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Abstract

In this article, we consider a receding horizon control of discrete-time state-dependent
jump linear systems, particular kind of stochastic switching systems, subject to possibly un-
bounded random disturbances and probabilistic state constraints. Due to a nature of the
dynamical system and the constraints, we consider a one-step receding horizon. Using inverse
cumulative distribution function, we convert the probabilistic state constraints to determin-
istic constraints, and obtain a tractable deterministic receding horizon control problem. We
consider the receding control law to have a linear state-feedback and an admissible offset term.
We ensure mean square boundedness of the state variable via solving linear matrix inequalities
off-line, and solve the receding horizon control problem on-line with control offset terms. We
illustrate the overall approach applied on a macroeconomic system.

1 Introduction

Dynamical systems subject to random abrupt changes, such as manufacturing systems, networked
control systems, economics and finance etc., can be modelled adequately by random jump linear
systems (RJLSs). RJLSs are a particular kind of stochastic switching systems, which consists of a
set of linear systems, also called multiple modes, and the switching among them is governed by a
random jump process.

A notable class of RJLSs is Markov jump linear system (MJLS) in which the underlying random
jump process is a finite state Markov chain (or a finite state Markov process). Many important
results related to stability, control, and applications of such systems have been investigated in the
literature, for instance in [7], [14], [17], [18], [23], [26] etc. Almost all the works related to MJLSs as-
sume that the underlying random jump process is time-homogeneous/time-inhomogeneous Markov,
which is a restrictive assumption.

In this article, we deal with a class of RJLSs in which the evolutions of the random jump
process depends on the state variable, and are referred to as state-dependent jump linear systems
(SDJLS). In the following, we list some motivations for SDJLS modelling of dynamical systems.
In the analysis of random breakdown of components, the age, wear, and accumulated stress of a
component affect its failure rate, for instance. Thus, it can be assumed that the failure rate of a
component is dependent on state of the component at age t [4], where the state variable may be an
amount of wear, stress etc. As an another instance, in [20], a state-dependent Markov process was
utilized to describe the random break down of cylinder lines in a heavy-duty marine diesel engine.
Also, we can examine a stock market with situations: up and down, and the transitions between
the situations can be dependent on state of the market, where the state variable may be general
mood of investors and current economy etc. Also, a state-dependent regime switching model was
considered in [24] to model financial time series. One can find other instances or examples of
SDJLS modelling in the literature.

The studies of stability and control of SDJLSs have been scanty in the literature. A study of
hybrid switching diffusion processes, a kind of continuous-time state-dependent jump non-linear
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systems with diffusion, was considered in [43] by treating existence, uniqueness, stability of the
solutions etc. For RJLSs, a state and control dependent random jump process was considered in
[36], where the authors used stochastic maximum principle to obtain optimal control for a given
objective function. SDJLS modelling of flexible manufacturing system was proposed in [8], and
dynamic programming is used to obtain an optimal input which minimizes the mentioned cost. A
state-dependent jump diffusion modelling of a production plant was considered in [19] to obtain an
optimal control. In the sequel, we bring back the attention to the main ingredients of the problem
that we address in this article.

In this article, we consider that the SDJLS is affected by possibly unbounded stochastic distur-
bances, and the perfect state information is assumed. We also deal with constraints on different
variables of the system that is inherent in all practical systems. Model predictive control (MPC),
also called receding horizon control (RHC), is an effective control algorithm that has a great po-
tential to handle input and/or state constraints, for problems across different disciplines. MPC is
a form of control in which the current input is obtained at each sampling time by solving on-line a
finite horizon optimal control problem in the presence of constraints, using the current information
and the predicted information over the finite horizon. Normally more than one input is obtained
at the current sampling time, however, only the first controller input will be implemented to the
plant. At the next sampling time, these actions will be repeated, that is why the MPC is also called
the RHC. One can refer to [9], [28], [29], [34] etc., for classic contributions in the MPC literature.
In the context of RJLSs, of late, the RHC scheme has been extended to discrete-time MJLSs.
For discrete-time MJLSs, the RHC with hard symmetric constraints and bounded uncertainties in
system parameters was dealt by [27], [42], where the constraints and the objective function were
posed as sufficient conditions in terms of linear matrix inequalities (LMIs) to be solved at each
sampling time; for the similar case without constraints, the RHC was addressed by [31] following
the similar approach. Also, for unconstrained state and control input, optimality of the RHC was
addressed via dynamic programming [40], variational methods [39], solving Riccati equations [15],
etc.

One major issue in the presence of unbounded disturbances is that the RHC cannot necessarily
guarantee the satisfaction of constraints. For instance, an additive unbounded disturbance eventu-
ally drives the state variable outside any bounded limits, no matter how arbitrarily large they may
be. A possible alternative is to consider the satisfaction of constraints in stochastic manner, which
allow occasional constraint violations. In this direction, recent approaches [33], [10], [25], and the
references therein treat the RHC of discrete-time linear systems with stochastic constraints. For
discrete-time MJLSs, in case of perfect state availability, a linear quadratic regulator problem with
second moment constraints was considered in [41], where the entire problem was converted to a
set of LMIs. However, to the best of the authors’ knowledge, the RHC of discrete-time SDJLSs
with probabilistic constraints has not been examined.

In this article, we address a one-step RHC of discrete-time SDJLSs with additive Gaussian
process noise (its distribution has an unbounded support), and probabilistic state constraints
under perfect state availability. We would like to highlight several challenges in our problem set-
up. First, in the presence of additive process noise with unbounded support, it impossible to
guarantee hard bounds on the state, and also on the linear state-feedback control. Second, one
needs to pre-stabilize the system before addressing the RHC problem. Third, one needs to obtain
a tractable representation of the RHC problem in the presence of probabilistic constraints.

Our approach along with main contributions in this article can be listed as follows. In our
problem set-up, we consider the control to have a linear state-feedback and an offset term [2], [30],
where linear state-feedback gains are computed off-line for pre-stabilization and admissible offset
terms are computed on-line to solve the RHC problem. In the presence of unbounded process
noise, it is not possible to ensure hard bounds on the state and the control variables that follow
state-feedback law, thus we consider the state variable to be probabilistically constrained and the
control to be unconstrained, except for the offset term. Using inverse cumulative distribution
function, we convert the probabilistic state constraints to deterministic constraints and the overall
RHC problem is replaced by a tractable deterministic RHC problem.

To summarize, for SDJLS subject to possibly unbounded random disturbances and probabilistic
state constraints, our contributions in this article are:

• pre-stabilizing the system state by a state-feedback controller in means square sense,

• implementing a one-step RHC scheme on-line with probabilistic constraints on the state
variable, which are converted to deterministic constraints.
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For illustration, we apply our approach to a macroeconomic situation.
The article is organized as follows. Section 2 presents the problem setup. We present the pre-

stabilization of the system by a state feed-back controller in section 3. We convert the probabilistic
constraints to suitable deterministic constraints in section 4. We give a one-step RHC scheme
with probabilistic constraints in section 5. Section 6 presents an illustrative example followed
by conclusions in section 7. Finally, we give majority of the proofs in the Appendix to improve
readability.

Notation: Let R
n denotes the n-dimensional real Euclidean space and N≥0 the set of non-

negative integers. For a matrix A, AT denotes the transpose, λmin(A) (λmax(A)) the minimum
(maximum) eigenvalue and tr(A) the trace of A. The standard vector norm in R

n is denoted by
‖.‖ the corresponding induced norm of a matrix A by ‖A‖. Given a matrix L, L ≻ 0 (or L ≺ 0)
denotes that the matrix L is positive definite (or negative definite). Given two matrices L and M ,
L ≥ M (or L ≤ M) denotes the element wise inequalities. Symmetric terms in block matrices are
denoted by ∗. A matrix product AP⋆ denotes APAT . The identity matrix of dimension n × n is
denoted by In. The diagonal matrix formed from its vector arguments is denoted by diag{.}. The
underlying probability space is denoted by (Ω,F ,Pr) where Ω is the space of elementary events,
F is a σ-algebra, and Pr is the probability measure. The mathematical expectation of a random
variable X is denoted by E[X]. Further notation will be introduced when required.

2 Problem setup

Consider a discrete-time SDJLS:

xk+1 = Aθkxk +Bθkuk + Eθkwk, k ∈ N≥0, (1)

with the state xk ∈ R
n, the control input uk ∈ R

m, the system mode θk. Let Aθk , Bθk be the system
matrices of appropriate dimensions that are assumed to be known, and without loss of generality
we assume that Eθk are identity matrices. Perfect state information and the mode availability
is assumed at each time k ∈ N≥0. We set Fk the σ-algebra generated by {(θt, xt); 0 ≤ t ≤ k}.
Regarding the different stochastic processes, the following assumptions are made:

Assumption 1. Let wk ∈ R
n be an n−dimensional standard Gaussian distributed random vector

i.e. wk ∼ N (0, In), independent of Fk.

Assumption 2. Let the mode {θk}k∈N≥0
∈ S = {1, 2, · · · , N} be a finite-state random jump

process described by

Pr{θk+1 = j|Fk} = Pr{θk+1 = j|(θk, xk)} = πθkj(xk) =

{

λθkj , if xk ∈ C1,
µθkj , if xk ∈ C2,

(2)

where λij ≥ 0 (µij ≥ 0) is the transition probability from a state i to a state j, and
∑N

j=1λij =

1
(

∑N
j=1µij = 1

)

. Here we further assume that C1 ∪ C2 = R
n, C1 ∩ C2 = φ.

If we observe the SDJLS (1), the actual state consists of two parts: the state xk and the mode
θk. If the mode θk is fixed for all k ∈ N≥0, then the SDJLS (1) is equivalent to the standard linear
time-invariant system. Thus the role of the mode θk is important in the SDJLSs, and in general in
any switching systems. With this background, we observe the mode dependence through out the
article: in designing state-feedback gains, in handling probabilistic constraints and in weighting
matrices in the objective function.

The sets C1 and C2 in (2) are described explicitly as follows. We consider the set C1 as a
polyhedral intersection of finite constraints on the state variable and C2 as Rn − {C1}. So, in this
article, the states of the system that belong to C1 are specifically denoted by

xk ∈ C1 ⇐⇒ Gxk ≤ H, (3)

where G ∈ R
r×n and H ∈ R

r. We can regard C1 as a desirable set, and ideally we want the
system state to be constrained in C1. However, the state variable being affected by Gaussian noise
that is unbounded in distribution, it is impossible to constrain the state to the set C1 at all times.
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Thus, we consider probabilistic state constraints, and in section 4, we describe in detail the type
of probabilistic state constraints that we deal in this article.

In our RHC problem, we address the minimization of the following one-step objective function

Jk = E

[

xT
kQθkxk + uT

kRθkuk + xT
k+1Ψθk+1

xk+1|Fk

]

(4)

subject to probabilistic state constraints and the control input that follows an affine state-feedback
law. Here Qi ≻ 0, Ri ≻ 0, Ψi ≻ 0 are assumed to be known for i ∈ S. In this formulation, the
terminal cost depend on the matrices Ψ(.) and the state of the system at time k + 1. The choice
of one-step prediction in (4) is explained in detail in section 5 in perspective of the system and the
constraints.

2.1 Control policies

We parametrize the control input as (inspired by [2], [30])

uk = Kθkxk + νk, (5)

where feed-back gains Kθk, for θk ∈ S, will be designed to pre-stabilize the system in mean square
sense that will be given the next section. An on-line minimization of a Jk in (4) subject to con-
straints will be carried out by an appropriate νk.

Remark 1. Notice that the state-feedback control input (5) is not bounded a priori. The reason is
as follows. From (1), the state xk in (5) is a function of Gaussian noise. Since Gaussian distribution
has an unbounded support, we cannot assume the a priori boundedness of uk (5). Thus, we just
consider νk to be bounded to obtain a tractable solution of minimization of Jk in (4) subject to
constraints.

Thus, we give an explicit assumption on νk in the following.

Assumption 3. We assume that νk belong to a compact set U ⊂ R
m.

Remark 2. Note that νk is obtained by solving P3 on-line that will be introduced in section 5. It
will be observed that the computation of νk relies on the available information (θk, xk), for each
k ∈ N≥0. Thus νk can be regarded as Fk-measurable random variable taking values in U.

Substituting (5) into (1), we obtain the closed loop system as

xk+1 = Ãθkxk +Bθkνk + wk, (6)

with Ãθk = Aθk +BθkKθk .

Remark 3. In this article, we consider the linear state-feedback control input (5) for pre-stabilization,
where we could not ensure hard bounds on the control because of the stochastic unbounded dis-
turbance. To incorporate bounded controls in the class of causal feedback policies, one alternative
could be employing an affine disturbance feedback control with non-linear saturation of noise terms
[21], [22]. In this approach, the disturbance implicitly depends on the output, hence on the state
in a causal manner. However, in this case the system under consideration needs to be internally
stable.

In the next section, we synthesize the state-feedback gains Kθk in (5), which pre-stabilize (6)
in bounding the state-trajectories in mean square sense.

3 Pre-stabilization results

In this section, we pre-stabilize the system (6) with state-feedback gains Kθk by solving sufficient
LMIs off-line.

In general, in the presence of unbounded disturbances, it is difficult to guarantee or estab-
lish stability. It is impossible to expect asymptotic stability to origin. However, we synthesize
a state-feedback controller that bound the second moment of the state-trajectories. The results
of this section rely on a stochastic version of Lyapunov’s second method [14], [16] by the choice

4



of mode-dependent Lyapunov function V (xk, θk) = xT
k Pθkxk with Pθk ≻ 0, ∀θk ∈ S. In [16], the

authors studied the stochastic stability of discrete-time MJLSs subject to uncertainties in system
parameters, and we extend these results to examine the stochastic stability of SDJLSs (6), where
the underlying random jump process is state-dependent, which is the theme of our approach. We
begin with the following definitions.

Let T ⊂ R
m×n be a linear subspace of real matrices. Set T N = T × T × · · · × T . Also, let

Sn ⊂ R
n×n be a linear subspace of real symmetric matrices. Set SN

n = Sn × Sn × · · · × Sn.

We give a proposition to pre-stabilize the system (6) in the following.

Proposition 1. If there exist matrices K = ( K1 · · · KN ) ∈ T N , P =
(

P1 · · · PN

)

∈
SN
n , with Pi ≻ 0, 1 ≤ i ≤ N such that

ÃT
i

(

∑N

j=1
λijPj

)

Ãi − Pi = E1
i ≺ 0, (7)

and

ÃT
i

(

∑N

j=1
µijPj

)

Ãi − Pi = E2
i ≺ 0. (8)

then the trajectories of (6) satisfy the estimates:

E
[

‖xk‖2
]

≤ β1‖x0‖2qk + β2, ∀ k ∈ N≥0, (9)

for some β1 ≥ 1, β2 > 0 and q ∈ (0, 1).

Proof. Given in Appendix A.

In the sequel, we provide a proposition to synthesize gains Kθk , for θk ∈ S.

Proposition 2. If there exist matrices Xi ≻ 0 and Yi, 1 ≤ i ≤ N , such that

[

−XD Λi (AiXi +BiYi)
∗ −Xi

]

≺ 0, (10)

and
[

−XD Γi (AiXi +BiYi)
∗ −Xi

]

≺ 0, (11)

where


















Λi =
[

√

λi1In · · ·
√

λiN In

]T

,

Γi =
[√

µi1In · · · √
µiN In

]T

,

XD = diag{X1, · · · , XN},
then the trajectories of the system (6) satisfy (9), and Ki is given by

Ki = YiX
−1
i . (12)

Proof. Briefly, we explain the steps to arrive at the result. Consider the Schur complement of
(7), (8), and let Xi , P−1

i . By the congruent transformation of Schur complement of (7), (8) by
diag{X1, · · · , XN , Xi}, and applying a change of variable Yi , KiXi one obtains (10), (11). Hence,
if (10), (11) are feasible and using proposition 1, it follows that the trajectories of (6) satisfy the
estimates (9). Hence the proof is complete.

Remark 4. Though the conditions to obtain the state-feedback gainsKθk , for θk ∈ S, in proposition
2 seems computationally heavy, we perform these computations off-line, and only once. Once we
obtain the state-feedback gains Kθk , we use them as a lookup table, where depending on the mode
θk at each time k ∈ N≥0, the corresponding value of the state-feedback gain is used in updating
the state in (6).
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4 Probabilistic constraints

In this section, we consider the probabilistic state constraints that we address in this article, and
replace them by deterministic constraints.

We mentioned in section 2, that it is impossible to constrain the state variable to the set C1,
which is polyhedron Gxk ≤ H, where G ∈ R

r×n and H ∈ R
r. Rather, let us consider probabilistic

constraint

Pr{Gxk ≤ H} ≥ ξ, (13)

which portrays the probabilistic scenario of staying in the polyhedron. Here ξ represents the level
of constraint satisfaction, which needs to be high enough (ξ >> 0). However, without loss of
generality, we assume that ξ may take any values in the interval [0, 1]. In the sequel, we try
to obtain deterministic constraints that imply the probabilistic constraint (13). We say it as
converting probabilistic constraint to deterministic ones. A sufficient condition to satisfy (13) is
given by [25],

Pr{Gxk+1 ≤ H|Fk} ≥ ξ. (14)

Now, we present a sufficient deterministic condition to satisfy (14) via approximation of inscribed
ellipsoidal constraints [38], [37].

Lemma 1. Let δ =
√

F−1
n,Chi(ξ), where F−1

n,Chi(ξ) denotes Chi-square inverse cumulative distribu-

tion function with a given probability ξ and n degrees of freedom. If

Gj(Ãθkxk +Bθkνk) ≤ Hj − ‖Gj‖2δ, for 1 ≤ j ≤ r, (15)

then Pr{Gxk+1 ≤ H|Fk} ≥ ξ, where Gj and Hj are jth rows of G and H respectively.

Proof. The proof is given on the similar lines of [38], [37] and outlined in Appendix B.

Note that (15) is an over conservative condition, because the deterministic condition (15) implies
(14), which finally implies (13). Even for this special case, we could not obtain an equivalent
representation of (14), which is non-convex in general, where it is hard to find its feasible region
[32]. So, alternatively, we propose the individual probabilistic constraints of type

Pr{Gjxk ≤ Hj} ≥ ξ, 1 ≤ j ≤ r, (16)

where Gj and Hj represent the j
th row of G and H respectively. With given ξ, the constraints (16)

offer satisfaction of each individual constraint of the polyhedron probabilistically, but with more
constraint violations [1] than (13) that will also be observed in section 6. However, we consider the
individual probabilistic constraints (16), because they are simpler to handle and in general convex
[32], [1]. Similar to the above treatment, a sufficient condition to satisfy (16) is given by

Pr{Gjxk+1 ≤ Hj |Fk} ≥ ξ, 1 ≤ j ≤ r. (17)

By (6), one obtains,

Pr{Gj(Ãθkxk +Bθkνk + wk) ≤ Hj} ≥ ξ (18)

⇐⇒ Pr{Gjwk ≤ Hj −Gj(Ãθkxk +Bθkνk)} ≥ ξ

⇐⇒ FGjwk
(Hj −Gj(Ãθkxk +Bθkνk)) ≥ ξ

⇐⇒ Gj(Ãθkxk +Bθkνk) ≤ Hj − F−1
Gjwk

(ξ), (19)

where FGjwk
(.) and F−1

Gjwk
(.) are the cumulative distribution and inverse cumulative distribution

of the random variable Gjwk respectively.

Remark 5. The probabilistic constraints (16) result in handling with uni-variate Gaussian random
variables Gjwk when converting to deterministic constraints (19), which is straightforward. In this
case, given ξ, F−1

Gjwk
(ξ) can easily be obtained.

Observe that the conditions (17) and (19) are equivalent, which imply (16).

Remark 6. The probabilistic constraints (13) and (16) are two different ways of treating the con-
straints Gxk ≤ H in a probabilistic fashion. We consider the probabilistic constraints (17) because
of the simplicity and low conservatism involved.
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5 A One-step RHC with probabilistic state constraints

In this section, we provide a one-step RHC problem with the objective function (4) subject to the
probabilistic constraints (17) and the state-feedback control input (5).

At each k ∈ N≥0, we consider the following one-step RHC problem

P1 :min
νk

Jk = E

[

xT
kQθkxk + uT

kRθkuk + xT
k+1Ψθk+1

xk+1|Fk

]

s.t. (1), (2),

Pr
{

Gjxk+1 ≤ Hj |Fk

}

≥ ξ, 1 ≤ j ≤ r, ξ ∈ [0, 1], (20)

uk = Kθkxk + νk, (21)

νk ∈ U. (22)

Remark 7. In P1, we choose the prediction horizon to be one because of the probabilistic constraints
(20) and the system (6). In section 4, we obtained a deterministic equivalence of the constraints
(20) in terms of the state variable and the mode at time k that are known. In general, the larger
prediction horizon result in better performance and more computational burden depending on
the system [28]. The choice of the prediction horizon depends on the performance requirements
and computational capability. Suppose, if we consider a multi-step prediction, the probabilistic
constraints in P1 look like Pr

{

Gjxk+N ≤ Hj |Fk

}

≥ ξ, for N ≥ 2. By proceeding with the similar
approach of section 4, we can obtain an equality similar to (18) that contain additional unknown
random variables θk+m, 1 ≤ m ≤ N − 1, where it is not possible to obtain its deterministic
equivalence. Thus, we choose a one-step prediction horizon to obtain a deterministic equivalence
of the probabilistic constraints (20) for tractability of P1. At this point, we give a brief review
of some works in the literature of RJLSs with multi-step prediction. In case of perfect state
availability, without process noise, a multi-step prediction horizon was considered for discrete-time
MJLSs with hard symmetric input and state constraints [27], [42], where an upper bound of the
objective function was minimized and the overall problem with the constraints was converted to
sufficient LMIs. The approach was based on [13], where the state variable was restriced to an
invariant ellipsoid in the constrained space and the techniques of LMIs and Lyapunov method
were utilized. However, it brings a computational burden because of the additional LMIs, and
more importantly it reduces the feasibility region drastically depending on the invariant ellipsoid.
To avoid the sufficiency, the authors in [41] directly considered ellipsoidal constraints (in terms
of second moment constraints) for discrete-time MJLSs with multi-step prediction, where the
constraints were replaced by a set of LMIs.

It can be possible that the P1 become infeasible when the constraints (20) are tight with a
given admissible input. To resolve this issue, the constraints can be relaxed by an additional slack
variable ρk ≥ 0 as [35],

Pr
{

Gjxk+1 ≤ Hj + 1ρk|Fk

}

≥ ξ, (23)

where 1 denotes a column vector of appropriate size, which contain all ones. Thus from (19),

Gj

(

Ãθkxk +Bθkνk
)

≤ Hj − F−1
Gjwk

(ξ) + 1ρk. (24)

The addition of a variable ρk can be compensated by adding a variable αρk to the objective
function in P1. In particular, α > 0 should be chosen as a very high value, which act as a penalty
to discourage the use of slack variable [12].

Thus P1 will be converted to

P2 : min
νk,ρk

Jk = xT
kQθkxk + uT

kRθkuk + E
[

xT
k+1Ψθk+1

xk+1|Fk

]

+ αρk

s.t. (1), (2),

Gj

(

Ãθkxk +Bθkνk
)

≤ Hj − F−1
Gjwk

(ξ) + 1ρk, 1 ≤ j ≤ r, ξ ∈ [0, 1], (25)

uk = Kθkxk + νk, (26)

νk ∈ U, (27)

ρk ≥ 0. (28)

Notice that due to (25), (28), P2 is always feasible.
The main task is to minimize the objective function in P2 by a proper choice of νk. To accomplish

this task, we present P2 in a tractable fashion in the following.
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5.1 Formulating P2 as a tractable problem

In order to write the P2 in terms of tractable terms, consider the term E
[

xT
k+1Ψθk+1

xk+1|Fk

]

.
From (6), xk+1 is a random vector with

E [xk+1|Fk] = Ãθkxk +Bθkνk,

and
E

[{

xk+1 −
(

Ãθkxk +Bθkνk

)}

1 ⋆ |Fk

]

= E
[

wkw
T
k

]

= In.

And now, let us consider the following lemma which is a classic result,

Lemma 2. Let x be a random vector with mean m and covariance matrix R, and let K be a given
matrix of suitable dimensions. Then

E
[

xTKx
]

= mTKm+ tr(KR). (29)

The result (29) and the law of total probability gives that

E

[

xT
k+1Ψθk+1

xk+1|Fk

]

=
(

Ãθkxk +Bθkνk

)T

Πθk ⋆+tr (Πθk) , (30)

where Πθk ,
∑N

j=1
πθkj(xk)Ψj . By (30), the objective function in P2 can be expressed as

Jk = xT
kQθkxk + uT

kRθkuk +
(

Ãθkxk +Bθkνk

)T

Πθk ⋆+tr (Πθk) + αρk.

Thus, the problem P2 is equivalent to

P3 : min
νk,ρk

Jk = xT
kQθkxk + uT

kRθkuk +
(

Ãθkxk +Bθkνk

)T

Πθk ⋆+tr (Πθk) + αρk

s.t. (1), (2),

Gj(Ãθkxk +Bθkνk) ≤ Hj − F−1
Gjwk

(ξ) + 1ρk, 1 ≤ j ≤ r, ξ ∈ [0, 1], (31)

uk = Kθkxk + νk, (32)

νk ∈ U, (33)

ρk ≥ 0. (34)

We denote J∗
k as an optimal solution of P3. To solve P3, which is a Quadratic Programming (QP)

problem, we use the default QP solver in MATLAB. When we solve P3, if ρk is zero, for all k ≥ 0,
then we have solved original P1, and the solution of P3 would be equivalent to the solution of P1. If
ρk is positive, then we conclude that P1 was infeasible, and the solution of P3 would approximate
the solution of P1. This approximation depends on the magnitude of ρk, which need to be lower
for better approximation.

6 Illustrative Example

In this section, we illustrate the proposed approach on a dynamics of macroeconomic system.
We consider a macroeconomic system based on Samuelson’s multiplier accelerator model that has
been considered by several authors [5], [6], [11], [13], [44] etc., to illustrate the respective results on
discrete-time MJLSs. In these works, basically, the discrete-time MJLS modelling of the economic
system was considered to describe the relation between the government expenditure (control in-
put) and the national income (system state) with different economic situations (modes) and the
switching among the modes was modelled as a homogeneous Markov chain; an interested reader
can refer to the above references for the detailed mathematical model. In all these references, the
authors considered that the transitions among the economic situations follow a time homogeneous
Markov chain. A more realistic scenario is to consider that the transitions among the economic
situations depend on the state of the economic system.

An economic system subject to fluctuations with state-dependent economic situation can be

given by the SDJLS (1) , where xk := [xk(1)xk(2)]
T ∈ R

2 with x0 =
[

2 2
]T

. Here xk(2)
denotes the national income, xk(1) denotes the one unit time delayed version of xk(2), uk ∈ R
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refers to the government expenditure. Let wk ∼ N (0, I2), which represents the fluctuations in the
national income. Let θk ∈ {1, 2, 3} represent modes of the economic system under three situations:
i = 1 (normal), i = 2 (boom), i = 3 (slump). The parameters of the mode matrices are:

A1 =

[

0 1
−2.5 3.2

]

, A2 =

[

0 1
−4.3 4.5

]

, A3 =

[

0 1
5.3 −5.2

]

,

Bθk =
[

0 1
]T

. The state-dependent transitions of the mode θk are given by (2), where

λ =





0.6 0.3 0.1
0.25 0.55 0.2
0.35 0.15 0.5



 , µ =





0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64



 ,

G =

[

0 −1
0 1

]

, H ≡ Hk =

[

−2− 0.5k
5 + 0.5k

]

.

Observe that when the economy (the state xk) satisfies Gxk ≤ H, the transitions among the modes
follow λ, where the transition probabilities to boom are higher, and also the transition probabilities
to slump are lower compared to µ. Thus, we observe the transitions among the economic situations
depend on the state of the economy. Consider the state-feedback control input (5) with ‖νk‖ ≤ 100.
For pre-stabilization, we consider proposition 2 that can be satisfied with

X1 =

[

1.3146 0
0 0.7534

]

, X2 =

[

1.9255 0
0 0.7628

]

, X3 =

[

1.1393 0
0 0.1044

]

,

Y1 =
[

3.2866 −2.4108
]

, Y2 =
[

8.2797 −3.4325
]

, Y3 =
[

−6.0384 0.5429
]

.

Thus the system is pre-stabilized in the sense of (9), and the state-feedback gains are given by

K1 =
[

2.5 −3.2
]

,K2 =
[

4.3 −4.5
]

,K3 =
[

−5.3 5.2
]

.

We assume the probabilistic state constraints (17) with ξ = 0.85 as a pre-specified monitory
target policy at each k. It means that the income (the state) is required to meet the target (the
range between the red lines given in figure 3a and figure 4 with a probability ξ = 0.85, which
denotes the level of constraint satisfaction.

We consider the following parameters for the one-step RHC problem P3: α = 1000, Q1 = I2,
Q2 = 1.1I2, Q3 = 1.2I2, R1 = 1, R2 = 1.2, R3 = 1.3, Ψ1 = I2, Ψ2 = 2I2, and Ψ3 = 3I2. Using the
parameters, we solve P3, at each time k. With these parameters we obtain ρk as zero for all k,
which imply that the original problem P1 was feasible and the solution of P3 is equivalent to the
solution of P1. We consider the planning for 5 years of duration, where each unit time represents
the period of three months. A sample mode (θk) evolution is given in figure 1, which shows a
sample evolution of an economic situation (normal, bloom or slump). A corresponding optimal
cost J∗

k is shown in figure 2. Suppose, if the values of ρk are not zero and larger ( ρk >> 0) to make
the constraints (24) feasible, then this would make the values of J∗

k >> αρk = 1000ρk, because all
the remaining terms of the objective function in P3 are positive.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

θ k

k

Figure 1: A sample evolution of θk
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1 000

1 200

J k*

k

Figure 2: An optimal cost J∗
k
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To observe the probabilistic state constraints (17) qualitatively, we performed Monte Carlo
simulations for 50 runs and the incomes (xk(2)) are shown in figure 3a. One can observe occasional
constraint violations, because we consider the constraint satisfaction probabilistically.

To compare the probabilistic constraints (17), (14), we also solved P3 with the joint probabilistic
constraints (14) and the incomes (xk(2)) are shown in figure 3b that are obtained via Monte Carlo
simulations. From figure 3a and 3b, one can observe more constraint violations with individual
probabilistic constraints (17) than (14), which is stated in section 4. In figure 3b, we obtain ρk > 0,
for some k, which is due to smaller feasibility region of (15) compared to (19) that can be observed
by comparing the right hand sides of (15) and (19).

0 5 10 15 20

5

10

15

20

25

30

x k(2
)

k

 

 
xk(2)

Target values

(a) Individual probabilistic constraints (17)
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15

20
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x k(2
)

k

 

 
xk(2)

Target values

(b) Joint probabilistic constraints (14)

Figure 3: A qualitative representation of the probabilistic constraints

To compare the probabilistic state constraints (17) with different values of ξ qualitatively, we
perform Monte Carlo simulations of 50 runs for values of ξ (0.95, 0.5, 0.3) separately by keeping
the remaining parameters same as above, and the incomes are shown in figure 4. Observe that the
larger the level of constraint satisfaction ξ, the better the incomes meet the required target. For
this experiment, we obtained ρk as zero, for all k, when ξ is 0.5 and 0.3; ρk > 0, for some k, when
ξ is 0.95. It implies that the higher the level of constraint satisfaction ξ, the more the chance of
becoming the original P1 infeasible. This can also be observed from (19), where the larger values
of ξ makes the right hand side of (19) smaller, thus reducing its feasibility region.
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Figure 4: Illustration of the probabilistic constraints with different values of ξ

7 Conclusions

We considered a receding horizon control of discrete-time state-dependent jump linear systems sub-
ject to additive stochastic unbounded disturbance with probabilistic state constraints. We used
an affine state-feedback control, and synthesized feedback gains that guarantee the mean square
boundedness of the system by solving a linear matrix inequality problem off-line. We obtained
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sufficient deterministic conditions to satisfy probabilistic constraints by utilizing inverse cumula-
tive distribution function, and consequently converted the overall receding horizon problem as a
tractable deterministic optimization problem. Although, it is difficult to guarantee the recursive
feasibility in the case of stochastic unbounded disturbance, we attempted to resolve this issue with
an addition of slack variable to the obtained constraints with a penalty in the objective function.
We performed simulations a macroeconomic system to verify the proposed methodology.

A Proof of Proposition 1:

Consider the given system
xk+1 = Ãθkxk +Bθkνk + wk, (35)

where θk is defined in (2) and Ãθk = Aθk +BθkKθk . From remark 2, {νk}k∈N≥0
is a stochastic pro-

cess with the property that for each k ∈ N≥0, the vector νk is Fk-measurable and E[‖νk‖2] ≤ δ < ∞.

One knows that there exist matrices Ki ∈ T N and Pi ∈ SN
n , with Pi ≻ 0, for 1 ≤ i ≤ N such

that (7) and (8) are verified. Consider V (xk, θk) = xT
k Pθkxk. Let Υ(θk,xk) ,

∑N
j=1πθkj(xk)Pj ,

Lθk ,
∑N

j=1λθkjPj , and Mθk ,
∑N

j=1µθkjPj . One has

E
[

V (xk+1, θk+1)|Fk

]

− V (xk, θk)

= xT
k

(

ÃT
θk
Υ(θk,xk)Ãθk − Pθk

)

xk + 2xT
k Ã

T
θk
Υ(θk,xk)E [wk|Fk] + 2νTk B

T
θk
Υ(θk,xk)Ãθkxk

+ 2νTk B
T
θk
Υ(θk,xk)E [wk|Fk] + νTk B

T
θk
Υ(θk,xk)Bθkνk + E

[

wT
k Υ(θk,xk)wk|Fk

]

,

≤ −µ‖xk‖2 + 2xT
k Ã

T
θk
Υ(θk,xk)E [wk|Fk] + 2νTk B

T
θk
Υ(θk,xk)Ãθkxk + 2νTk B

T
θk
Υ(θk,xk)E [wk|Fk]

+ α1‖νk‖2 + α2E
[

wT
k wk|Fk

]

,

where µ = min
1≤j≤2

(

min
1≤i≤N

(

λmin

(

−Ej
i

))

)

,

α1 = max

(

max
1≤i≤N

(

λmax

(

BT
i LiBi

))

, max
1≤i≤N

(

λmax

(

BT
i MiBi

))

