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Abstract

This paper studies forward and reverse projections for teyRdivergence of ordex € (0, c0)
on a-convex sets. The forward projection on such a set is metivdty some works of Tsallist al.
in statistical physics, and the reverse projection is nabg¢iel by robust statistics. In a recent work, van
Erven and Harremoés proved a Pythagorean inequality éolyRdivergences on-convex sets under the
assumption that the forward projection exists. Continuinig study, a sufficient condition for the existence
of a forward projection is proved for probability measures a general alphabet. Fer € (1,00), the
proof relies on a new Apollonius theorem for the Hellingaredgence, and fow € (0, 1), the proof relies
on the Banach-Alaoglu theorem from functional analysisither projection results are then obtained in
the finite alphabet setting. These include a projectionrémamn a specifiei-convex set, which is termed
an a-linear family, generalizing a result by Csiszar to # 1. The solution to this problem yields a
parametric family of probability measures which turns aube an extension of the exponential family,
and it is termed anv-exponential family An orthogonality relationship between theexponential and
a-linear families is established, and it is used to turn therge projection on an-exponential family
into a forward projection on aa-linear family. This paper also proves a convergence regwdh iterative
procedure used to calculate the forward projection on amsattion of a finite number of-linear families.
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. INTRODUCTION

Information projections of relative entropy have been esieely studied due to their various
applications in large deviations theory (e.g., Sanov'®tbm and the conditional limit theorem),
maximum likelihood estimation (MLE), statistical physi@nd so on. Some of the pioneering
works studying information projections include Barran,[Zencov [5], Chentsov_[6], Csiszar
[12], [13], Csiszar and Matu3 [15], and Tops@e![40]. Thedder subject areas using infor-
mation projections as a major component are knowitnésmation Theory and Statisticand
Information Geometrysee, e.g.,[[7, Chapter 11], [16] and references therein).

Given a probability measur@, and a set of probability measur@sdefined on an alphabet
A, aforward projectionof @) on P is a P* € P which minimizesD(P||Q) subject toP € P.
Forward projections appear predominantly in large dewnstitheory. By Sanov’s theorem,
the exponential decay rate of the probability of rare eveststrongly related to forward
projections (see [7, Theorem 11.4.1]); furthermore, inwigf the conditional limit theorem,
the forward projection of) on P arises as the limiting conditional probability measure of a
random variable with distributiod) ¢ P, given that the type of its i.i.d. samples belongs to
P (seel[7, Theorem 11.6.2]). The forward projection of a galtion of the relative entropy
has been proposed by Sundaresan_in [38] and [39] in the doofeguessing under source
uncertainty, and it was further studied in [24].

The Rényi divergence, introduced in [32] and further stddie.g., in [[18] and [37], has
been investigated so far in various information-theoretimtexts. These include generalized
cutoff rates and error exponents for hypothesis testirgy, (E.4]), guessing moments (e.d., [17]),
source and channel coding error exponents (&.d., [20], [38]), and other information-theoretic
problems.

A motivation for the study of forward projections for them@divergence on some generalized
convex sets stems from the following maximum entropy pnaobleéhich was proposed by Tsallis
in statistical physics [41])[42]:
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wherea € (0,1) U (1,00) is a free parametefy is the number of microscopic stateg; }
are the eigenvalues of the Hamiltonian, &it) is the total internal energy of the system. The
functional S,,(P) in (@) is known as thél'sallis entropy The constraint in[(2) is on thescort
probability measure

P@ .= (P .. P\,

(@ . _ D :
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in contrast to the usual constraint in the Boltzmann-Gildthsisical physics

W
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The constraint in[{2) corresponds to arlinear family (to be formally defined in SectianllV),
whereas[(4) corresponds to a linear family|[25, Definition I#]Q = U is the equiprobable
measure on the state spage..., W}, then the Rényi divergencB, (P||U) is related to the
objective functionS,, (P) in (1) via the equation

Do(P|U) = log W +

P log(l — (a— 1)Sa(P)) (5)

which implies that the maximization of,, (P) over the set which is defined il (2) is equivalent to

the minimization ofD, (P||U) on the same set of probability measuredin (2) which cormedgo

to ana-convex set.

The other problem of interest in this paper is tegerse projectiorwhere the minimization
is over the second argument of the divergence measure. Taldem is intimately related
to maximum-likelihood estimation and robust statisticapgoseXy, ..., X,, are i.i.d. samples
drawn according to a probability measure which is modelled parametric family of probability
measures$l = {Fy: 0 € ©} where® is a parameter space, and all the membei$ afe assumed
to have a common finite suppad. The maximume-likelihood estimator of the given samples (if
it exists) is the minimizer oD(PHPg) subject toP, € II, whereP is the empirical probability
measure of the observed samples (see, €.gl, [16, Lemma BHg) minimizing probability
measure (if it exists) is called the reverse projectionfobn II. Other divergences that have
natural connection to statistical estimation probleméuide the Hellinger divergence of ordér
(see, e.g.[]4]), Pearsonig-divergence[[30], and so on. All of these information meastare
f-divergences ([1]/19]) in the family of Hellinger divergess of ordekx € (0, c0) (note that, up
to a positive scaling factor, Hellinger divergences areattmthe power divergences introduced
by Cressie and Read][8]). The Hellinger divergences possessy good robustness property
when a significant fraction of the observed samples areewsflithe textbooks by Basu et al.
[3] and Pardo([29] address the developments of studies @mein€e based offi-divergences.
Since the Rényi divergence is a monotonically increasurgtion of the Hellinger divergence
(as it follows from [(14)), minimizing the Hellinger divergee of orderx € (0, o) is equivalent
to minimizing the Rényi divergence of the same order. Thistivates the study of reverse
projections of the Rényi divergence in the context of raokatatistics. In[[27, Section 4], an
iterative message-passing algorithm (a.k.a. belief pyappan) was used to approximate reverse
projections for the Rényi divergence.

In the following, we further motivate our study of forward cameverse projections for the
Rényi divergence of ordew € (0,00) on a-convex sets (note that these terms are formally
defined in Sectiofll):

a) In view of existing projection theorems for the relativetrepy (e.g., [[6], [12], 18], [[15])
and Sundaresan'’s relativeentropy on convex sets [24], [25]), we study forward anceree
projections for the Rényi divergence of ordere (0,00) on a-convex sets. Our problem
reduces to the study of information projections for the tredaentropy on convex sets when
a = 1. Note also that the Rényi divergenég,(P||Q) and Sundaresan'’s relativeentropy
4,(P,Q) are related according to the equality (see [24, Lemma 2c)])

Fa(P,Q) = D1 (P@Q) (6)
where P(*) and Q(®) are, respectively, the associated escort probability measof P and

Q in @).

b) In a recent work[[18], van Erven and Harremoés proved adgrean inequality for Rényi
divergences of ordetr € (0,00) on a-convex sets under the assumption that the forward
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projection existdl Continuing this study, one of the main objectives of this kvsrto provide

a sufficient condition for the existence of such a forwardjgotion on ana-convex set of

probability measures defined on a general alphabet (seer@éb). Our proof is inspired

by the proof of the existence of the forward projection far tklativea-entropy on a convex

set (seel[24, Proposition 6] arnd [24, Theorem 8]).
¢) Forward projections of the relative entropy on linear ifeas and their orthogonality relation-

ship to exponential families were studied in[12] ahd|[16 after 3]. We generalize these

results by studying forward projection theorems for th@Réivergence om-linear families.

The solution of this problem yields a parametric family oblpability measures which turns

out to be an extension of the exponential family, and it imat anc-exponential familyAn

orthogonality relationship between theexponential and-linear families is also established.

d) The orthogonality property of linear and exponential ifees was used to transform a reverse
projection of relative entropy on an exponential familyoiret forward projection on a linear
family [16, Theorem 3.3]. In this work, we make use of the gaheed orthogonality
relationship in Item c) to transform a reverse projectiontf@® Rényi divergence of order
on ana-exponential family into a forward projection on anlinear family.

e) In [12, Theorem 3.2], Csiszar proposed a convergeratiter process for finding the forward
projection for the relative entropy on a finite intersectioilinear families. This result is
generalized in this work for the Rényi divergence of ordef (0, c0) on a finite intersection
of a-linear families.

The following is an outline of the paper. Sectibh Il providegliminary material which is
essential to this paper. In Sectibnl Ill, we study a sufficiesndition for the existence of the
forward projection for the Rényi divergence on generalizenvex sets. In Sectién]V, we revisit
the Pythagorean property for Rényi divergence and progdtérated projections property as a
consequence. In Sectibn V, we establish the form of forwiageprojection on am-linear family
and identify thea-exponential family as an extension of the exponential anhm Section[V],
we establish an orthogonality relationship betweendHmear anda-exponential families, and
in Section[VIl we use this orthogonality property to convéré reverse projection on am
exponential family into a forward projection on anlinear family. Finally, Sectioh VIII briefly
summarizes this paper and provides some concluding remarks

[I. PRELIMINARIES

In this section, we set the notation and formally define tewhich are used in this paper.

Let (A,.#) be a measurable space, and.lett denote the space of all probability measures
defined onA.

Definition 1: For P,@Q € M, thetotal variation distancebetweenP and( is defined as

[P — Q| := 2 sup |[P(F) — Q(F)|. (")
FeF

If P andQ are absolutely continuous with respect to a commdimite measure: (denoted by
P,'Q <L p), letp:= ‘jl—ﬁ,q = fl—@ _o!enote their respective densities (Radon-Nikodym devies}
with respect tou (called u-densities). Then,

P - Q= Ilp - qll :/\p—q\du, ®)

It should be noted that the Rényi divergence does not nadlyssatisfy a Pythagorean inequality on convex sets.
For a counter example, see [19, Appendix A on p. 19].
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and M together with the total variation distance forms a metriacgp Throughout the paper,
the Lebesgue integrals are over the det

Pinsker’s inequality[[31] states that
5 |P —Qloge < D(P|Q). ©)

Eq. (9) was proved by Csiszéar [10] and Kullbackl[23], withrigerman([22] independently a

bit later. From Pinsker’s inequalitj/l(9), it follows thatraeergence in relative entropy also yields

convergence in total variation distance (i.e.J{P,||P) — 0 asn — oo, then|P, — P| — 0).
Definition 2 (Renyi divergence)Let a € (0,1) U (1, 00). The Rényi divergenc¢32] of order

a from P to Q is given by

Da(PlQ) := —~ i T log </paq1_°‘ du) : (10)

If « =1, then

D1 (P|Q) := D(P[|Q), (11)

which is the continuous extension &f,(P| Q) at o = 1.
Definition 3: The Hellinger divergence [26, Definition 2.10] of order (0,1)U(1,00) from
P to Q is given by

1 —a
Ha(P|Q) = — </p°‘q1 dp — 1) : (12)
The continuous extension o, (P||Q) at«a = 1 yields

H4(P|Q) loge = D(P|@). (13)

Note that|P — Q|, D, (P||@Q) and 7%, (P||Q) are non-negative, and are equal to zero if and
only if P = Q. These measures can be expressed in termsdivergences.[1],[19],[[10], and
they do not depend on the choice of the reference measuxmte that, from[(10) and (12),

Do (P||Q) =

showing that the Rényi divergence is monotonically insheg with the Hellinger divergence.
Definition 4 (o, A)-mixture [18]): Let Py, Py < p, let a € (0,00), and letA € (0,1). The
(a, N)-mixture of (P, P;) is the probability measur8y ; with p-density

— log(1+ (o = DA(PI|Q)), (14)

1 B
so = | (1= N + Mt (15)
where Z is a normalizing constant such thtsg 1 dp =1, i.e.,
7= /[(1 — NP+ Wwf] " du (16)

Here, for simplicity, we suppress the dependenceS@f and Z on a, A. Note thatsg; is
well-defined asZ is always positive and finite. Indeed, fare (0,00) and X € [0, 1],

1

0.< [(1=Np6 +Apt | < max{po.p1} < po+p1 (a7

which implies that0 < Z < 2. From [15), forA € [0, 1], the (o, A)-mixture of (P, P;) is the
same as théa, 1 — \)-mixture of (P, ).

Definition 5 (-convex set):Let a € (0,00). A set of probability measureR is said to be
a-convexif, for every Py, P € P and X € (0,1), the (a, A\)-mixture Sy ; € P.



I1l. EXISTENCE OFFORWARD D,-PROJECTIONS ONa-CONVEX SETS

In this section, we define what we mean by a forwdpg-projection, and then provide a
sufficient condition for the existence of forwarfd,-projections ornx-convex sets.
Definition 6 (ForwardD,,-projection): Let @ € M, P C M, anda € (0, c0). If there exists
€ P which attains the global minimum dd,, (P||Q) over all P € P and D, (P*||Q) < oo,
then P* is said to be dorward D, -projectionof Q on P.
We next proceed to show the existence of a forwBgdprojection on any-convex set. It has

been shown in [18, Theorem 14] thatfifis ana-convex set and* exists, then th&ythagorean
inequality holds, i.e.,

Do(P[Q) = Da(P||P?) + Da(P*[|Q), VP €P. (18)

However, the existence of the forward,-projection was not addressed in [18]. We show that
if the a-convex setP is closed with respect to the total variation distance, ttien forward
D,-projection exists. The proof is inspired by the proof of théstence of a forward projection
for the relativea-entropy on a convex set [24, Theorem 8]. Before getting ¢orttain result of
this section, we prove the following inequality for the Hiedler divergence.

Lemma 1 (Apollonius theorem for the Hellinger divergendé)x € (1,00), A € (0,1), and
Py, P1,Q are probability measures whefg, P, Q < u, then

(1 — N (A (Po]|Q) — a0 (Pol|So,1))
+ XA (P1|Q) — H4(P1]1S0,1)) = H#4(S0aQ), (19)

and the inequality in[(19) is reversed fare (0,1).
Proof: The left side of[(IP) simplifies to

(1= N (A(P]|Q) — Ha(Pol|So,1)) + AN Ha(P1]|Q) — Ha(Pi|So))
:;:Al/po( _801 d'“—i'—/ _301)d/‘

_ 11/((1—A)pg+Ap?‘)(q "= s50.") dp

a J—
— 1 VA (ql—a . Sl—a) d,u
a—1 0,1 0,1
Za o —Q
:a—1</SO’IQ1 dlu_l)
= Z% #(5,11Q). (20)
The result follows since, by invoking Jensen’s inequality(18) (seel[18, Lemma 3]y > 1 if
€ (1,00),and0 < Z < 11if a € (0,1). [

Remark 1:Lemmall is analogous to the Apollonius theorem for the redati-entropy [24,
Proposition 6] where5 ; is replaced by a convex combination 8§ and P;. In view of (13)
and sinceZ = 1 whena = 1 (see [(16)), it follows that{ (20) reduces to tharallelogram law
for the relative entropy [12, (2.2)] whem =1 and\ = %

We are now ready to state our first main result.

Theorem 1 (Existence of forwaid,,-projection): Let « € (0,00), and let@ be an arbitrary
probability measure defined on a sdt Let P be ana-convex set of probability measures
defined onA4, and assume th&® is closed with respect to the total variation distance. #réh
exists P € P such thatD,(P||Q) < oo, then there exists a forwarB,-projection of@ on P.
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Proof: We first consider the case whetfec (1,00). Let {P,} be a sequence iR such that
D, (P,||Q) < oo and Dy (P, ||Q) — infpep Do(P||Q) =: Do(P||@Q). Then, in view of [(14),
Ha(Pal|Q) < 0o and #4(P,[|Q) — inf pe #a(P|Q) =: #a(P|Q).
Let m,n € N, and letsS,, ,, be the(a, \)-mixture of (P, P,), i.e., Sy, is the probability
measure withu-density

S = % [0+ ] (21)

where Z,, ,, is the normalizing constant such thas,, , du = 1. Applying Lemméd_l, we have
0 <(1 = X)Ha(Prnl|Smn) + Ao (PrllSmn) (22)
<(1 = N Ha(PullQ) + AA(Pal|Q) — Ha(SmnllQ). (23)

Since 7, (P, ||Q) — 76,(P||Q) as we letn — oo, and 7, (S, . ||Q) > 4. (P||Q) (note that
Sm.n € P due to thea-convexity of the setP), the limit supremum of the right side df (23)
is non-positive as,m — oo. From the left side of[(22), the limit infimum of the right side
of (23) is also non-negative. This implies that the limit bétright side of[(213) is zero, which
also implies that the right side df (22) converges to zero adetm,n — oo; consequently,
I (Pl Smn) — 0 and 54, (P, || Sm,n) — 0 asm,n — oo. Since the Hellinger divergence,
H,(+]]*), is monotonically increasing imv [26, Proposition Zﬂ it follows from (13) that
D(P,||Sm,n) — 0 and D(P,,||Sy,,n) — 0 asm,n — oo, which, in turn implies (via Pinsker’s
inequality [9)) thatP,, — S, »| = 0 and|P,, — Sy, »| — 0 asm,n — oco. The triangle inequality
for the total variation distance yields th@, — P,,,| — 0 asm,n — oo, i.e., {P,} is a Cauchy
sequence ir?, which therefore converges to som¥ € P due to the completeness &f with
respect to the total variation distance. Subsequentlyctiieesponding sequence pfdensities
{p.} converges to thei-densityp* in L!; this implies that there exists a sub-sequefigg, }
which convergesi-almost everywhere (a.e.) . By Fatou’s lemma and (12), it follows that
for a € (1,00)

H(PIQ) = i Aa(PQ)
> Hao(P7Q) (24)

which implies thatP* is a forward.Z,-projection of@Q on P. In view of (14), this is equivalent
to saying thatP* is a forward D, -projection of(Q on P.

We next consider the case where= (0,1). Abusing notation a little, we use the same letter
P to denote a set of probability measures as well as the seieofcbrresponding.-densities.
Sincea < 1,

1
inf Do (P||Q) = 1 gt 25
nf Do(P|Q) a_log<§1€17g/pq du) (25)
1
= log (sup/gh du) , (26)
a—1 geP

whereg := sp®, h := ¢~ and

ﬁ::{spo‘:pep, 0<s<1}. (27)

2A simple proof of the monotonicity of the Hellinger divergenin o appears in[[35, Theorem 33].
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Notice that the multiplication op® by the scalars € [0,1] in the right side of[(27) does not
affect the supremum i .(26). This supremum, if attained,btaimed by some = sp® with

s =1 andp € P. The purpose of introducing € [0, 1] is to make the optimization in_(26) over

a convex set (as it is shown in the sequel).

Let 5 = £ and 8’ := 15; note that$ and ' are Holder conjugates (i.ej + 5 = 1).
Then,fhﬁ' dp = [q du = 1, soh € L7 (u). By invoking Holder’s inequality, it follows
that Fj,(g) := [ gh du is a continuous linear functional ob”(p). Thus, the supremum is of
a contlnuous linear functional on the reflexive Banach spatig:). We claim thatP is closed
and convex inL?(x). For the moment, we assume that the claim holds, and lateegtoA
convex set which is closed with respect to the norm topolegglso closed with respect to the
weak topology[[33, Ch. 10, Cor. 23]. Note that the weak togglon L?(y) is the smallest
topology onL?(y) for which the continuity of the linear functionals ab’ (1) is preserved.
Moreover, for anyg = sp® € P, = s < 1. Hence,P is a subset of the unit sphere
of LA (). By the Banach-Alaoglu theorerh [33, Ch. 10, Th. 17] and the fhat L%(u) is a
reflexive Banach space, it follows that the unit sphege || g||g < 1} is compact with respect
to the weak topology of.”. Ijence,73 is a closed subset of a compact set with respect to the
weak topology ofL’(1), soP is also compact in the weak topology. Thus, the supremum in
(286) is of a continuous linear functional over a compact seLf(;), which yields that this
supremum is attained.

To complete the proof fow € (0, 1), we prove the claim thaP is convex and closed. To verify
that P is convex, lets; p§, s2p§ € P and ) € (0,1). We can writeAs1pf + (1 — X)s2p§ = sp®

with
_ L (s + (1= Vsopg\ (28)
Z As1+ (1= N)so ’

whereZ is the normalizing constant, anc= (As; + (1 — A)s2) Z*. Fora € (0,1), 0 < Z < 1
by [18, Lemma 3] which implies that € [0, 1]. This proves the convexity op.

Next, to prove thatP is closed, letg, = s,p% € P be such thaty, — g in L?(u). We
need to show thay € P. Sinces, = lgnlls — ||gH5, we have||g|ls < 1. If ||g|ls = 0, then
g = 0 p-a.e., and hence obviouslye P. Since3 = 1 > 1, it follows that if llgllg > 0, then
12 = ga/llgalls — 9/lglls in LP(), and thereforey, — (g/lglls)? in L'(u)H SinceP is
closed inL!(u), we haveg/|gls = p* € P, andg = ||g| - p* € P.

[ |
Remark 2: The fact underlying the above proof is that the maximum orimim of a
continuous function over a compact set is always attaindthoAgh the actual seP in (25),
over which we wish to optimize the functional, is not compdcivas possible to modify it into
the setP in (Z7) without affecting the optimal value ib_(26); the mfiek setP was compact
in an appropriate topology where the functional also res&nbe continuous.

%If B> 1 and{f,.} converges tof in L?, then an application of the mean-value theorem and Hideequality
yields || £n | = |£1%]| < BUIfalls+1£115)° |1 fn — fll1; hence{| £} converges tdf|? in L'. Since non-negative
functions are considered in our case, we can ignore the wesehlues sd f2} converges tof? in L.



IV. THE PYTHAGOREAN PROPERTY ANDITERATED PROJECTIONS

In this section we first revisit the Pythagorean property dofinite alphabet and use it to
prove a convergence theorem for iterative projectionsolighout this section, we assume that
the probability measures are defined dinéte setA. For a probability measur®, let its support
be given by SupfP) := {a € A: P(a) > 0}; for a set of probability measuré, let

SupP) := | J SuppP). (29)
PeP

Let us first recall the Pythagorean property for a Rényi idjgace on ar-convex set. As it
is in the cases of relative entropy [16] and relativentropy [25], the Pythagorean property is
crucial in establishing orthogonality properties. In tlegsel, we assume thét is a probability
measure with Sugg)) =

Proposition 1 (The Pythagorean propertflet o € (0,1) U (1,00), let P C M be ana-
convex set, and) € M.
a) If P*is a forwardD,-projection of@) on P, then

Do(P||Q) = Da(P||P*) + Da(PT|Q), VP eP. (30)

Furthermore, ifa > 1, then SuppP*) = SupfP).
b) Conversely, if[(3D) is satisfied for soni&* € P, then P* is a forward D,-projection of@Q
onP.

Proof: @) In view of the proof of[[18, Theorem 14], for eve® € P andt € [0, 1], let
P, € P be the(o, t)-mixture of (P*, P); sinceD,(P]|Q) is minimized att = 0, then (see [18,
pp. 3806—3807] for detailed calculations)

d
0< = Da(RIQ)| _

- (S - o) e

which is equivalent to[(30). To show that SLQW) = SupfP) for a > 1, suppose that there
exist P € P anda € A such thatP*(a) = 0 but P(a) > 0. Then [31) is violated since
its right side is equal, in this case, teco (recall that by assumption Suf@@) = A so, if
a>1, Y, Pa)*Qa)", ¥, P*(a)*Q(a)'~* € (0,00), and Y, P(a)*P*(a)'~* = +c0).
This contradiction proves the last assertion in Propasifia).

b) From [30), we have

Do(Pl|Q) = Da(P||P7) + Da(P*[|Q)

D,(P*||Q) VPeP. (32)

Remark 3: The Pythagorean properfy (30) holds for probability meesdefined on a general
alphabetA, as it is proved in[[18, Theorem 14]. The novelty in Proposifil is in the last
assertion of a), extending the result for the relative guytrim [16, Theorem 3.1], for whictd
needs to be a finite set.

Corollary 1: Let a € (0,0). If a forward D,-projection on am-convex set exists, then it
is unique.

> D
>
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Proof: For o = 1, since ana-convex set is particularized to a convex set, this result is

known in view of [16, p. 23]. Next, consider the case whare (0,1) U (1,00). Let P; and

Py be forward D, -projections of@ on ana-convex setP. Applying Propositiori {1, we have

Do(P3]|Q) = Da(Py[|Py) + Da(Pr Q).

