
ar
X

iv
:1

91
1.

10
34

0v
1

 [
cs

.D
M

]
 2

3
N

ov
 2

01
9

Oriented Diameter of Star Graphs

K. S. Ajish Kumar1, Deepak Rajendraprasad2, and K. S. Sudeep3

1 Department of Electronics and Communication Engineering, National Institute of
Technology Calicut, India

2 Department of Computer Science and Engineering, Indian Institute of Technology
Palakkad, India

3 Department of Computer Science and Engineering, National Institute of
Technology Calicut, India

Abstract. An orientation of an undirected graph G is an assignment of
exactly one direction to each edge of G. Converting two-way traffic net-
works to one-way traffic networks and bidirectional communication net-
works to unidirectional communication networks are practical instances
of graph orientations. In these contexts minimising the diameter of the
resulting oriented graph is of prime interest.

The n-star network topology was proposed as an alternative to the hy-
percube network topology for multiprocessor systems by Akers and Kr-
ishnamurthy [IEEE Trans. on Computers (1989)]. The n-star graph Sn

consists of n! vertices, each labelled with a distinct permutation of [n].
Two vertices are adjacent if their labels differ exactly in the first and one
other position. Sn is an (n− 1)-regular, vertex-transitive graph with di-
ameter ⌊3(n−1)/2⌋. Orientations of Sn, called unidirectional star graphs
and distributed routing protocols over them were studied by Day and Tri-
pathi [Information Processing Letters (1993)] and Fujita [The First Inter-
national Symposium on Computing and Networking (CANDAR 2013)].
Fujita showed that the (directed) diameter of this unidirectional star

graph
−→
Sn is at most ⌈5n/2⌉ + 2.

In this paper, we propose a new distributed routing algorithm for the

same
−→
Sn analysed by Fujita, which routes a packet from any node s to any

node t at an undirected distance d from s using at most min{4d+4, 2n+4}

hops. This shows that the (directed) diameter of
−→
Sn is at most 2n + 4.

We also show that the diameter of
−→
Sn is at least 2n when n ≥ 7, thereby

showing that our upper bound is tight up to an additive factor.

Keywords: Strong Orientation · Oriented Diameter · Star Graphs.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E.

An orientation
−→
G of G is a directed graph obtained by assigning exactly one

direction to each edge of G. An orientation is called a strong orientation if

the resulting directed graph is strongly connected. A directed graph
−→
G is said

2 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

to be strongly connected, if there exists at least one directed path from ev-

ery vertex of
−→
G to every other vertex. There can be many strong orientations

for G. The smallest diameter among all possible strong orientations of G is

called the oriented diameter of G, denoted by
−−−→
diam(G). That is,

−−−→
diam(G) =

min{diam(
−→
G)|

−→
G is a strong orientation of G}.

The research on strong orientations dates back to 1939 with Robbins [13],
solving the One Way Street problem. Given the road network of city, the One
Way Street problem poses the following question: Is it possible to implement
one way traffic in every street without compromising the accessibility of any of
the junctions of the network? Robbins proved that the necessary and sufficient
condition for the existence of a strong orientation of a graph G is the 2-edge
connectivity of G. A 2-edge connected graph is one that cannot be disconnected
by removal of a single edge. The research on orientations that minimise the
resulting distances was initiated by Chvátal and Thomassen in 1978 [5]. They

proved that, for every undirected graphG there exists an orientation
−→
G such that

for every edge (u, v) which belongs to a cycle of length k, either (u, v) or (v, u)

belong to a cycle of length h(k) in
−→
G , where h(k) = (k−2)2⌊

(k−1)
2 ⌋+2. They also

showed that every 2-edge connected undirected graph of diameter d will possess
an orientation with diameter at most 2d2 + 2d. Further, they proved that it is
NP-hard to decide whether an undirected graph possesses an orientation with
diameter at most 2.

Fomin et al. [9] continues the algorithmic study on oriented diameter on
chordal graphs. They show that every chordal graph G has an oriented diameter
at most 2 diam(G) + 1. This result proves that the oriented diameter problem is
(2, 1)-approximable for chordal graphs. A polynomial time algorithm for finding
the oriented diameter of planar graphs was given by Eggemann [8]. Fomin et al.
[10] have proved that the oriented diameter of every AT-free bridgeless connected
graph G is at most 2 diam(G) + 11 and for every interval graph G, it is at most
5

4
diam(G) + 29

2
. Dankelmann et al., [6] proved that every n-vertex bridgeless

graph with maximum degree ∆ has oriented diameter at most n − ∆ + 3. For
balanced bipartite graphs (a bipartite graph with equal number of vertices on
both halves of the bipartition), they prove a better bound of n − 2∆ + 7. The
problems of finding strong orientations that minimize the parameters such as
diameter, distance between pairs of vertices etc., have been investigated for other
restricted subclasses of graphs like n-dimensional hypercube [4], torus [12], star
graph [7,11], and (n,k)-star graph [3].

Oriented diameter problem finds a significant application in parallel comput-
ing. In interconnection networks of parallel processing systems, the processing
elements are connected together using fibre optic links that support high band-
width, high speed and long distance data communication. However, the optical
transmission medium suffers from the drawback that the links are inherently
unidirectional [4]. In the case of optical links, a naive strategy to achieve bidi-
rectional communication is to use two separate optical links between every pair
of communication entities. But, such a naive approach increases the hardware
complexity and cost of the network. On the other hand, unidirectional commu-

Oriented Diameter of Star Graphs 3

nication links are simple and cost effective but require more number of inter-
mediate communication hops to establish bidirectional communication. Thus,
the average interprocessor communication delay is generally more in the case
of unidirectional interconnection networks. However, unidirectional interconnec-
tion networks might be the best choice if we can trade off communication delay
with cost and hardware complexity of the network.

1.1 The n-star graph (Sn)

In [2], Akers and Murthy presented a group theoretic model called Cayley Graph
Model for designing symmetric interconnection networks. In parallel comput-
ing the interconnection networks provide an efficient communication mechanism
among the processors and the associated memory. For a finite group Γ and a
set S of generators of Γ , the Cayley Graph D = D(Γ, S) is the directed graph
defined as follows. The vertex-set of D is Γ . There is an arc from a vertex u to
a vertex v in D, if and only if there exist a generator g in S such that ug = v.
Further, if the inverse of every element in S is also in S, the two directed edges
between u and v are replaced by a single undirected edge, resulting in an undi-
rected graph. In [1], Akers and Murthy proposed a new symmetric graph, called
Star Graph, Sn. Let G be a group with elements being all permutations of the
set {1, 2, . . . , n} and group operation being composition. The star graph Sn is
a Cayley graph on G with generator set S = {g2, g3, . . . , gn}, where gi is the
permutation obtained by swapping the first and ith value of the identity permu-
tation. It is easy to see that, Sn has degree n − 1, and it has been shown that
the diameter of Sn is ⌊3(n− 1)/2⌋ [1]. The star graph has many desirable prop-
erties of a good interconnection network such as symmetry (vertex transitivity),
small diameter, small degree and large connectivity. A symmetric interconnec-
tion network allows the use of same routing algorithm for every node, while a
small degree reduces the cost of the network. Further, a small diameter reduces
overall communication delay and large connectivity offers good fault tolerance.

Two different strong orientation schemes have been proposed for Sn. The first
one was by K. Day and A. Tripathi [7]. They showed that the diameter of their
orientation is at most 5(n−2)+1. The second orientation scheme was proposed by
S. Fujita [11]. The diameter of this orientation scheme was shown to be at most
⌈5n/2⌉ + 2. We observe that these two orientation schemes are essentially the
same. Both the schemes partition the set of generators into nearly equal halves.
The edges due to first set of generators are oriented from the odd permutation to
the even permutation and those due to the second set of generators are oriented
in the opposite direction. The difference between the two orientation schemes
lies in the way by which the two schemes partition the set of generators. The
Day-Tripathi scheme splits the set of generators based on the parity of i of a
generator gi, i.e., generators with odd parity for i belong to the first set and even
parity for i belong to the second set. In the case of Fujita’s orientation, the first
partition consists of generators from g2 to gk, k = ⌈(n− 1)/2⌉+ 1, whereas, the
second partition consists of generators from gk+1 to gn. The details of the two

4 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

orientation schemes described above are depicted in Fig. 1, for two nodes with
labels 12345 and 21345, and their neighbours in S5.

12345

52341

42315

32145

21345

51342

41325

31245

5

4

3

2

5

4

3

Fujita’s orientation

Day and Tripathi orientation

Even Signed Node

Odd Signed Node

Fig. 1: Day-Tripathi and Fujita orientation schemes for S5

In this paper, we propose a new distributed routing algorithm for the same
−→
Sn analysed by Fujita. We show that the proposed algorithm routes a packet

in
−→
Sn from any node s to any other node t using at most min{4d + 4, 2n+ 4}

hops, where d is the distance between s and t in Sn. In particular, this shows

that the (directed) diameter of
−→
Sn is at most 2n + 4, which is an improvement

over Fujita’s upper bound. We also show that the diameter of
−→
Sn is at least 2n

when n ≥ 7, thereby showing that our upper bound is tight up to an additive
factor. We do not believe that either of the above orientations of Sn are optimal
in terms of achieving the minimum (directed) diameter. In fact, we believe that
the oriented diameter of Sn is 3n/2 +O(1).

2 Preliminaries

2.1 Graph Terminology

Some of the basic definitions in graph theory which are required to understand
the details of this work are explained in this section. Let G = (V,E) be any
undirected graph with vertex-set V and edge-set E. Two vertices of G are called
neighbours when they are connected by an edge. The degree of a vertex u is
the number of neighbours of u. If all the vertices of G have the same degree, G
is called regular. The distance between two nodes u and v, denoted by d(u, v),
is the number of edges along a shortest path between u and v. The diameter
of G, denoted by diam(G), is the maximum of d(u, v) among all u, v ∈ V . An
automorphism of G is a permutation π of V such that for every pair of vertices
u, v ∈ V , {u, v} is an edge in E, if and only if {π(u), π(v)} is an edge in E. Two
vertices u and v of G are said to be similar if there is an automorphism π of G
with π(u) = v. G is vertex-transitive when every pair of vertices in G are similar.

Let D = (V,E) be any directed graph with vertex-set V and edge-set E.
If (u, v) is an edge (arc) in E, then u is called an in-neighbour of v and v is
called an out-neighbour of u. The in-degree and out-degree of a vertex u are,
respectively, the number of in-neighbours and out-neighbours of u. The distance

Oriented Diameter of Star Graphs 5

from a node u to a node v, denoted by
−→
d (u, v), is the number of edges along

a shortest directed path from u to v. The diameter of D (diam(D)), is the

maximum of
−→
d (u, v) among all u, v ∈ V . Automorphism and Vertex-transitivity

among directed graphs are defined similar to that of undirected graphs.

2.2 Cycle Structure of Permutations

Let π be a permutation of {1, . . . , n}. The sign of π, denoted by Sign(π), is
defined as the parity of the number of inversions in π, that is x, y ∈ {1, . . . , n},
such that x < y and π(x) > π(y). A cycle (a0, . . . , ak−1) is a permutation
π of {a0, . . . , ak−1} such that π(ai) = ai+1 where addition is modulo k. Two
cycles are disjoint if they do not have common elements. Every permutation of
[n] has a unique decomposition into a product of disjoint cycles. The sign of a
permutation turns out to be the parity of the number of even-length cycles in
that permutation.

One hop in an n-star graph corresponds to moving from a permutation σ
to another permutation π, by exchanging the value σ(1) with a value σ(k),
k ∈ {2, . . . n}. We would like to make some observations about the cycle structure
of π and σ. In the case when 1 and k belong to the same cycle of σ, this cycle
gets broken into two disjoint cycles in π (Fig. 2). Notice that, if σ(1) = k, then

k

σ(k)

σ(1)

1

k

σ(k)

σ(1)

1

Fig. 2: The change in the cycle structure of σ, when σ(1) is swapped with σ(k),
when 1 and k belong to the same cycle.

one of the resulting cycles is a singleton. In the case when 1 and k belong to
different cycles of σ, these two cycles merge and form a single cycle in π (Fig. 3).

Given two permutations π and t, we call the cycles of π ◦ t−1 as the cycles
of π relative to t. The above observations about the cycle structure of two per-
mutations π and σ which differ by a single swap between 1 and k will apply in
this case to the relative cycle structure of π and σ with respect to t.

2.3 Routing in undirected star graph

In this section, we describe the routing algorithm for the undirected star graph
Sn presented in [2]. Assume that a node labelled c forwards a packet P from a

6 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

1

σ(1)

+

σ(k)

k

1

σ(1)

σ(k)

k

Fig. 3: The change in the cycle structure of σ when σ(1) is swapped with σ(k),
when 1 and k belong to different cycle.

source s to a destination t. The destination label t is available in the packet. Upon
receiving the packet, c accepts P if c is same as t. Otherwise, when c(1) 6= t(1),
the node c forwards P through the link labelled i, where i is the position of c(1)
in t. We call such a move a settling move. A value is called settled if it is in the
same location in c and t, and unsettled otherwise. When c(1) = t(1) (but c 6= t),
the node c forwards P through a link i, where i is the position of an unsettled
value. We call such move a seeding move. Notice that, during the course of
routing P from s to t, the number of seeding moves is same as the number of
non-singleton cycles in s relative to t. Also, no move disturbs an already settled
value. Therefore, we can observe that the total number of steps required to settle
all unsettled values in s, denoted by d, is at most m(s, t) + c(s, t), where m(s, t)
is the number of mismatched values (i.e., values that are not in their correct
position with respect to t) and c(s, t) is the number of non-singleton cycles in s
relative to t. More closer analysis yield [2] the following result.

d =

{

m(s, t) + c(s, t), if s(1) = t(1)

m(s, t) + c(s, t)− 2, otherwise.
(1)

It is not difficult to argue that the above routing algorithm is optimal and hence
d is the distance between s and t in Sn.

3 The proposed routing algorithm

There are two different ways in which one can describe and analyse a routing
algorithm on a star graph. In the first view, which we call the “network view”,
we consider each vertex of Sn as a communication node whose address is the
permutation labelling that vertex. Depending on the sign of the address of a

node, we classify it as an even node or an odd node. We consider each arc of
−→
Sn

as a unidirectional communication link and label it by the unique position in
{2, . . . , n}, where the addresses of the endpoints of the arc differ. Hence every
node has n − 1 links attached to it with unique labels from {2, . . . , n}. For an
even node, the links labelled 2 to ⌈(n − 1)/2⌉ + 1 are outgoing links and the
remaining are incoming. The situation is reversed for odd nodes. Every packet
that is to be routed along the network will have the destination address in its

Oriented Diameter of Star Graphs 7

header. We describe the algorithm by which a node, on receiving a packet not
destined for itself, selects the outgoing link along which to relay that packet.
This selection is based on the address of the current node and the destination
address.

In the second view, which we call the “sorting view”, we consider each vertex
of Sn as a permutation of [n]. Thus a routing is viewed as a step-by-step proce-
dure to sort the permutation labelling the source to the permutation labelling
the destination. Each step in this sorting is restricted to be a transposition
(1, i), where i ∈ {2, . . . , ⌈(n− 1)/2⌉+1}, if the current permutation is even, and
i ∈ {⌈(n− 1)/2⌉+2, . . . , n}, if the current permutation is odd. Hence a directed

path in
−→
Sn will correspond to an alternating sequence of right half and left half

transpositions. This is the view with which we will analyse our routing algorithm
in Section 4.

In a given permutation, let us call the positions 2 to ⌈(n−1)/2⌉+1 as the left
half, and the positions ⌈(n−1)/2⌉+2 to n as the right half. First, we analyse the
case of sorting a permutation π in which all the left values are in a derangement
in the left half itself, and all the right values are in a derangement in the right
half itself. For every n ≥ 5, an example for π is the permutation obtained by
cyclically shifting the left-half and right-half by one position each. That is, the
cycle decomposition of π is (1)(2, . . . , k)(k+1, . . . , n), where k = ⌈(n−1)/2⌉+1.
This analysis serves two purposes. Firstly, it establishes a lower bound on the

diameter of
−→
Sn. Secondly, it illustrates a typical run of our proposed algorithm

to be described later. Let π = π0, . . . , πl = id be the nodes of a shortest directed

path from π to id in
−→
Sn. Notice that, in π, every value except 1 is not in its

“correct” position (with respect to the identity permutation) and hence needs
to be moved. This requires a transposition a = (1, π−1(i)) to remove i from its
present position and a transposition b = (1, i) to place i in its final position.
Let α and β be, respectively, the permutations in {π1, . . . , πl} which appear
immediately after the transposition a and immediately before the transposition
b. Notice that α(1) = β(1) = i. The key observation is that α and β cannot
be the same permutation. This is because, for every i ∈ {2, . . . , n}, both π−1(i)

and i are in the same half and the directions in
−→
Sn constraints one to alternate

between left half and right half transpositions. Hence for every i ∈ {2, . . . , n},
there exists at least two distinct permutations in {π0, . . . , πl} which has i in the
first position. Moreover π0(1) = πl(1) = 1 (i.e., . the value 1 appears in the first
position for at least two permutations). Thus l+1 ≥ 2n and hence the length of
the path is at least 2n−1. If π was an even permutation, we could have improved
the lower bound by 1, since the distance between two even permutations has to
be even. This is indeed the case when n is odd. When n is even and n ≥ 8
(and thereby k ≥ 5, we can choose π to be (1)(2, 3)(4, . . . , k)(k+ 1, . . . , n). This
improvement does not work for n = 6, and it is indeed established by computer

simulation that diam
−→
Sn = 2n− 1 when n = 6 [7]. Hence we conclude

Theorem 1. For every n ≥ 5 the diameter of
−→
Sn is at least 2n− 1. Further if

n 6= 6, the diameter of
−→
Sn is at least 2n.

8 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

Now let us see a way to sort the permutation π = (1)(2, . . . , k)(k + 1, . . . , n)
for an odd n ≥ 5 and k = ⌈(n−1)/2⌉+1. We do not attempt to rigorously justify
the claims made in the following discussion as they are proved in more generality
in Section 4. We do the sorting in two phases. In the first phase (the crossing
phase), we obtain a permutation γ in which all the values in {2, . . . , k} (the small
values) are in the right half and all the values in {k+1, . . . , n} (the big values) are
in the left half. This can be done in n+1 steps; the first step places 1 in the left
half (seeding move) and all the subsequent steps either places a small value in the
right half or a large value in the left half (crossing moves). Only thing one has to
be careful about is to remove 1 from the left half only in the last transposition.
For example, one can attack the positions 2, k+1, 3, k+2, . . . , k− 1, n, 2 in that
order to arrive at γ = (1)(2, k + 1)(3, k + 2) · · · (n − 1, n). In the second phase
(the settling phase), when a value i, i 6= 1 appears in the first position for the
first time, in the very next step we will settle it, i.e., place it in position i. This
will be possible since, γ−1(i) and i are in different halves for all i ∈ 2,n. This
phase could have been completed in n steps provided the elements {2, . . . , n}
formed a singe cycle in γ. Otherwise, after placing all the elements in a cycle of
γ to their correct positions, 1 will return to the first position. This results in one
extra move (a seeding move) per non-singleton cycle of γ. An extreme example of
this can be seen by analysing the case when γ is as above, wherein one requires
⌈n/2⌉ − 1 seeding moves. Hence the number of moves in the settling phase is
n − 1 + c(γ) where c(γ) is the number of non-singleton cycles in γ. Since the
number of non-singleton cycles in any permutation of [n] is at most ⌊n/2⌋, one
quickly sees that π can be sorted in a total of ⌊5n/2⌋ steps. One can then easily
extend this analysis to an arbitrary permutation in place of π and show that the

diameter of
−→
Sn is at most 5n/2 + O(1), reproving the bound of Fujita [11]. But

we show that we have enough freedom while building γ to ensure that γ consists
of at most two non-singleton cycles. This is done by showing that during all but
the final two transpositions of the crossing phase, we can select the swaps so as
not to complete a new cycle among the crossed values. This is what helps us in

achieving the bound of 2n+O(1) on the diameter of
−→
Sn.

One drawback of the above method is that, even if the source permuta-
tion π is very close to the identity permutation in terms of distance in Sn like
π = (1)(2, 3)(4)(5) · · · (n), this method may take 2n steps. Hence, we modify
the above method by making sure that, if π has m small values and m large
values which are already in their correct positions, then those 2m values are not
disturbed during the sorting. We then analyse this strategy to show that any
permutation π can be sorted in at most 4d + 4 steps, where d is the distance
between π and id in Sn.

These attempts to reduce the number of cycles in γ and to disturb as few
settled values in π as possible is what makes the crossing phase of the routing
algorithm slightly complex. Moreover, when π(1) 6= 1, we have two possibilities.
If π is even and π(1) is a large value, we continue as if we are in the crossing
phase. We do the same when π is odd and π(1) is a small value. In the other two
cases (π even, π(1) small and π odd, π(1) large), we start by settling π(1) and

Oriented Diameter of Star Graphs 9

continue in the settling phase till either 1 appears in the first position or one
of the two cases mentioned above occurs. Then we go into the crossing phase,
complete it, and enter the settling phase for a second time. Hence one cycle of
the settling phase can happen before the crossing phase. With this high-level
idea, we formally state our proposed routing algorithm.

Definition 2. For a permutation s of [n], we call L(s) = {s(i) : 2 ≤ i ≤
⌈(n− 1)/2⌉+ 1} and R(s) = {s(i) : ⌈(n− 1)/2⌉+ 2 ≤ i ≤ n} as the sets of left
values and right values of s, respectively.

Given two permutations s and t of [n] for some n, we define S(s, t) = {s(i) :
s(i) = t(i), 1 ≤ i ≤ n}, and U(s, t) = [n] \ S(s, t) respectively, as the sets of
settled and unsettled values between s and t. We partition U(s, t) \ {s(1), t(1)}
into four sets

ULL(s, t) = U(s, t) ∩ L(s) ∩ L(t),

URR(s, t) = U(s, t) ∩R(s) ∩R(t),

ULR(s, t) = U(s, t) ∩ L(s) ∩R(t),

URL(s, t) = U(s, t) ∩R(s) ∩ L(t).

We also partition S(s, t) into two sets

SL(s, t) = S(s, t) ∩ L(t), SR(s, t) = S(s, t) ∩R(t).

Let us call X(s, t) = ULR(s, t)∪URL(s, t) as the set of crossed values between s
and t. A cycle of s relative to t is called alternating if it has size at least two, and
the successive elements of the cycle alternate between L(s) and R(s). Finally,
χ(s, t) will denote the number of alternating cycles of s with respect to t.

The processing done by an even node is given in Algorithm 1. The processing
done by an odd node is similar (the roles of “left” and “right” are reversed) and
hence omitted. In every move, c(1) is exchanged with c(i) for some i ∈ {2, . . . , n}.
We classify these moves into three types. If c(1) = t(1), the move is called
a seeding move. If c(1) 6= t(1) and c(1) = t(i), i.e., c(1) moves to its correct
location in t, it is called a settling move. If c(1) ∈ L(t) and it moves to the right
half or if c(1) ∈ R(t) and it moves to the left half, the move is called a crossing
move.

4 Analysis of the proposed routing algorithm

In this section, we are going to prove the following upper bound on the number
of hops that Algorithm 1 uses to reach from a node s to a node t based on the
relative structure of the permutations that label s and t.

Theorem 3. Let s and t be the permutations labelling any two nodes of the

oriented star graph
−→
Sn. Then, Algorithm 1 will send a packet from s to t in at

most
|X(s, t)|+max{6, y}

10 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

Algorithm 1 Processing done by an even node labelled c upon receiving a
packet P destined for a node labelled t.

1: procedure RouteEven(Packet P)
2: Receive packet P , extract the destination address t.
3: If the address of the current node c is the same as t, accept P and return.
4: Let Lt = L(t), Rt = R(t), ULL = ULL(c, t), URR = URR(c, t), SL = SL(c, t),

URL = URL(c, t).
5: Case 1 (Settling Move): c(1) ∈ Lt.
6: Let i be the position of c(1) in the permutation t.
7: Case 2 (Crossing/Seeding Move): c(1) 6∈ Lt and |ULL| + |URR| > 0.

(Crossing when c(1) ∈ Rt, Seeding when c(1) = t(1))
8: The forwarding link i is selected based on the cycle structure of c with respect

to t.
9: Case 2.1: When ULL contains a value that is not part of the cycle containing

c(1).
10: Pick i as the c-index of that value.
11: Case 2.2: When all values in ULL are part of the cycle containing c(1).
12: Pick i as the c-index of the value in ULL that comes first on traversing

this cycle backward from c(1).
13: Case 2.3:When ULL is empty
14: Pick i as the c-index of any value from SL.
15: Case 3(Crossing Move): c(1) ∈ Rt and |ULL| + |URR| = 0.
16: Case 3.1(Final Crossing Move): When |ULR| > 0
17: Pick i as the c-index of a value from ULR. If possible, select i from an

alternating cycle in c.
18: Case 3.2(Final/Pre-Final Crossing Move): When |ULR| = 0

(Final Crossing Move when t(1) is picked, Pre-Final Crossing Move when a
settled value is picked)

19: Pick i as the c-index of t(1) if possible, otherwise pick a settled value.
20: Case 4 (Seeding Move): c(1) = t(1) and |ULL| + |URR| = 0.
21: Pick i as the c-index of a value from ULR.
22: Send P along the edge labelled i and terminate.
23: end procedure

steps, where

y = 4max{|ULL(s, t)|, |URR(s, t)|}+ χ(s, t) + 4.

Proof. Even though we have presented Algorithm 1 as a distributed routing
protocol between nodes, we will present the analysis as sequence of swaps on
permutations, starting with the permutation labelling the node s and ending
with the permutation labelling the node t. We will denote these permutations
also by s and t respectively. Moreover, all the swaps will be between the first
element of a permutation π and an element from the left (resp., right) half of π, if
Sign(π) is even (resp., odd). Thereby, we make sure that every swap corresponds

to a directed edge in
−→
Sn.

We group the sequence of moves into three (possibly empty) phases, Phase
One, Phase Two, and Phase Three in that order. Phase One is non-empty only

Oriented Diameter of Star Graphs 11

if the first move is a settling move, in which case, Phase One consists of all
the settling moves before any seeding or crossing move. Phase Two will be non-
empty only if there is at least one crossing move, in which case, it starts after
Phase One and continues till Final Crossing move. All the remaining moves are
called Phase Three moves (Fig. 4). We call the permutation at the end of the
Phase One as α, at the end of the Phase Two as γ and the one that before γ as
β.

π0

s

π1 πi−1

α

πi πj

β

πj+1

γ

πk

t

s2s1 si−1 si

Seeding/Crossing

si+1 sj−1 sj

Final Crossing Move

sj+1 sk

Settling Moves Crossing Moves Seeding/Settling Moves

Phase One Phase Two Phase Three

Fig. 4: A pictorial representation of the analysis of Algorithm 1

Observation 4. All the moves in Phase One are settling moves and all the
moves in Phase Two except possibly the first are crossing moves.

Proof. It follows from the definition of phases that all the moves in Phase One
are settling moves. As long as |ULL|+ |URR| > 0, any crossing move from an
even permutation will pick a left value, and from an odd permutation will pick
a right value. This is ensured by Case 2 of the algorithm. Hence the next move
will also be a crossing move. Once |ULL| + |URR| = 0, we are in Case 3 of
the algorithm. In Case 3.1, the algorithm performs a crossing move by picking
an already crossed value. Let us call this move as sj . The next move will be a
settling move. Since |ULL| + |URR| does not increase due to any move of the
algorithm (which is ensured by Case 1 of the algorithm), |ULL|+ |URR| remains
zero for the rest of the moves. Hence, Case 2 of the algorithm will never occur
beyond sj . Also, after sj , since the set URR is empty, a value from the set Rt

will never become the first value in an even permutation. Similarly the set ULL
is empty after sj , a value from the set Lt will never become the first value in
an odd permutation. Therefore, Case 3 of the algorithm never happens beyond
sj . So, Phase Two of the algorithm consists of entirely crossing moves, except
possibly the first one and hence Observation 4.

Proposition 5. The number of crossed value at the end of Phase One, |X(α, t)| =
|X(s, t)|−(i−1) and the number of alternating cycles in α is at most the number
of alternating cycles in s, i.e., χ(α, t) ≤ χ(s, t).

Proof. By Observation 4, in Phase One, every move is a settling move. When a
move is a settling move, its previous move swaps the value in the first position
with a crossed value. Hence, during the Phase One, the number of crossed values

12 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

come down by (i−1). Every settling move splits an existing cycle into a singleton
cycle and another cycle which contains the first value. Since neither of the above,
is an alternating cycle χ(α, t) ≤ χ(s, t).

Proposition 6. The number of alternating cycles at the end of Phase Two,

χ(γ, t) ≤

{

1, when ULL(α, t) = URR(α, t) = ULR(α, t) = ∅

χ(α, t) + 1, otherwise.
(2)

Also, the number of moves in Phase Two,

m2 ≤

{

2, when ULL(α, t) = URR(α, t) = ULR(α, t) = ∅

2max{|ULL(α, t)|, |URR(α, t)|}+ 1, otherwise.
(3)

Furthermore, the number of crossed values in γ,

|X(γ, t)| ≤

{

|X(α, t)|+ 2,when ULL(α, t) = URR(α, t) = ULR(α, t) = ∅

|X(α, t)|+ 2max{|ULL(α, t)|, |URR(α, t)|}, otherwise.

(4)

Proof. At first, let us prove the claim on the number of alternating cycles at the
end of Phase two, i.e., χ(γ, t). In Phase Two, when |ULL(α, t)|+|URR(α, t)| = 0
and |ULR(α, t)| = 0, there will be at least one crossing move. This move will
be carried out with either t(1) or a settled value (Case 3.2). If it is carried out
with t(1), then it will be the final crossing move. Otherwise, the very next move
will be carried out with t(1) and will represent the final crossing move. In both
cases, γ(1) = t(1). Also, there will be exactly one crossed value in both halves of
γ. Since all the remaining values are settled values, the crossed values in γ will
form an alternating cycle. Hence χ(γ, t) = 1.

Now, let us consider the case when ULL(α, t) or URR(α, t) or ULR(α, t)
is non-empty. We will first show that, the number of alternating cycles before
the final crossing move in Phase Two is at most two more than the number of
alternating cycles at the end of Phase One, i.e., χ(β, t) ≤ χ(α, t) + 2.

In a crossing move of an even permutation, if the exchange happens either
with a settled left value or an unsettled left value that does not belong to the cycle
containing 1, this will result in a merging of two cycles into a new cycle. Since
this new cycle contains 1, it will not be an alternating cycle (Section B). If the
exchange takes an unsettled left value from a cycle containing 1, this will break
the cycle into two. One of which contains 1 and hence not an alternating cycle.
The second one will not be an alternating cycle if it further contains any other
unsettled left value. This means the only case in which a new alternating cycle
may be created is the crossing move from the even permutation with |ULL| =
1 and the crossing move from the odd permutation with |URR| = 1. Hence
χ(β, t) ≤ χ(α, t) + 2.

If there is an alternating cycle before the Final Crossing Move (i.e., in the
permutation β), the Final Crossing Move exchanges an already crossed value in

Oriented Diameter of Star Graphs 13

this cycle (Case 3.1), resulting in the merging of the two cycles. This will reduce
the number of alternating cycles in γ by one. Hence χ(γ, t) ≤ χ(β, t) − 1 =
χ(α, t) + 1.

Next we prove the claim on the number of moves in Phase Two. If ULL(α, t), URR(α, t)
and ULR(α, t) are empty, we have one crossing move, if d(1) ∈ Lα and two oth-
erwise (Case 3.2).

When ULL(α, t) and URR(α, t) are empty but |ULR(α, t)| > 0, we have
one crossing move (Case 3.1). If either ULL(α, t) or URR(α, t) is non-empty,
the larger of the two reduces by one in every alternate crossing move of Case 2
of Algorithm 1. If at least two crossing moves of Case 2 happen, Case 3.2 will
not occur. Hence we can conclude that, the number of crossing moves is at most
2max{|ULL(α)|, |URR(α)|}+ 1, when |ULL(α)|+ |URR(α)| > 0.

Lastly, we prove the claim on the number of crossed values after Phase Two.
Since every move of Phase Two adds at most one element to either ULR or
URL, |X(γ, t)| ≤ |X(α, t)| + m2. Further, either ULR(α, t) 6= ∅ or if at least
two crossing moves of Case 2 happen, Case 3.2 will not occur. Hence the final
crossing move (Case 3.1) will only replace one crossed value with another.

Proposition 7. The number of moves in the Phase Three is equal to |X(γ, t)|+
c(γ, t).

Proof. In [2] Akers and Murthy proved that the minimum number of steps re-
quired to reach a node, t, from a node s in Sn, denoted by d is

d =

{

m(s, t) + c(s, t), if s(1) = t(1)

m(s, t) + c(s, t)− 2, otherwise.
(5)

where m(s, t) is the number of mismatched values (i.e., the values that are not
in their correct position) in s and c(s, t) is the number of cycles in s with respect
to t. But we know that

m(s, t) =

{

|ULL(s, t)|+ |URR(s, t)|+ |X(s, t)|, if s(1) = t(1).

|ULL(s, t)|+ |URR(s, t)|+ |X(s, t)|+ 2, otherwise.
(6)

Therefore we can write Equation 5 as,

d = |ULL(s, t)|+ |URR(s, t)|+ |X(s, t)|+ c(s, t). (7)

Since |ULL(γ, t)| = |URR(γ, t)| = 0, using Equation 7, we can conclude that
the number of moves in the Phase Three is equal to |X(γ, t)|+ c(γ, t).

Let i be the number of steps taken by the algorithm in Phase One. Using

propositions 6 and 7 we can bound the total number of steps,
−→
d , taken by the

algorithm as

−→
d ≤

{

i+ 2 + (|X(γ, t)|+ c(γ, t)), when ULL(α, t) = URR(α, t) = ULR(α, t) = ∅

i+ (2max{|ULL(α, t)|, |URR(α, t)|}+ 1) + (|X(γ, t)|+ c(γ, t)), otherwise.

(8)

14 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

Let us first consider the case when ULL(α, t), URR(α, t) and ULR(α, t) are
empty. By Proposition 5, we know that,

|X(α, t)| = |X(s, t)| − (i− 1). (9)

When |ULR(α, t)| = 0, there can be at most one crossed left value in the right
half of α and hence |X(α, t)| is at most 1. From Proposition 6, we know that the
number of moves in Phase Two of this case is at most 2, |X(γ, t)| ≤ |X(α, t)|+2
and χ(γ, t) = 1. In fact, as discussed in the proof of Proposition 6, this alternating
cycle is the only cycle in γ. Therefore, c(γ, t) = 1. Using these observations in
Equation 8, we will get

−→
d ≤ |X(s, t)|+ 6. (10)

Next we consider the case when either ULL(α, t) or URR(α, t) or ULR(α, t)
is non-empty. By Proposition 6, we have

|X(γ, t)| ≤ |X(α, t)|+ 2max{|ULL(α, t)|, |URR(α, t)|}. (11)

Since |X(α, t)| ≤ |X(s, t)| − (i − 1) (Proposition 5), we can rewrite the Equa-
tion (11) as

|X(γ, t)| ≤ |X(s, t)| − (i − 1) + 2max{|ULL(α, t)|, |URR(α, t)|}. (12)

Since ULL(γ, t) and URR(γ, t) are empty, the only non-singleton cycles in γ are
the alternating cycles of γ and the one which contain γ(1). Hence

c(γ, t) ≤ χ(γ, t) + 1. (13)

Since χ(γ, t) ≤ χ(α, t) + 1, (Proposition 6) and χ(α, t) ≤ χ(s, t), (Proposition 5)
we can write Equation 13 as,

c(γ, t) ≤ χ(s, t) + 2. (14)

Since ULL(α, t) ⊆ ULL(s, t), URR(α, t) ⊆ URR(s, t) and by using Equa-
tions (12) and (14), we can rewrite Equation (8) as

−→
d ≤ 4max{|ULL(s, t)|, |URR(s, t)|}+ |X(s, t)|+ χ(s, t) + 4. (15)

Combining the results in Equation 10 and Equation 15, we can conclude that
the number of steps taken by Algorithm 1 to send a packet from s to t is at most

|X(s, t)|+max{6, y}

steps, where

y = 4max{|ULL(s, t)|, |URR(s, t)|}+ χ(s, t) + 4.

Hence Theorem 3.

Oriented Diameter of Star Graphs 15

Corollary 1. Let d be the distance between any two nodes s and t in the unori-

ented star graph Sn. Then
−→
d , the distance between s and t in the oriented star

graph
−→
Sn oriented using scheme in [11] is upper bounded as,

−→
d ≤ 4d+ 4 (16)

Proof. First we consider the case when y ≤ 6 in Theorem 3. In this case,
−→
d ≤

|X(s, t)|+6. Since d ≥ |X(s, t)| (Equation 7),
−→
d ≤ d+6 which is at most 4d+4

for all d ≥ 1. Now, let us consider the case when y > 6 in Theorem 3. Hence

−→
d ≤ |X(s, t)|+ 4max{|ULL(s, t)|, |URR(s, t)|}+ χ(s, t) + 4. (17)

By Equation 7, we know that

d = |ULL(s, t)|+ |URR(s, t)|+ |X(s, t)|+ c(s, t). (18)

Since,
χ(s, t) ≤ c(s, t), (19)

we can rewrite the Equation 17 as,

−→
d ≤ 4max{|ULL(s, t)|, |URR(s, t)|}+ |X(s, t)|+ c(s, t) + 4

≤ 4(|ULL(s, t)|+ |URR(s, t)|) + |X(s, t)|+ c(s, t) + 4

≤ 4d+ 4. (20)

Corollary 2. The diameter of the oriented star graph
−→
Sn,

diam(
−→
Sn) ≤

{

2n+ 2, when n is odd,

2n+ 4, otherwise.
(21)

Proof. Let s and t be two vertices in
−→
Sn such that

−→
d (s, t) is maximised. That is,

diam(G) =
−→
d (s, t). By Theorem 3, the number of steps that Algorithm 1 takes

to send a packet from s to t is at most |X(s, t)|+max{6, y}, where

y = 4max{|ULL(s, t)|, |URR(s, t)|}+ χ(s, t) + 4.

Since |X(s, t)| ≤ n, we have |X(s, t)|+5 ≤ 2n+2 for all n ≥ 3. So we can assume
that y ≥ 6 and therefore,

diam(G) ≤ |X(s, t)|+ 4max{|ULL(s, t)|, |URR(s, t)|}+ χ(s, t) + 4. (22)

Suppose, |ULL(s, t)| ≥ |URR(s, t)|. We know thatX(s, t) = ULR(s, t)∪URL(s, t),
and χ(s, t) is at most |ULR(s, t)|. Hence Eqn. 22 becomes

diam(G) ≤ 4|ULL(s, t)|+ 2|ULR(s, t)|+ |URL(s, t)|+ 4. (23)

16 K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

Since, |URL(s, t)| right values of t are not in the right half of s, at least (|URL(s, t)|−
1) of them are in the left half of s. That is |ULR(s, t)| ≥ |URL(s.t)| − 1. We
can improve this bound if t(1) is not in the left half of s. If t(1) is in the first
position of s, then |URL(s, t)| = |ULR(s, t)|. If t(1) is in the right half of s, then
(|URL(s, t)| + 1) right values of t are not in the right half of s, and hence at
least |URL(s, t)| of them are in the left half of s. Therefore,

diam(G) ≤

{

4|ULL(s, t)|+ 3|ULR(s, t)|+ 5, if t(1) ∈ L(s)

4|ULL(s, t)|+ 3|ULR(s, t)|+ 4, otherwise.
(24)

Since |ULL(s, t)|+ |ULR(s, t)| is at most |L(s)|−1 in the former case above and
|L(s)| in the latter case above, we get

diam(G) ≤ 4|L(s)|+ 4.

Since |L(s)| is (n − 1)/2 when n is odd and n/2 when n is even, we satisfy
Equation 21. The case when |URR(s, t)| > |ULL(s, t)| is similar and hence
omitted.

Day and Tripathi have numerically computed the diameter of
−→
Sn for n in the

range 3 to 9 [7]. Our bounds on the diameter of
−→
Sn agrees with their computation

when n ≤ 8. For n = 9 our upper bound is 20 while their computation reports
24.

References

1. Akers, S.B.: The star graph: An attractive alternative to the n-cube. In: Proc. Int’l
Conf. Parallel Processing. (1987)

2. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric intercon-
nection networks. IEEE Transactions on Computers 38(4), 555–566 (1989)

3. Cheng, E., Lipman, M.J.: Unidirectional (n, k)-star graphs. Journal of Intercon-
nection Networks 3(01n02), 19–34 (2002)

4. Chou, C.H., Du, D.H.: Uni-directional hypercubes. In: Proceedings of Supercom-
puting’90. pp. 254–263. IEEE (1990)

5. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. Journal of Com-
binatorial Theory, Series B 24(1), 61–75 (1978)

6. Dankelmann, P., Guo, Y., Surmacs, M.: Oriented diameter of graphs with given
maximum degree. Journal of Graph Theory 88(1), 5–17 (2018)

7. Day, K., Tripathi, A.: Unidirectional star graphs. Information Processing Letters
45(3), 123–129 (1993)

8. Eggemann, N., Noble, S.D.: Minimizing the oriented diameter of a planar graph.
Electronic Notes in Discrete Mathematics 34, 267–271 (2009)

9. Fomin, F.V., Matamala, M., Rapaport, I.: Complexity of approximating the ori-
ented diameter of chordal graphs. Journal of Graph Theory 45(4), 255–269 (2004)

10. Fomin, F.V., Matamala, M., Prisner, E., Rapaport, I.: At-free graphs: linear bounds
for the oriented diameter. Discrete applied mathematics 141(1-3), 135–148 (2004)

11. Fujita, S.: On oriented diameter of star graphs. In: Computing and Networking
(CANDAR), 2013 First International Symposium on. pp. 48–56. IEEE (2013)

Oriented Diameter of Star Graphs 17

12. Konig, J.C., Krumme, D.W., Lazard, E.: Diameter-preserving orientations of the
torus. Networks 32(1), 1–11 (1998)

13. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic
control. The American Mathematical Monthly 46(5), 281–283 (1939)

	Oriented Diameter of Star Graphs