)

,

and α2 = max

(

max
1≤i≤N

(λmax (Li)) , max
1≤i≤N

(λmax (Mi))

)

. Because the random vector wk is inde-

pendent of Fk we obtain

E
[

V (xk+1, θk+1)|Fk

]

− V (xk, θk)

≤ −µ‖xk‖2 + 2xT
k Ã

T
θk
Υ(θk,xk)E [wk] + 2νTk B

T
θk
Υ(θk,xk)Ãθkxk + 2νTk B

T
θk
Υ(θk,xk)E [wk]

+ α1‖νk‖2 + α2E
[

wT
k wk

]

,

≤ −µ‖xk‖2 + 2‖νk‖‖Bθk‖‖Υ(θk,xk)‖‖Ãθk‖‖xk‖+ α1‖νk‖2 + nα2.

From the Young’s inequality, 2ab ≤ κa2 + κ−1b2, ∀(a, b) ∈ R
2, ∀κ > 0; note that ∀κ > 0 one has

2‖νk‖‖Bθk‖‖Υ(θk,xk)‖‖Ãθk‖‖xk‖ ≤ κ‖xk‖2 + κ−1β2‖νk‖2,

where β =

(

max
1≤i≤N

‖Bi‖
)

· α2 ·
(

max
1≤i≤N

‖Ãi‖
)

. This yields

E [V (xk+1, θk+1)|Fk]− V (xk, θk) ≤ −(µ− κ)‖xk‖2 + (α1 + κ−1β2)‖νk‖2 + nα2.

Take κ ∈ (0, µ). We have

E [V (xk+1, θk+1)|Fk] ≤ (1− c−1
2 (µ− κ))V (xk, θk) + (α1 + κ−1β2)‖νk‖2 + nα2, (36)

where c2 = max
1≤i≤N

(λmax (Pi)), with the constraint (1 − c−1
2 (µ − κ)) < 1. Let q = 1 − c−1

2 (µ − κ).

Taking expectation on both sides of (36), we get

E [V (xk+1, θk+1)] ≤qE [V (xk, θk)] + (α1 + κ−1β2)E
[

‖νk‖2
]

+ nα2.
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We obtain recursively

E [V (xk, θk)] ≤ qkE [V (x0, θ0)] + (α1 + κ−1β2)
∑k−1

p=1
qk−p−1

E
[

‖νp‖2
]

+ nα2

∑k−1

p=1
qk−p−1,

≤ qkE [V (x0, θ0)] +
nα2 + δ(α1 + κ−1β2)

1− q
.

Finally, we obtain

E
[

‖xk‖2
]

≤ c2
c1

qk‖x0‖2 +
nα2 + δ(α1 + κ−1β2)

c1(1− q)
,

where c1 = min
1≤i≤N

(λmin (Pi)). Hence the proof is complete. �

B Proof of Lemma 1:

Consider the given probabilistic constraint (13),

Pr{Gxk+1 ≤ H|Fk} ≥ ξ. (37)

Let Hk , H −G(Ãθkxk +Bθkνk), then (37) is equivalent to

Pr{Gwk ≤ Hk} ≥ ξ. (38)

Let Z = {γ : Gγ ≤ Hk}, then we can rewrite the above condition as Pr{wk ∈ Z} ≥ ξ, which is
equivalent to

1√
2πn

∫

Z

e−
1
2
‖v‖2

dv ≥ ξ. (39)

Since Z is a polyhedron, it is difficult to obtain the closed form of the above integral. So, we
consider an inscribed ellipsoidal approximation of Z [38], [37]. It is reasonable since the level curves
of multivariate Gaussian distribution are ellipsoids. Consider an ellipsoid (since the covariance of
wk is identity matrix),

Eδ , {γ : ‖γ‖2 ≤ δ2}.
If Eδ is inscribed in the polyhedron Z, i.e;

Eδ ⊂ Z, (40)

then Pr{wk ∈ Z} ≥ ξ is implied by

1√
2πn

∫

Eδ

e−
1
2
‖v‖2

dv ≥ ξ.

The above multiple integral can be converted to single integral by following standard techniques
of finding multivariate probability density function as

1√
2nΓ(n/2)

∫ δ2

0

χ
n−2

2 e−
1
2
χdχ ≥ ξ,

that can be rewritten as

Fn,Chi(δ
2) ≥ ξ, (41)

where Fn,Chi(.) denotes the Chi-square cumulative distribution function with n degrees of freedom.

The above inequality can be satisfied with δ value of
√

F−1
n,Chi(ξ). By utilizing the maximization

of a liner functional over an ellipsoidal set, Eδ ⊂ Z can be ensured by [3],[38],

δ
√

GjGT
j ≤ Hkj , 1 ≤ j ≤ r, (42)

δ‖Gj‖2 ≤ Hkj , 1 ≤ j ≤ r, (43)

12



for (40), where Gj and Hkj are jth rows of G and Hk respectively. Thus (42) is equivalent to

Gj(Ãθkxk +Bθkνk) ≤ Hj − δ‖Gj‖2, 1 ≤ j ≤ r,

thus completes the proof. �
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