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Abstract

This paper studies forward and reverse projections for the Rényi divergence of orderα ∈ (0,∞)
on α-convex sets. The forward projection on such a set is motivated by some works of Tsalliset al.
in statistical physics, and the reverse projection is motivated by robust statistics. In a recent work, van
Erven and Harremoës proved a Pythagorean inequality for R´enyi divergences onα-convex sets under the
assumption that the forward projection exists. Continuingthis study, a sufficient condition for the existence
of a forward projection is proved for probability measures on a general alphabet. Forα ∈ (1,∞), the
proof relies on a new Apollonius theorem for the Hellinger divergence, and forα ∈ (0, 1), the proof relies
on the Banach-Alaoglu theorem from functional analysis. Further projection results are then obtained in
the finite alphabet setting. These include a projection theorem on a specificα-convex set, which is termed
an α-linear family, generalizing a result by Csiszár toα 6= 1. The solution to this problem yields a
parametric family of probability measures which turns out to be an extension of the exponential family,
and it is termed anα-exponential family. An orthogonality relationship between theα-exponential and
α-linear families is established, and it is used to turn the reverse projection on anα-exponential family
into a forward projection on anα-linear family. This paper also proves a convergence resultof an iterative
procedure used to calculate the forward projection on an intersection of a finite number ofα-linear families.
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I. INTRODUCTION

Information projections of relative entropy have been extensively studied due to their various
applications in large deviations theory (e.g., Sanov’s theorem and the conditional limit theorem),
maximum likelihood estimation (MLE), statistical physics, and so on. Some of the pioneering
works studying information projections include Barron [2], C̄encov [5], Chentsov [6], Csiszár
[12], [13], Csiszár and Matús̆ [15], and Topsøe [40]. The broader subject areas using infor-
mation projections as a major component are known asInformation Theory and Statisticsand
Information Geometry(see, e.g., [7, Chapter 11], [16] and references therein).

Given a probability measureQ, and a set of probability measuresP defined on an alphabet
A, a forward projectionof Q on P is aP ∗ ∈ P which minimizesD(P‖Q) subject toP ∈ P.
Forward projections appear predominantly in large deviations theory. By Sanov’s theorem,
the exponential decay rate of the probability of rare eventsis strongly related to forward
projections (see [7, Theorem 11.4.1]); furthermore, in view of the conditional limit theorem,
the forward projection ofQ on P arises as the limiting conditional probability measure of a
random variable with distributionQ /∈ P, given that the type of its i.i.d. samples belongs to
P (see [7, Theorem 11.6.2]). The forward projection of a generalization of the relative entropy
has been proposed by Sundaresan in [38] and [39] in the context of guessing under source
uncertainty, and it was further studied in [24].

The Rényi divergence, introduced in [32] and further studied, e.g., in [18] and [37], has
been investigated so far in various information-theoreticcontexts. These include generalized
cutoff rates and error exponents for hypothesis testing (e.g., [14]), guessing moments (e.g., [17]),
source and channel coding error exponents (e.g., [20], [34], [36]), and other information-theoretic
problems.

A motivation for the study of forward projections for the Rényi divergence on some generalized
convex sets stems from the following maximum entropy problem which was proposed by Tsallis
in statistical physics [41], [42]:

argmax
(pi)

Sα(P ) :=
1

α− 1

(
1−

W∑

i=1

pαi

)
(1)

subject to

W∑
i=1

pαi ǫi

W∑
i=1

pαi

= U (α), (2)

whereα ∈ (0, 1) ∪ (1,∞) is a free parameter,W is the number of microscopic states,{ǫi}
are the eigenvalues of the Hamiltonian, andU (α) is the total internal energy of the system. The
functionalSα(P ) in (1) is known as theTsallis entropy. The constraint in (2) is on theescort
probability measure

P (α) :=
(
P

(α)
1 , . . . , P

(α)
W

)
,

P
(α)
i :=

pαi
W∑
j=1

pαj

, i ∈ {1, . . . ,W} (3)

in contrast to the usual constraint in the Boltzmann-Gibbs statistical physics
W∑

i=1

piǫi = U (1). (4)
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The constraint in (2) corresponds to anα-linear family (to be formally defined in Section IV),
whereas (4) corresponds to a linear family [25, Definition 4]. If Q = U is the equiprobable
measure on the state space{1, . . . ,W}, then the Rényi divergenceDα(P‖U) is related to the
objective functionSα(P ) in (1) via the equation

Dα(P‖U) = logW +
1

α− 1
log
(
1− (α− 1)Sα(P )

)
(5)

which implies that the maximization ofSα(P ) over the set which is defined in (2) is equivalent to
the minimization ofDα(P‖U) on the same set of probability measures in (2) which corresponds
to anα-convex set.

The other problem of interest in this paper is thereverse projectionwhere the minimization
is over the second argument of the divergence measure. This problem is intimately related
to maximum-likelihood estimation and robust statistics. SupposeX1, . . . ,Xn are i.i.d. samples
drawn according to a probability measure which is modelled by a parametric family of probability
measuresΠ = {Pθ : θ ∈ Θ} whereΘ is a parameter space, and all the members ofΠ are assumed
to have a common finite supportA. The maximum-likelihood estimator of the given samples (if
it exists) is the minimizer ofD(P̂‖Pθ) subject toPθ ∈ Π, whereP̂ is the empirical probability
measure of the observed samples (see, e.g., [16, Lemma 3.1]). The minimizing probability
measure (if it exists) is called the reverse projection ofP̂ on Π. Other divergences that have
natural connection to statistical estimation problems include the Hellinger divergence of order12
(see, e.g., [4]), Pearson’sχ2-divergence [30], and so on. All of these information measures are
f -divergences ([1], [9]) in the family of Hellinger divergences of orderα ∈ (0,∞) (note that, up
to a positive scaling factor, Hellinger divergences are equal to the power divergences introduced
by Cressie and Read [8]). The Hellinger divergences possessa very good robustness property
when a significant fraction of the observed samples are outliers; the textbooks by Basu et al.
[3] and Pardo [29] address the developments of studies on inference based onf -divergences.
Since the Rényi divergence is a monotonically increasing function of the Hellinger divergence
(as it follows from (14)), minimizing the Hellinger divergence of orderα ∈ (0,∞) is equivalent
to minimizing the Rényi divergence of the same order. This motivates the study of reverse
projections of the Rényi divergence in the context of robust statistics. In [27, Section 4], an
iterative message-passing algorithm (a.k.a. belief propagation) was used to approximate reverse
projections for the Rényi divergence.

In the following, we further motivate our study of forward and reverse projections for the
Rényi divergence of orderα ∈ (0,∞) on α-convex sets (note that these terms are formally
defined in Section II):

a) In view of existing projection theorems for the relative entropy (e.g., [6], [12], [13], [15])
and Sundaresan’s relativeα-entropy on convex sets [24], [25]), we study forward and reverse
projections for the Rényi divergence of orderα ∈ (0,∞) on α-convex sets. Our problem
reduces to the study of information projections for the relative entropy on convex sets when
α = 1. Note also that the Rényi divergenceDα(P‖Q) and Sundaresan’s relativeα-entropy
Iα(P,Q) are related according to the equality (see [24, Lemma 2c)])

Iα(P,Q) = D 1

α

(P (α)‖Q(α)) (6)

whereP (α) andQ(α) are, respectively, the associated escort probability measures ofP and
Q in (3).

b) In a recent work [18], van Erven and Harremoës proved a Pythagorean inequality for Rényi
divergences of orderα ∈ (0,∞) on α-convex sets under the assumption that the forward
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projection exists.1 Continuing this study, one of the main objectives of this work is to provide
a sufficient condition for the existence of such a forward projection on anα-convex set of
probability measures defined on a general alphabet (see Theorem 1). Our proof is inspired
by the proof of the existence of the forward projection for the relativeα-entropy on a convex
set (see [24, Proposition 6] and [24, Theorem 8]).

c) Forward projections of the relative entropy on linear families and their orthogonality relation-
ship to exponential families were studied in [12] and [16, Chapter 3]. We generalize these
results by studying forward projection theorems for the Rényi divergence onα-linear families.
The solution of this problem yields a parametric family of probability measures which turns
out to be an extension of the exponential family, and it is termed anα-exponential family. An
orthogonality relationship between theα-exponential andα-linear families is also established.

d) The orthogonality property of linear and exponential families was used to transform a reverse
projection of relative entropy on an exponential family into a forward projection on a linear
family [16, Theorem 3.3]. In this work, we make use of the generalized orthogonality
relationship in Item c) to transform a reverse projection for the Rényi divergence of orderα
on anα-exponential family into a forward projection on anα-linear family.

e) In [12, Theorem 3.2], Csiszár proposed a convergent iterative process for finding the forward
projection for the relative entropy on a finite intersectionof linear families. This result is
generalized in this work for the Rényi divergence of orderα ∈ (0,∞) on a finite intersection
of α-linear families.

The following is an outline of the paper. Section II providespreliminary material which is
essential to this paper. In Section III, we study a sufficientcondition for the existence of the
forward projection for the Rényi divergence on generalized convex sets. In Section IV, we revisit
the Pythagorean property for Rényi divergence and prove the iterated projections property as a
consequence. In Section V, we establish the form of forwardDα-projection on anα-linear family
and identify theα-exponential family as an extension of the exponential family. In Section VI,
we establish an orthogonality relationship between theα-linear andα-exponential families, and
in Section VII we use this orthogonality property to convertthe reverse projection on anα-
exponential family into a forward projection on anα-linear family. Finally, Section VIII briefly
summarizes this paper and provides some concluding remarks.

II. PRELIMINARIES

In this section, we set the notation and formally define termswhich are used in this paper.
Let (A,F ) be a measurable space, and letM denote the space of all probability measures

defined onA.
Definition 1: For P,Q ∈ M, the total variation distancebetweenP andQ is defined as

|P −Q| := 2 sup
F∈F

|P (F)−Q(F)|. (7)

If P andQ are absolutely continuous with respect to a commonσ-finite measureµ (denoted by
P,Q ≪ µ), let p := dP

dµ , q := dQ
dµ denote their respective densities (Radon-Nikodym derivatives)

with respect toµ (calledµ-densities). Then,

|P −Q| := ‖p− q‖1 =

∫
|p − q|dµ, (8)

1It should be noted that the Rényi divergence does not necessarily satisfy a Pythagorean inequality on convex sets.
For a counter example, see [19, Appendix A on p. 19].
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andM together with the total variation distance forms a metric space. Throughout the paper,
the Lebesgue integrals are over the setA.

Pinsker’s inequality [31] states that

1
2 |P −Q|2 log e ≤ D(P‖Q). (9)

Eq. (9) was proved by Csiszár [10] and Kullback [23], with Kemperman [22] independently a
bit later. From Pinsker’s inequality (9), it follows that convergence in relative entropy also yields
convergence in total variation distance (i.e., ifD(Pn‖P ) → 0 asn → ∞, then |Pn − P | → 0).

Definition 2 (Ŕenyi divergence):Let α ∈ (0, 1)∪ (1,∞). TheRényi divergence[32] of order
α from P to Q is given by

Dα(P‖Q) :=
1

α− 1
log

(∫
pαq1−α dµ

)
. (10)

If α = 1, then

D1(P‖Q) := D(P‖Q), (11)

which is the continuous extension ofDα(P‖Q) at α = 1.
Definition 3: The Hellinger divergence [26, Definition 2.10] of orderα ∈ (0, 1)∪(1,∞) from

P to Q is given by

Hα(P‖Q) :=
1

α− 1

(∫
pαq1−α dµ− 1

)
. (12)

The continuous extension ofHα(P‖Q) at α = 1 yields

H1(P‖Q) log e = D(P‖Q). (13)

Note that|P −Q|, Dα(P‖Q) andHα(P‖Q) are non-negative, and are equal to zero if and
only if P = Q. These measures can be expressed in terms off -divergences [1], [9], [10], and
they do not depend on the choice of the reference measureµ. Note that, from (10) and (12),

Dα(P‖Q) =
1

α− 1
log
(
1 + (α− 1)Hα(P‖Q)

)
, (14)

showing that the Rényi divergence is monotonically increasing with the Hellinger divergence.
Definition 4 ((α, λ)-mixture [18]): Let P0, P1 ≪ µ, let α ∈ (0,∞), and letλ ∈ (0, 1). The

(α, λ)-mixture of (P0, P1) is the probability measureS0,1 with µ-density

s0,1 :=
1

Z

[
(1− λ)pα0 + λpα1

] 1

α

, (15)

whereZ is a normalizing constant such that
∫
s0,1 dµ = 1, i.e.,

Z =

∫ [
(1− λ)pα0 + λpα1

] 1

α

dµ. (16)

Here, for simplicity, we suppress the dependence ofS0,1 and Z on α, λ. Note thats0,1 is
well-defined asZ is always positive and finite. Indeed, forα ∈ (0,∞) andλ ∈ [0, 1],

0 ≤
[
(1− λ)pα0 + λpα1

] 1

α

≤ max{p0, p1} ≤ p0 + p1 (17)

which implies that0 < Z ≤ 2. From (15), forλ ∈ [0, 1], the (α, λ)-mixture of (P0, P1) is the
same as the(α, 1 − λ)-mixture of (P1, P0).

Definition 5 (α-convex set):Let α ∈ (0,∞). A set of probability measuresP is said to be
α-convexif, for everyP0, P1 ∈ P andλ ∈ (0, 1), the (α, λ)-mixture S0,1 ∈ P.
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III. E XISTENCE OFFORWARD Dα-PROJECTIONS ONα-CONVEX SETS

In this section, we define what we mean by a forwardDα-projection, and then provide a
sufficient condition for the existence of forwardDα-projections onα-convex sets.

Definition 6 (ForwardDα-projection): Let Q ∈ M, P ⊆ M, andα ∈ (0,∞). If there exists
P ∗ ∈ P which attains the global minimum ofDα(P‖Q) over allP ∈ P andDα(P

∗‖Q) < ∞,
thenP ∗ is said to be aforward Dα-projectionof Q on P.

We next proceed to show the existence of a forwardDα-projection on anα-convex set. It has
been shown in [18, Theorem 14] that ifP is anα-convex set andP ∗ exists, then thePythagorean
inequalityholds, i.e.,

Dα(P‖Q) ≥ Dα(P‖P ∗) +Dα(P
∗‖Q), ∀P ∈ P. (18)

However, the existence of the forwardDα-projection was not addressed in [18]. We show that
if the α-convex setP is closed with respect to the total variation distance, thenthe forward
Dα-projection exists. The proof is inspired by the proof of theexistence of a forward projection
for the relativeα-entropy on a convex set [24, Theorem 8]. Before getting to the main result of
this section, we prove the following inequality for the Hellinger divergence.

Lemma 1 (Apollonius theorem for the Hellinger divergence):If α ∈ (1,∞), λ ∈ (0, 1), and
P0, P1, Q are probability measures whereP0, P1, Q ≪ µ, then

(1− λ)
(
Hα(P0‖Q)− Hα(P0‖S0,1)

)

+ λ
(
Hα(P1‖Q)− Hα(P1‖S0,1)

)
≥ Hα(S0,1‖Q), (19)

and the inequality in (19) is reversed forα ∈ (0, 1).
Proof: The left side of (19) simplifies to

(
1− λ)(Hα(P0‖Q)− Hα(P0‖S0,1)

)
+ λ
(
Hα(P1‖Q)− Hα(P1‖S0,1)

)

=
1− λ

α− 1

∫
pα0
(
q1−α − s1−α

0,1

)
dµ+

λ

α− 1

∫
pα1
(
q1−α − s1−α

0,1

)
dµ

=
1

α− 1

∫ (
(1− λ)pα0 + λpα1

)(
q1−α − s1−α

0,1

)
dµ

=
1

α− 1

∫
Zα sα0,1

(
q1−α − s1−α

0,1

)
dµ

=
Zα

α− 1

(∫
sα0,1 q

1−α dµ− 1

)

= Zα
Hα(S0,1‖Q). (20)

The result follows since, by invoking Jensen’s inequality to (16) (see [18, Lemma 3]),Z ≥ 1 if
α ∈ (1,∞), and0 < Z ≤ 1 if α ∈ (0, 1).

Remark 1:Lemma 1 is analogous to the Apollonius theorem for the relative α-entropy [24,
Proposition 6] whereS0,1 is replaced by a convex combination ofP0 andP1. In view of (13)
and sinceZ = 1 whenα = 1 (see (16)), it follows that (20) reduces to theparallelogram law
for the relative entropy [12, (2.2)] whenα = 1 andλ = 1

2 .
We are now ready to state our first main result.
Theorem 1 (Existence of forwardDα-projection): Let α ∈ (0,∞), and letQ be an arbitrary

probability measure defined on a setA. Let P be anα-convex set of probability measures
defined onA, and assume thatP is closed with respect to the total variation distance. If there
existsP ∈ P such thatDα(P‖Q) < ∞, then there exists a forwardDα-projection ofQ on P.
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Proof: We first consider the case whereα ∈ (1,∞). Let {Pn} be a sequence inP such that
Dα(Pn‖Q) < ∞ andDα(Pn‖Q) → infP∈P Dα(P‖Q) =: Dα(P‖Q). Then, in view of (14),
Hα(Pn‖Q) < ∞ andHα(Pn‖Q) → infP∈E Hα(P‖Q) =: Hα(P‖Q).

Let m,n ∈ N, and letSm,n be the(α, λ)-mixture of (Pm, Pn), i.e., Sm,n is the probability
measure withµ-density

sm,n =
1

Zm,n

[
(1− λ)pαm + λpαn

]1/α
, (21)

whereZm,n is the normalizing constant such that
∫
sm,n dµ = 1. Applying Lemma 1, we have

0 ≤(1− λ)Hα(Pm‖Sm,n) + λHα(Pn‖Sm,n) (22)

≤(1− λ)Hα(Pm‖Q) + λHα(Pn‖Q)− Hα(Sm,n‖Q). (23)

SinceHα(Pn‖Q) → Hα(P‖Q) as we letn → ∞, andHα(Sm,n‖Q) ≥ Hα(P‖Q) (note that
Sm,n ∈ P due to theα-convexity of the setP), the limit supremum of the right side of (23)
is non-positive asn,m → ∞. From the left side of (22), the limit infimum of the right side
of (23) is also non-negative. This implies that the limit of the right side of (23) is zero, which
also implies that the right side of (22) converges to zero as we let m,n → ∞; consequently,
Hα(Pn‖Sm,n) → 0 and Hα(Pm‖Sm,n) → 0 asm,n → ∞. Since the Hellinger divergence,
Hα(·‖·), is monotonically increasing inα [26, Proposition 2.7]2, it follows from (13) that
D(Pn‖Sm,n) → 0 andD(Pm‖Sm,n) → 0 asm,n → ∞, which, in turn implies (via Pinsker’s
inequality (9)) that|Pn−Sm,n| → 0 and|Pm−Sm,n| → 0 asm,n → ∞. The triangle inequality
for the total variation distance yields that|Pn −Pm| → 0 asm,n → ∞, i.e., {Pn} is a Cauchy
sequence inP, which therefore converges to someP ∗ ∈ P due to the completeness ofP with
respect to the total variation distance. Subsequently, thecorresponding sequence ofµ-densities
{pn} converges to theµ-densityp∗ in L1; this implies that there exists a sub-sequence{pnk

}
which convergesµ-almost everywhere (a.e.) top∗. By Fatou’s lemma and (12), it follows that
for α ∈ (1,∞)

Hα(P‖Q) = lim
n→∞

Hα(Pn‖Q)

= lim
k→∞

Hα(Pnk
‖Q)

≥ Hα(P
∗‖Q) (24)

which implies thatP ∗ is a forwardHα-projection ofQ onP. In view of (14), this is equivalent
to saying thatP ∗ is a forwardDα-projection ofQ on P.

We next consider the case whereα ∈ (0, 1). Abusing notation a little, we use the same letter
P to denote a set of probability measures as well as the set of their correspondingµ-densities.
Sinceα < 1,

inf
P∈P

Dα(P‖Q) =
1

α− 1
log

(
sup
p∈P

∫
pαq1−α dµ

)
(25)

=
1

α− 1
log

(
sup
g∈P̂

∫
gh dµ

)
, (26)

whereg := spα, h := q1−α and

P̂ := {spα : p ∈ P, 0 ≤ s ≤ 1}. (27)

2A simple proof of the monotonicity of the Hellinger divergence inα appears in [35, Theorem 33].
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Notice that the multiplication ofpα by the scalars ∈ [0, 1] in the right side of (27) does not
affect the supremum in (26). This supremum, if attained, is obtained by someg = spα with
s = 1 andp ∈ P. The purpose of introducings ∈ [0, 1] is to make the optimization in (26) over
a convex set (as it is shown in the sequel).

Let β = 1
α and β′ := 1

1−α ; note thatβ and β′ are Hölder conjugates (i.e.,1β + 1
β′

= 1).
Then,

∫
hβ

′

dµ =
∫
q dµ = 1, so h ∈ Lβ′

(µ). By invoking Hölder’s inequality, it follows
that Fh(g) :=

∫
gh dµ is a continuous linear functional onLβ(µ). Thus, the supremum is of

a continuous linear functional on the reflexive Banach spaceLβ(µ). We claim thatP̂ is closed
and convex inLβ(µ). For the moment, we assume that the claim holds, and later prove it. A
convex set which is closed with respect to the norm topology is also closed with respect to the
weak topology [33, Ch. 10, Cor. 23]. Note that the weak topology on Lβ(µ) is the smallest
topology onLβ(µ) for which the continuity of the linear functionals onLβ(µ) is preserved.
Moreover, for anyg = spα ∈ P̂ , ‖g‖β = s ≤ 1. Hence,P̂ is a subset of the unit sphere
of Lβ(µ). By the Banach-Alaoglu theorem [33, Ch. 10, Th. 17] and the fact thatLβ(µ) is a
reflexive Banach space, it follows that the unit sphere{g : ‖g‖β ≤ 1} is compact with respect
to the weak topology ofLβ. Hence,P̂ is a closed subset of a compact set with respect to the
weak topology ofLβ(µ), so P̂ is also compact in the weak topology. Thus, the supremum in
(26) is of a continuous linear functional over a compact set in Lβ(µ), which yields that this
supremum is attained.

To complete the proof forα ∈ (0, 1), we prove the claim that̂P is convex and closed. To verify
that P̂ is convex, lets1pα1 , s2p

α
2 ∈ P̂ andλ ