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ON THE ENTROPY NORM ON THE GROUP OF

DIFFEOMORPHISMS OF CLOSED ORIENTED SURFACE

MICHAEL BRANDENBURSKY AND ARPAN KABIRAJ

Abstract. We prove that the entropy norm on the group of diffeomor-
phisms of a closed orientable surface of positive genus is unbounded.

1. Introduction

Let M be a smooth compact manifold with some fixed Riemannian metric.
Let f : M → M be a continuous function. Recall that the topological entropy
of f may be defined as follows. Let d be the metric on M induced by some
Riemannian metric. For p ∈ N define a new metric df,p on M by

df,p(x, y) = max
0≤i≤p

d(f i(x), f i(y)).

Let Mf (p, ǫ) be the minimal number of ǫ-balls in the df,p-metric that cover
M. The topological entropy h(f) is defined by

h(f) = lim
ǫ→0

lim sup
p→∞

logMf (p, ǫ)

p
,

where the base of log is two. It turns out that h(f) does not depend on the
choice of Riemannian metric, see [3, 10].

In this note we consider the case when M is a closed oriented surface Σg of
genus g. Denote by Diff(Σg) the group of orientation preserving diffeomor-
phisms of Σg. Let

Ent(Σg) ⊂ Diff(Σg)

be the set of entropy-zero diffeomorphisms. This set is conjugation invariant
and it generates Diff(Σg), see Lemma 2.1. In other words, a diffeomorphism
of Σg is a finite product of entropy-zero diffeomorphisms. One may ask for a
minimal decomposition and this question leads to the concept of the entropy
norm defined by

‖f‖Ent := min{k ∈ N | f = h1 · · · hk, hi ∈ Ent(Σg)}.

It is the word norm associated with the generating set Ent(Σg). This set is
conjugation invariant, so is the entropy norm. The associated bi-invariant
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metric is denoted by dEnt. It follows from the work of Burago-Ivanov-
Polterovich [9] and Tsuboi [17, 18] that for many manifolds all conjuga-
tion invariant norms on Diff(M) are bounded. Hence the entropy norm is
bounded in those cases. In particular, it is bounded in case g = 0.

Entropy metric may be defined in the same way on the group Ham(Σg)
of Hamiltonian diffeomorphisms of Σg, and on groups Diff(Σg, area) and
Diff0(Σg, area). It is related to the autonomous metric [4, 5, 6, 8, 13]. Re-
cently, the first author in collaboration with Marcinkowski showed that the
entropy metric is unbounded on groups: Ham(Σg), Diff0(Σg, area) and on
Diff(Σg, area), see [7]. On the other hand, it is not known, and seems to be
a difficult problem, whether Diff0(Σg) is unbounded in case g > 0. In this
work we discuss the case of Diff(Σg) where g > 0. Our main result is the
following

Theorem 1. Let Σg be a closed oriented Riemannian surface of positive

genus. Then the diameter of (Diff(Σg),dEnt) is infinite.

Remarks.

• The above theorem holds for non-sporadic surfaces with punctures.
The proof is exactly the same.

• In [7] the first author in collaboration with Marcinkowski showed
that the diameter of (Diff(Σg, area),dEnt) is infinite. Our proof of
Theorem 1, which is simpler than the one given in [7], is applicable
to the case of Diff(Σg, area).

• It would be interesting to know whether the entropy metric, or the
autonomous metric are unbounded on Diff0(Σg) in case g > 0.

Acknowledgments. First author was partially supported by Leverhulme
Trust Grant RPG-2017-159. Second author was partially supported by the
center of advanced studies at Ben Gurion University, by GIF-Young Grant
number I-2419-304.6/2016, by ISF Grant number 2095/15 and by DST-
INSPIRE, India. He wishes to express his gratitude to the center for the
support and excellent working conditions.

2. Preliminaries

Let us start with the following

Lemma 2.1. Let Σg be a closed oriented surface of genus g. Then Diff(Σg)
is generated by the set Ent(Σg) of entropy zero diffeomorphisms.

Proof. The group Diff0(Σg) is simple and hence is generated by entropy
zero diffeomorphisms. It is enough to prove the lemma in case g > 0 since
Diff(Σ0) = Diff0(Σ0). In addition, Dehn twists have entropy zero and they
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generate Diff(Σg)/Diff0(Σg) in case g > 1. Hence in this case Diff(Σg) is
generated by entropy zero diffeomorphisms. In case g = 1 we have that

Diff(Σ1)/Diff0(Σ1) ∼= SL2(Z),

which in turn is generated by two matrices of finite order. Hence in this case
Diff(Σg) is also generated by entropy zero diffeomorphisms. �

Let Σg be a closed oriented surface of genus g > 1.