Since D, (Py||Q) = Do (P5|Q), we must haveD, (Ps || P;) = 0 which yields P} = Py. [
The last assertion in Propositioh 1a) shows that $8pp = SupgP) if a € (1,00). The

following counterexample illustrates that this equalityed not necessarily hold fer € (0,1).
Example 1:Let A = {1,2,3,4}, a=1, f:A— R be given by

and letQ(a) = 1 for all a € A. Consider the followingx-convex seff
P = {PGM 1Y P(a)*f(a) :0}. (34)
acA
Let
Pr(1)= &, P*(2) = 15, P*(3) =0, P*(4) = 0. (35)
It is easy to check thaP* € P. Furthermore, setting* = £ and Z = £ yields
P*(a)'= = 2°71 Q@)= + (1~ a) f(a) 0", (36)
for all a € {1,2,3}, and
Pr(4)l—o > zo-1 [Q(4)1—a 4 (1—a)f(4) 9*}. (37)
From [34), [36) and (37), it follows that for every € P
> P(a)*P*(a)' ™ > 2°7" Y " P(a)*Q(a) . (38)
acA acA
Furthermore, it can be also verified that
Zo71 Y P a)*Qa)' T = 1. (39)
acA

Assembling [(3B) and (39) yields

e o Daea P@°Q@)
S Sy e

which is equivalent td (30). Hence, Propositidn 1b) imptiest P* is the forwardD,,-projection
of @ on P. Note, however, that Supp*) # SupdP); to this end, from[(34), it can be verified
numerically that

(40)

P = (0.984688, 0.005683, 0.004180, 0.005449) € P (42)
which implies that Sup@@*) = {1, 2} whereas SupfP) = {1,2,3,4}.

“This set is characterized ih (43) as arinear family.
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Definition 7 @-linear family): Let o € (0,00), and fi, ..., fr be real-valued functions de-
fined on.A. The a-linear family determined byfi, ..., fi is defined to be the following para-
metric family of probability measures defined gh

Z, {PeMP [ZHfZ ] , 91,...,9k)eRk}. (42)

For typographical convenience, we have suppressed thendepee of.%, in f1,..., f&.
It is easy to see that/, is ana-convex set. Without loss of generality, we shall assumé tha
fi,..., fx, as|A|-dimensional vectors, are mutually orthogonal (otherplisethe Gram-Schmidt
procedure, these vectors can be orthogonalized withoettaffy the corresponding-linear
family in (@2)). Let 7 be the subspace dkM spanned byfi,..., fi, and let F+ denote

the orthogonal complement of. Hence, there exisfy1,..., f4 such thatfy,..., fi4 are
mutually orthogonal agA4|-dimensional vectors, an8+ = Spar{ fi.1, . . . , fla1}- Consequently,
from (42),

L = {P € M: Y P(a)*fi(a) =0, Vie{k+ 1,...,|A|}} . (43)

From [43), the set?, is closed. We shall now focus our attention on forwdpg-projections
on a-linear families.

Theorem 2 (Pythagorean equalitylret « > 1, and letP* be the forwardD,-projection of
Q@ on .%,. Then, P* satisfies[(30) with equality, i.e.,

Do(P||Q) = Da(P||P*) + Do(P*]|Q), VP € L. (44)
Proof: Fort € [0,1] and P € .Z,, let P, be the(q, t)-mixture of (P, P*), i.e
1 * @ [e% é
Pia) = [(1 — £)P*(a)™ + tP(a) ] , (45)
where

Zy =Y [(1 = H)P*(a)* +tP(a)] . (46)

Since P, € P,
Do(P]|Q) = Da(P(|Q) = Da(H]|Q), (47)

which yields

t10 t
By Proposition[la), ifa € (1,00), SupgP*) = Supf-Z.). Hence, ifa > 1, for every
P c %, there existg’ < 0 such that
(1—=t)P*(a)* +tP(a)* >0

for all a € Supd%,) andt € (¢,0). Since A is finite, the derivative ofD, (P,||Q) exists at

t = 0. In view of (42) and since?, P* € %, for everyt € (t',0), there eX|st9§ ), .. ,9() eR
such that
k

(1—t)P*(a)* + tP(a Zeft fila
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which yields thatP; € .%, for ¢t € (¢',0) (see [45)). Consequently, sin¢e](47) also holds for all
t € (t,0), then

i Pa(PlIQ) = Da(B]|Q) _
10 t

From (48), [49), and the existence of the derivativelpf(P||Q) at ¢t = 0, it follows that this
derivative should be equal to zero; since this derivativedsial to the right side of (31), it
follows that [31) holds with equality Hence, for eveR/c P,

(49)

> Pla )
P(a 50
S P QT )
Taking logarithms on both sides (bﬂSO), and dividing dy- 1, yields [44). [ |

The following theorem suggests an iterative algorithm td fime forwardD,-projection when
the underlyinga-convex set is an intersection of a finite numberslinear families.

Theorem 3 (Iterative projections)eta € (1,00). Suppose thaL”OEl), - ,.,%Em) area-linear
families, and let

Po= ()L™ (51)
n=1
whereP is assumed to be a non-empty set. Bpt= @, and letP, be the forwardD,-projection
of P,_; on gﬁ” with i,, = nmod (m) for n € N. Then, P, — P* (a pointwise convergence
by letting n — o0).
Proof: Since (by definition)P, is a forward D,-projection of P,_; on ana-linear set
which includesP (see [(5l)), it follows from Theorem 2 that for eveR/e P and N € N

Duo(P||Py—1) = Do(P||Py) + Do(Py||Po-1), VYme{l,...,N}. (52)
Hence, since?y = Q, (52) yields

Da(P|Q) = Da(P|[Px) + Z( (P|Pat) = Da(P|P2)
N
:Da(P||PN)+ZDa(PnHPn—1)- (53)
n=1

Note thatP in (&), being a non-empty intersection of a finite number ofhpact sets, is a
compact set. Le{ Py, } be a subsequence ¢, } in P which pointwise converges to sonf&
on the finite setd (hence,P’ € P). Letting N — oo in (53) implies that, for eveny? € P,

Do (P(|Q) = Da(P|IP') + > Da(Pul|Pa-1) (54)
n=1

where, to obtain[(834)D, (P||Pn,) — D.(P|P’) since A is finite andPy, — P’. Since [54)
yields >°0° | Do (Py||Po—1) < oo then Dy (P,||P,—1) — 0 asn — oo; consequently, since
D,(-||-) is monotonically non-decreasing i (see, e.g.,[[18, Theorem 3]) and > 1 then
D(P,||P,-1) — 0, and by Pinsker’s inequality?,, — P,,_;| — 0 asn — oco. From the periodic
construction of{i,, } (with periodm), the subsequencd®y, },{Pn,+1},---,{Pn,+m—1} have
their limits in .,%El),...,fogm), respectively. SinceéP,, — P,_1| — 0 asn — oo, all these
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subsequences have the same lif¥it which therefore implies tha?’ € P. SubstitutingP = P’

in (54) yields
Do(P'|Q) = ZD (Pl Pa-1) (55)

and assembling_(54) and_(55) yields
Do(P||Q) = Da(P||P') + Da(P'|Q), VP eEP. (56)

Hence, [(5B) implies thaP”’ is the forwardD,-projection of@ on P. Since{ Py, } is an arbitrary
convergent subsequence fF,}, and the forwardD,-projection is unique, every convergent
subsequence dfP,} has the same limiP*. This proves that’, — P* asn — co. [ |

V. FORWARD PROJECTION ON ANa-LINEAR FAMILY

We identify in this section a parametric form of the forwaly,-projection on am-linear
family, which turns out to be a generalization of the welblim exponential family.
Theorem 4 (Forward projection on ad-linear family): Let « € (0,1) U (1,0), and let P*
be the forwardD,,-projection of@ on ana-linear family.%,, (as defined in[(42) wherg,, ..., f,
as |.A|-dimensional vectors, are mutually orthogonal). The felfgy hold:
a) If Supg P*) = Supf.%,), then P* satisfies[(44).

b) If
SupfP*) = SUppZa) = A, (57)
then there exisf 11, - - -, fl4 Such thatfi, ..., f| 4 are mutually orthogonal gsl|-dimensional
vectors, and* = (6}, .-, 67) € RMI~* such that for alla € A
|A| L
P*(a) = 2(67) [Q( P (-a) S 0 } (58)
i=k+1

where Z(6*) is a normalizing constant if_(58).

Proof: The proof of Item a) follows from the proof of Theordm 2 whiclelgs that P*
satisfies the Pythagorean equalltyl(44).
We next prove Item b). Eq[GM) is equivalent Eo](50), which b& re-written as

Z P(a)* [cP*(a)'™ - Q(a)'™] =0, VPe€.%, (59)

with ¢ = 3", P*(a)*Q(a)' . Recall that if a subspace of the Euclidean spat# contains a
vector whose all components are strictly positive, thes thibspace is spanned by the vectors
whose all components are nonnegative. In view[of (42), thespaceF which is spanned by
fi,..., fr (recall that these functions are regarded.d5dimensional vectors) contair{$*)“
whose support is4 (see [(5F)). Consequently, it follows frorh {42) th@®*: P € £,} spans
the subspacé of Rl From [59), it also follows that (P*)'~® — @'~ € F*, which yields
the existence of € R for i € {k+1,...,|A|} such that for alle € A

|Al
P (@)= Qa) ™ =(1—-a) Y 0ifia) (60)
1=k+1

with a scaling of{#}} by 1 — « # 0 in the right side of[(60). Hence?* satisfies[(5B) where
in the left side of [(6D) is the normalizing constaritd*) in (58). [ |
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Remark 4:In view of Example[l, the condition Supp*) = Supg-%,) is not necessarily
satisfied fora € (0,1). However, due to Propositidd 1 a), this condition is necélyssatisfied
for all a € (1, 00).

For a € (0,0), the forwardD,,-projection on anx-linear family .%,, motivates the definition
of the following parametric family of probability measurdést Q € M, and let

Al fers
b im {p € M: P(a) = Z(0) " [Q(a)l‘a +(1-a) Y Hifi<a>] :
i=k+1

0= (Ops1,....04) € R'“‘”‘k}. (61)

We shall call the familys,, ana-exponential familﬁ which can be verified to be @ — «)-convex
set. We next show thaf, generalizes thexponential family¢’ defined in [16, p. 24]:

4]
& = {P e M: P(a) = Z(0)'Q(a) exp< > Gifi(a))
i=k+1

0= (Okt1,-..,04) € RA"“}. (62)

To this end, let thex-exponentialand a-logarithm functions be, respectively, defined by

exp(x) if =1,
eq(x) := 1 63
) (max{l—l—(l—a)x, O})lf& if o€ (0,1)U (1,00), ©3

na(e) = 4 20) o=, 9
NalT) "= ml{jojl if € (07 1) U (1700)

In view of (€1), [63) and((64), the-exponential familys,, includes all the probability measures
P defined onA such that for alla € A

Al
P(a)=Z(0) " ea <lna(Q(a)) + ) Hz-fi(a)>7 (65)
i=k+1
whereas anyP € & can be written as
| A]
P(a) = Z(6) " exp <1n<cz<a>> + ) eifxa)). (66)
i=k+1

This is an alternative way to notice that the family can be regarded as a continuous extension
of the exponential family’” whena € (0,1)U(1, 00). It is easy to see that the reference measure
Q in the definition ofé, is always a member of,. As in the case of the exponential family,
the a-exponential family&;, also depends on the reference meagrenly in a loose manner.

In view of (€1), any other member ef,, can play the role of) in defining this family. The
proof is very similar to the one for the-power-law family in [25, Proposition 22]. It should
be also noted that, far € (1, 00), all members of£, have the same support (i.e., the support

of Q).

5Note that then-power-law familyin [25, Definition 8] is a different extension of the exporiahtamily &.
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VI. ORTHOGONALITY OF a-LINEAR AND a-EXPONENTIAL FAMILIES

In this section, we first prove an “orthogonality” relatitis between am-exponential family
and its associated-linear family. We then use it to transform the rever3g-projection on an
a-exponential family into a forward,-projection on am-linear family.

Let us begin by making precise the notion of orthogonalitimwleen two sets of probability
measures with respect 0, (a > 0).

Definition 8 (Orthogonality of sets of probability measyreket o € (0,1) U (1,00), and let
P and Q be sets of probability measures. We say tRats «-orthogonal toQ at P* if the
following hold:

1) PnQ={P*}
2) D,(P||Q) = Do(P||P*)+ D, (P*||Q) for every P € P and@ € Q.

Note that, whemy = 1, this refers to the orthogonality between the linear andoaeptial
families in [16, Corollary 3.1].

We are now ready to state our second main result namely, thegamality betweer?,, and
&y

Theorem 5 (Orthogonality of/,, and &,): Let « € (1, ), let £, and &, be given in [(4R)
and [61), respectively, and Ig?* be the forwardD,-projection of @ on .%,. The following
hold:

a) %, is a-orthogonal to dl&,) at P*.
b) If Supp-%,) = A, then.%, is a-orthogonal to&,, at P*.

