical value of the

decay exponent in Eq.(21) and relate it to the combi-
nation of other exponents. First, let us recapitulate the
reasoning of traditional scaling theory65. The amplitude
of the transverse field at time t̃ is given by h(t̃) = 1+ t̃/τ ,
and therefore the distance from the critical point δ(t̃) =
t̃/τ . This implies that the equilibrium relaxation time
of the system at time t̃ is t̃′ ∼ ξz ∼ δ−νz = (t̃/τ)−νz ,
where ξ is the equilibrium correlation length. When the
relaxation time t̃′ is of the same order as the time t̃ the
system falls out of equilibrium, i.e. the ground state can-
not follow adiabatically the field change any more. The
condition t̃ = t̃′ implies

t̃ ∼ τ
νz

νz+1 . (22)

For |t| < t̃ defects are produced and transitions to ex-
cited states occur. The typical distance between neigh-
bouring defects is then given by ξ (∼ t̃1/z), thus the
phase-space of excitations in a d-dimensional system is

Ω ∼ ξ−d ∼ τ−
dν

νz+1 . Then, it is usually expected that
the elementary transition probabilities, such as pq,q′ in
Eq.(14) are independent of the scale thus P (τ) ∼ Ω and
we arrive at the scaling relation:

Psc(τ) ∼ τ−
dν

νz+1 . (23)

For the Aubry-André model with d = 1 and ν = z = 1
the prediction of traditional scaling theory is κsc = 0.5,
which is somewhat larger than (although at the border
of) the numerical estimate in Eq.(21). However, the as-
sumptions used in the derivation of Psc(τ) are not valid
for the Aubry-André model since the ground state of the
Hamiltonian in Eq.(5) is not a continuous function of
the amplitude of the transverse field at h = ±1. There-
fore we study numerically the scaling behavior of the the
elementary transition probabilities, pq,q′ , calculated at
t = 0, i.e. for the first protocol. First we notice that
pq,q′ = pq′,q and arrange the pq,q′ -s in decreasing order.
Then in Eq.(13) we sum up the contribution of the largest
N terms:

P (N,L, τ) =
2

L

N ′

∑

q∈Q+q′∈Q−

pq,q′ , (24)

which is denoted by the prime at the summation and this
quantity is called the partial excitation probability. For
large-N we can rearrange the parameters q (and also q′),

such that in Eq.(13) by restricting the summations to

q, q′ ≤
√
N we get (asymptotically) P (N,L, τ). Gener-

ally, for q1 < q2 (q′1 < q′2) the free-fermionic energies in
Eq.(6) satisfy ǫq2 < ǫq1 < 0 (0 < ǫq′1 < ǫq′2).
We have calculated the partial excitation probability,

P (N,L, τ), normalized with its limiting value P0(τ) for
different sizes and for different decay parameters. For
large N and L the partial excitation probability is found
to be a function N/L2, thus P (N,L, τ) = P̃ (N/L2, τ),
as illustrated in the upper panel of Fig.6 for different
values of L at a fixed value of τ . The τ -dependence of
P̃ (N/L2, τ) is shown in the lower panel of Fig.6 at a
fixed (large) L and for different values of τ < L. With
increasing τ the scaling functions appear to approach the
same limiting curve, thus P (N,L, τ) is factorized as

P (N,L, τ) = π(N/L2)P0(τ) , (25)

for large enough τ .
As seen in the lower panel of Fig.6 in the log-log plot

π(N/L2) has a linear section over several decades and
then it saturates for large arguments, say for N > Neff .
Thus we can approximate

P (N,L, τ)

P0(τ)
≈

{

P (N,L,τ)
P (Neff ,L,τ) ∼ (N/Neff)

ω N ≤ Neff

1, N > Neff

(26)
From the data in the lower panel of Fig.6 we estimate
ω = 0.90(2). Now let us consider the scaling behavior of

P (N,L, τ) = P̃ (N/L2, τ), when lengths are rescaled be
a factor b > 1. Keeping in mind that Neff/L

2 ∼ Ω is the
phase-space of excitations given by Ω ∼ ξ−1 we obtain:

P̃ (N/L2, τ) = b−ωP̃ (bN/L2, b−
νz+1

ν τ) . (27)

Here the prefactor, b−ω follows from Eq.(26) and the scal-
ing dimension of τ can be read from Eq.(22). Now taking

b = τ
ν

νz+1 we get:

P̃ (N/L2, τ) = τ−
ων

νz+1π(τ
ν

νz+1N/L2) , (28)

thus at N ≈ Neff :

P0(τ) ∼ τ−
ων

νz+1 , (29)

and κ = κscω (also Neff/L
2 ∼ τ−

ν
νz+1 ). With the mea-

sured value of ω we get κ ≃ 0.45 in agreement with the
direct estimate in Eq.(21).

V. DISCUSSION

In this paper we have studied the non-equilibrium dy-
namics of the Aubry-André model for the S = 1/2-spin
XX-chain in the presence of a quasi-periodically mod-
ulated transverse field, which is equivalent to a tight-
binding model of spinless fermions in a quasi-periodic
chemical potential. In this model there is a localization-
delocalization quantum phase-transition separating the
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FIG. 6: Normalized partial excitation probabilities as
a function of (N/L)2 for different sizes: L = 2Fn with
n = 13, 14, . . . , 18 at τ = 100 (upper panel) the same at
L = 2F18 for different values of τ (lower panel) both in log-log
scale.(Color online)

extended and the localized phases. By varying the ampli-
tude of the transverse field in time, h(t), we have studied
the properties of non-equilibrium quantum relaxation at
zero temperature. We considered in details two limiting
cases of the dynamics.
First we studied quench dynamics, in which h(t) is

changed suddenly at t = 0 and focused on the dynamics
of the entanglement entropy, as well as on the relaxation
of the local order-parameter. For quenches to the ex-
tended phase the non-equilibrium dynamics turns out to
be qualitatively similar as in the homogeneous model: the
entanglement entropy increases linearly, while the local
order-parameter decays exponentially. The characteris-
tic parameters, the prefactor of the linear part of the
entanglement entropy, as well as the relaxation time are
found to depend on the details of the quench process.
This type of non-equilibrium behavior is consistent with
the GGE scenario. In contrast to this, after a quench
into the localized phase there is no thermalization in the
stationary state: both the entanglement entropy and the

local order-parameter approaches a finite limiting value.
Finally, for a critical quench the entanglement entropy in-
creases as a power law, whereas the local order-parameter
decays with a stretched exponential. This type of be-
havior is related to the singular continuous form of the
spectrum of the critical Hamiltonian, as already noticed
in the quench dynamics of quantum Fibonacci quasi-
crystals98. The properties of the critical quench have
been explained in the frame of a semi-classical theory in
terms of anomalously diffusing quasi-particles, which are
created uniformly in space during the quench.
In the second type of non-equilibrium process we have

varied h(t) linearly in time with a rate 1/τ and studied
the density of defects in the ground state created dur-
ing this process. If the localization-delocalization tran-
sition point is passed once the density of defects follows
a power-law dependence, ∼ τ−κ, while if two symmet-
rically placed transition points are passed then the den-
sity of defects has a multiplicative oscillating correction,
similar to the Stückelberg phase of periodically driven
two-level systems. Using scaling arguments we have re-
lated κ to another critical exponents as given in Eq.(29).
In this expression also the scaling dimension ω of the
excitation probability enters. For homogeneous systems
it is generally expected that ω = 1. In our case, when
the spectrum of the Hamiltonian is not continuous at the
transition point, as well as the spectrum of the critical
Hamiltonian is singular continuous we have ω < 1. It is
expected that ω 6= 1 is a general rule for quasi-periodic
and aperiodic Hamiltonians.
Finally, we discuss the question of the non-equilibrium

dynamics of the Hamiltonian in Eq.(1) for different val-
ues of the quasi-periodicity parameter β in Eq.(2). If β
is a rational number of the form β = 1/(2q) with q be-
ing an integer, then in the adiabatic process the decay
exponent is given by80 κ = q/(q + 1). The same result
holds for β = p/(2q), when p is an odd integer and p and
q are relative primes, at least for not too large values of
q. Thus these results can not be analytically continued
to the case, when β is an irrational number. If β is an
irrational number and different from the inverse of the
golden mean ratio studied in this paper, than the critical
exponents of the non-equilibrium dynamics are expected
to be β dependent. Some hint in favor of this assumption
can be found in the diffusion properties of the quasiparti-
cles, see in Sec.III C. Indeed the diffusion exponent, D, is
measured to be β dependent102 and the same is expected
to hold for the non-equilibrium exponents σ and µ.

Acknowledgments

This work has been supported by the Hungarian Na-
tional Research Fund under grant No. OTKA K109577.
G. R. and F. I. thanks to the Institute of Theoretical
Physics, Saarland University for hospitality and G. R.
thanks to the Campus Hungary for a travelling grant. U.
D. acknowledges financial support from Alexander von



9

Humboldt foundation with which this work was carried
out at Saarland University, and the hospitality of Wigner
Research Center, Institute of Solid State Physics, Bu-
dapest during her visit. U.D. also acknowledges funding

from DST INSPIRE Faculty Fellowship by DST, Govt.
of India. Correspondence with G. Takács is thankfully
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87 For a review, see: F. Iglói and C. Monthus, Physics Re-

ports 412, 277, (2005).
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