2.A. Translation length in Teichmüller space. We denote the Teich-
müller space associated to Σg by T (Σg). We equip T (Σg) with the Teich-
müller metric dT . Let MCG(Σg) be the mapping class group of Σg, i.e.,
MCG(Σg) := Diff(Σg)/Diff0(Σg). Note that it acts naturally on T (Σg).
Let [f ] ∈ MCG(Σg). The translation length of [f ] in T (Σg) is defined by

τT ([f ]) = lim
n→∞

dT ([f ]
n(X),X)

n

where X ∈ T (Σg). It is independent of the choice of X.

Let [f ] ∈ MCG(Σg) be a pseudo-Anosov element with dilatation λ[f ]. Ac-
cording to Bers [1] proof of Thurston’s classification theorem of elements of
mapping class group we have:

• there exists X ∈ T (Σg) such that τT ([f ]) = dT ([f ](X),X),

• τT ([f ]) = log(λ[f ]).

2.B. Translation length in curve complex. Given a surface Σg, we as-
sociate to it a simplicial complex as follows: its vertices are free homotopy
classes of essential simple closed curves; a collection of n + 1 vertices form
an n-simplex whenever it can be realized by pairwise disjoint closed curves
in Σg. This complex is called the curve complex of Σg and is denoted by
C(Σg). It is known that C(Σg) is connected. We consider the path metric
on the 1-skeleton of C(Σg) and denote it by dC .

Mapping class group MCG(Σg) acts by isometry on C(Σg). Given a mapping
class [f ] ∈ MCG(Σg), the translation length of [f ] in C(Σg) is defined by

τC([f ]) = lim
n→∞

dC([f ]
n(α), α)

n

where α is a vertex in C(Σg). The translation length is independent of α
and is non-zero if and only if [f ] is a pseudo-Anosov mapping class [15].
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2.C. Bestvina-Fujiwara quasimorphisms. LetG be a group. Recall that
a function ψ : G → R is called a quasimorphism if there exists D > 0 such
that

|ψ(ab) − ψ(a)− ψ(b)| < D

for all a, b ∈ G. A quasimorphism ψ is called homogeneous if ψ(an) = nψ(a)
for all n ∈ Z and all a ∈ G. Given a quasimorphism ψ we can always
construct a homogeneous quasimorphism ψ by setting

ψ(a) := lim
p→∞

ψ(ap)

p

In [2], Bestvina and Fujiwara constructed infinitely many homogeneous quasi-
morphisms on MCG(Σg). Let us recall their construction.

Let w be a finite oriented path in C(Σg). Denote the length of a path ω by
|ω|. For any finite path σ in C(Σg), we define

|σ|ω := {the number of non-overlapping copies of ω in σ}.

Fix a positive integer W < |ω|. Given any two vertices α, β ∈ C(Σg), define

cω,W (α, β) = dC(α, β) − inf(|σ| −W |σ|ω),

where the infimum is taken over all paths σ between α and β.

It turns out that the function ψω : MCG(Σg) → R defined by

ψω([f ]) = cω,W (α, [f ](α)) − cω−1,W (α, [f ](α)),

where α is a vertex of C(Σg), is a quasimorphism [2]. The induced homoge-

neous quasimorphism is denoted by ψω. We denote by QBF (MCG(Σg))the
space of homogeneous quasimorphisms on MCG(Σg) which is spanned by
Bestvina-Fujiwara quasimorphisms. In [2] it is proved thatQBF (MCG(Σg))is
infinite dimensional whenever Σg is a non-sporadic surface.

3. Proof of the main result

Let us start with the following well-known

Lemma 3.1. Let G be a group generated by set S and let ψ : G → R be

a non-trivial homogeneous quasimorphism which vanishes on S. Then the

induced word norm ‖ · ‖S is unbounded.

For the reader convenience we present its proof.

Proof. Let g ∈ G such that ψ(g) 6= 0. Then g = s1 · . . . · s‖g‖S . It follows
that |ψ(g)| ≤ ‖g‖SDψ. Hence for each n we get ‖gn‖S ≥ n|ψ(g)|/Dψ and
the proof follows. �
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Now we prove Theorem 1.

Case 1. Let g = 1 and denote T := Σ1. Let us consider homomorphism
F : Diff(T) → SL2(Z) induced by the action of a diffeomorphism on the
first homology H1(T,Z). It is known that F is surjective (see [11, Theorem
2.5]). By [14, Theorem 1], log(spec(f)) ≤ h(f) where spec(f) is the modulus
of the largest eigenvalue of F (f). Therefore if f has entropy zero then the
modulus of the eigenvalues of F (f) is at most one.

There are three types of elements in SL2(Z): periodic (trace<2), parabolic

(trace=2) and hyperbolic (trace>2). Therefore if F (f) is hyperbolic then
spec(f) > 1 and hence h(f) > 0. Hence if f is an entropy zero diffeomor-
phism, then F (f) is either parabolic or periodic.

The value of any homogeneous quasimorphism on a periodic element is zero.
It follows from the work of Polterovich and Rudnick [16, Proposition 3]
that there exists a non-trivial homogeneous quasimorphism on SL2(Z) which
vanishes on parabolic elements. Therefore there exists a non-trivial homo-
geneous quasimorphim on Diff(T) whose restriction on entropy-zero diffeo-
morphisms is zero. Hence by Lemma 3.1 the entropy norm on Diff(T) is
unbounded.

Case 2. Let g > 1. Given a homeomorphism f of a surface Σg define

H(f) = inf{h(f ′) : f ′ is isotopic to f}

The topological entropy of [f ] ∈ MCG(Σg) is defined to be H(f).

Lemma 3.2. Each quasimorphism in QBF (MCG(Σg))is Lipschitz with re-

spect to the topological entropy.

Proof. Let ψ ∈QBF (MCG(Σg)). If [f ] is reducible then ψ([f ]) = 0 for all
ψ ∈QBF (MCG(Σg)). Therefore it is enough to consider only pseudo-Anosov

elements of MCG(Σg). Since ψ ∈QBF (MCG(Σg)), then ψ =
∑k

i aiψwi
,

where a1, . . . , ak ∈ R and w1, . . . , wk are some paths in C(S). It follows from
the definition of ψwi

that ψwi
([f ]) ≤ τC([f ]) for each [f ] ∈ MCG(Σg) and

each i ∈ {1, . . . , k}. Therefore we have

|ψ([f ])| ≤ (

k∑

i=1

|ai|)τC([f ]).

By setting Cψ :=
∑k

i=1 |ai| we get |ψ([f ])| ≤ CψτC([f ]).

Let sys : T (Σg) → C(Σg) be the systole function, i.e., X ∈ T (Σg) goes
to a vertex in C(Σg) which corresponds to a simple closed curve of minimal
length in X. By [15] there exist K,C > 0 such that for all X,Y ∈ T (Σg)

dC(sys(X), sys(Y )) ≤ KdT (X,Y ) + C.

It is immediate that [f ]n(sys(X)) = sys([f ]n(X)) for every [f ] ∈ MCG(Σg).
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Let [f ] ∈ MCG(Σg) be a pseudo-Anosov element with dilatation λ[f ]. It
follows from Bers [1] proof of Thurston’s theorem that τT ([f ]) = log λ[f ].
Therefore

τC([f ])

τT ([f ])
= lim

n→∞

dC(sys(X),[f ]n(sys(X)))
n

dT (X,[f ]n(X))
n

= lim
n→∞

dC(sys(X),sys([f ]n(X)))
n

dT (X,[f ]n(X))
n

≤ lim
n→∞

KdT (X, [f ]
n(X)) +C

dT (X, [f ]n(X))
= K

Thus

τC([f ]) ≤ KτT ([f ]).

It follows that for each ψ ∈ QBF (MCG(Σg))we have

|ψ([f ])| ≤ CψτC([f ]) ≤ CψKτT ([f ]) = CψK log λ[f ].

By Thuston’s result [12, Proposition 10.13], log λ[f ] = H(f). Hence

|ψ([f ])| ≤ CψKH(f)

and the proof of the lemma follows. �

Let Π : Diff(Σg) → MCG(Σg) be the quotient map and let ψ ∈QBF (MCG(Σg)).
It follows from the proof of Lemma 3.2 that for each f ∈ Diff(Σg) we have

|ψΠ(f)| ≤ CψKH(f) ≤ CψKh(f).

Hence for each non-trivial ψ ∈QBF (MCG(Σg))the homogeneous quasimor-
phism

ψΠ : Diff(Σg) → R

is non-trivial and Lipschitz with respect to the topological entropy. It follows
that it vanishes on the set of entropy-zero diffeomorphisms. Hence by Lemma
3.1 the entropy norm on Diff(Σg) is unbounded. �
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