Proof: In view of Propositiorl Il a), forx € (1,00), the condition Sup@P*) = Supf-%a)
is satisfied. Consequently, for € (1, c0), Theoreni#a) implies tha®* satisfies[(44). We next
prove the following:

i) Every P € %, Ncl(&,) satisfies[(24) withP in place of P*.

i)y £, Nncl(é&,) is non-empty.
To prove Item i), sinceP € cl(&,), there exists a sequen¢®, } in &, such thatP, — P. Since

P, € &,, from (B1), there exist§™ := (61", ... ,9‘%) € RHI=F such that for alla € A
| Al
Pa(a)'™ = Z(0™)* 71 [Q(a)' ™ + (1 =) Y 0" fi(a)]. (67)
i=k+1

SinceP, P € .%,, from (@3), for alli € {k+1,...,|Al}
> P(a)*fi(a) =0, (68)
> P(a)*fi(a) =0. (69)

Since A is finite, assembling (67)=(69) yields (after switching th@ler of summations over
ac Aandie {k+1,...,]A|})

Y P(a)*Pu(a)' = = Z(6™)*71 Y P(a)*Q(a)' ™, (70)
Y P(a)*Pa(a)' = = Z(6™)*71 Y P(a)*Q(a)' ™, (71)

and, from [[70) and:al),
a)® a 11—« B
§ :ﬁ)(a)apn(a)l—a _ Za P( ) Pn( ) . § :P(a)aQ(a)l—a‘ (72)

2. Pla)*Q(a)t—e
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Since P, — P, letting n — oo in (72) yields

a)® D a)l—@ B
BRI T

which is equivalent to[{44) wheR* is replaced byP.

To prove Item ii), note that if Sugp%,) = A, then Theoreml4b) yields thd&* € .Z, N &,,
and we are done. So suppose that $u1ip # A, and consider the following sequence of
a-linear families:

1

P {P eM: Y P(a)fila)=0, ie{k+1,..., \A\}}, (74)
where
fila) = fila) =V Q(a)"*, Vae A (75)
with
1 af.
7™ = w20 Q@) fi(e) ie{k+1,... AL (76)

T DT P L

The f;'s and ng")’s in (78) and [76) are selected such that fae 1)-mixture of (P*,Q) is a
member ofZ{". This implies that Sup(p%")) = A (recall that we assume that Sugp = A).
Notice also thatygn) — 0 asn — oo. Hence,,iﬂcsn) asymptotically coincides witl¥,, asn — oc.
Now, let P, be the forwardD,,-projection ofQQ on 2™ Then by Propositionl1, Supp,) = A,
and hence by Theoref 4, there exigt® := (6\"),,...,6")) € R4I=* such that for alla € A

VA
i lA|
Pu(a)' = = 26"~ Q)  + (1 - a) Y 6" fi(a)] (77)
) i=k+1
i lA|
= 200" Q@) + (1-a) Y 0" (file) - 0" Q)')|  (78)
) i=k+1
lA|
= 20" (1- (1 -a) Y o) Q)
i=k+1
|A|
+(1-a) Y 0" fia)]. (79)
i=k+1

Multiplying the left side of [7IV) and the right side ¢f (79) B (a)®, summing over alk € A,
and using the fact thay_, P*(a)*fi(a) =0 forallic {k+1,...,|A|} yields

| A|
> P (@) Pa(@) ™ = 20" (1= (1= a) Y 00} D" PH(a)*Qa) . (80)

i=k+1

|A|
This implies that the term — (1 —«a) > 02(”)772(") is positive for alln; hence, dividing the left

i=k+1
side of [7T) and the right side df ([79) by this positive terrelgs thatP, € &,. This implies
that the limit of every convergent subsequence{ 85} is a member of ¢, ), as well as of
L.
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In view of Items i) and ii), as listed at the beginning of thieogf, it now follows from
Proposition[]l b) and Corollaryl 1 tha¥,, N cl(&,) = {P*}. Recall that, fora € (1,0),
Theoreni#a) implies thal* satisfies[(44); furthermore, sincgin (€1) can be replaced by any
other member of,, the satisfiability of[(44) forQ € &, yields its satisfiability with any other
member of&, replacing@. Since A is finite, (44) is also satisfied with any member of&l)
replacing@; this can be justified for ang) < cl(&,) by selecting a sequend€),,} in &, which
pointwise converges t@, and by lettingn — co. This proves Item a).

We next prove Iltem b). Since by our assumption Sufip = A anda € (1,00) then
Proposition[]l a) implies that conditiob _(57) holds. From gasition[1 b), Corollaryll and
Theorem 4, it follows that the forward,-projection P* is the unique member aof, N &,
satisfying [(44). Similarly to the previous paragragh,] (#tpatisfied not only for foQ € &,,
but also for any other member @&}, replacing@. This proves Item b). |

Remark 5:In view of Example[l, ifa € (0,1), SupgP*) is not necessarily equal to
Supf.%,,); this is consistent with Theorelm 5 which is stated onlydoe (1,00). Nevertheless,
in view of the proof of Theoreni]2, the following holds fer € (0,1): if the condition
Supf P*) = Supp-Z,) = A is satisfied, thenZ, is a-orthogonal to&, at P*.

VIl. REVERSEPROJECTION ON ANa-EXPONENTIAL FAMILY

In this section, we define reverég,-projections, and we rely on the orthogonality property in
Theoren b (and the note in Remark 5) to convert the revBys@rojection on anv-exponential
family into a forward projection on an-linear family.

Definition 9 (Reversé,,-projection): Let P € M, Q C M, anda € (0,00). If there exists
Q* € Q which attains the global minimum db, (P||Q) over allQ € Q and D, (P||Q*) < oo,
then@* is said to be aeverseD,,-projectionof P on Q.

Theorem 6:Let o € (0,1) U (1,00), and let&, be ana-exponential family determined by

Q, fe+1,- -+, fla- Let Xy, ..., X, be ii.d. samples drawn at random according to a probability
measure ing,. Let P, be the empirical probability measure &f, ..., X,,, and letP; be the
forward D,-projection of@ on thea-linear family

2 = {P eM: S P(a)fia)=0, iefk+1,..., |A|}}, (81)

acA
where
fila) = fi(a) — 1M Q(a)'~*, Vac A (82)

with

7?(n) — Z%Pn(a)afi(a)
' > Pa(a)*Qa)t =
The following hold:
a) If SupZ\™) = A for o € (1,00) or SUpgP;) = SupgZ™) = A for a € (0,1), then
Py is the reverseD,-projection of P, on &,.

b) Fora € (1,00), if Supp(.,%g”)) # A, then the reversé,-projection of P, on &, does not
exist. Nevertheless?* is the reverseD,,-projection of P,, on cl(&,).

Proof: To prove Item a), note thafﬁﬁ") in B1)-(83) is constructed in such a way that
P, e 2. (84)

, te{k+1,...,|A[} (83)
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Following (61), leté, = & (frt1,- - -, fla; @) denote then-exponential family determined by
Je+15- -+, flay @and Q. We claim that

Ea( et [iai Q) = Ealfrtts - flap Q) (85)

Indeed, if P € & (fit1,---, fla; @), then there exist = (Oyy1,...,04) € RMI=F and a
normalizing constanZ = Z(6) such that for alla € A

4
P(a)' = = 227 Q@)™ + (1=a) Y 0ifila)] (86)
i=k+1
4 A
=227 (14 -a) Y 0i)Q@' ™ + (1) Y 0:fila)] @)
i=k+1 i=k+1

where [86) and[(87) follow, respectively, from {61) and](8@ultiplying the left side of [(8b)
and the right side of (87) by, (a)®, summing over alb € A, and using[(84) yields

Al
S Pu(a)*Pla)' =~ = 27! (1 (i) Y Mﬁ’”) S Pu(@)®Qa) . (88)
a i=k+1 a
| A | o
Eq. (88) yieldsl1 + (1 —a) ). 6,7, ' > 0. Consequently, by rescaling_(87) appropriately, it
i=k+1
follows that P € &, (fi+1,- -, fla; @) which therefore implies that
Ealfrsts- - a3 Q) C Ealferts - fap Q) (89)

Similarly, one can show that the reverse relatior of (89) &lslds, which yields (85). The proof
of a) is completed by considering the following two cases:
e If @ € (1,0) and Supp,%")) = A, in view of TheorenEBb),Za”) is a-orthogonal to
Eo = En(fet1s- -, fla; Q) at P; hence, due td (84),

Do (Po|Q) = Do(Py||P) + Da(Py|Q), YV Q € &, (90)

Since P: € &,, the minimum of D, (P,||Q) subject toQ € &, is uniquely attained at
Q=P
o If a€(0,1) and Suppry;) = Supp(,,%")) = A, then [90) holds in view of RemafKk 5 and
(84). The minimum ofD, (P,||Q) subject toQ € &, is thus uniquely attained & = P;.
To prove Item b), fora € (1, 00), note thatP; € &, if and only if Supm.,%gn)) = A. Indeed,
the 'if’ part follows from Item a). The ‘only if’ part followsfrom the fact that all members of
&, have the same suppotd, is a member o#, which by assumption has full support, aitj
is in both &, (by assumption) andZ™ (by definition).
To prove the first assertion in Item b), note that by Thedréin Ba € cl(&,,) and [90) holds
for every @ € cl(&,,). Hence,
in Dy(P,||Q) = Do(By|| PF). 91
omim | (Frll@) (Pl P7) (91)
Due to the continuity ofD, (P, ||Q) for Q which is defined on the finite set, it follows from

(@7) that
inf Da(ﬁnHQ) :Da(pn‘|P;) (92)
QEs,

In view of (@0), the minimum ofD,(P,||Q) over Q € &, is not attained. Finally, the last
assertion in b) is due t¢ (P0) which, in view of Theorem 5ajdhidor all Q € cl(&,). [ |
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VIIl. SUMMARY AND CONCLUDING REMARKS

In [18, Theorem 14], van Erven and Harremoés proved a Pgtiean inequality for Rényi
divergences om-convex sets under the assumption that the forward projeetxists. Motivated
by their result, we study forward and reverse projectiomgiie Rényi divergence of order on
a-convex sets. The results obtained in this paperofar (0, ), generalize the known results
for a = 1; this special case corresponds to projections of the velantropy on convex sets,
as studied by Csiszat al. in [12], [13], [15], [16]. The main contributions of this papare as
follows:

1) we prove a sufficient condition for the existence of a faxwarojection in the general
alphabet setting.

2) we prove a projection theorem on arlinear family in the finite alphabet setting, and the
parametric form of this projection gives rise to arexponential family.

3) we prove an orthogonality property betweedtinear anda-exponential families; it yields a
duality between forward and reverse projections, respagtion these families.

4) we prove a convergence result of an iterative algorithncédculating the forward projection
on an intersection of a finite number aflinear families.

For o = 0, the notion of am-convex set is continuously extended tdog-convex set. Since
Dy(P||Q) = —log Q(SupgP)) (see, e.g.[[18, Theorem 4]), if there exigtse P such that
Supg P) = SupgQ) then any such probability measure is a forwdrg-projection of@ on P
for which Dy(P||Q) = 0. Note that, in this case, a forwat-projection of @) on P is not
necessarily unique.

For « = 0 and a finite set4, the notion of ana-linear family is the whole simplex of
probability measures (with the convention titdt= 1 in #3)), provided thad", f;(a) = 0 for
all i € {k+1,...,|A|}; otherwise, the O-linear family is an empty set. In the forroase, the
forward Dy-projection of@ on P is any probability measur® with a full support since in this
caseDy(P||Q) = 0; the forwardDy-projection is, however, meaningless in the latter caserevhe
P is an empty set.

The Rényi divergence of ordex is well defined (see, e.gl, [18, Theorem 6]); furthermore,
a set is defined to beo-convex if for all Py, P, € P, the probability measure,; whose
p-density sp ; is equal to the normalized version afax{pg,p;}, is also included inP (this
definition follows from [[I5) by lettingn — o0). In this case, Theorenis 1 ahd 2 continue to
hold for « = oo (recall that Theorernl2 refers to the setting wherés finite).

Consider the case where= c and A is a finite set. By continuous extension, thelinear
family necessarily includes all the probability measubes fare not a point mass (s¢el(43)), and
the co-exponential family only includes the reference meagirésee [(611)). Consequently, the
results in Theoremis| B-6 become trivial for= oc.
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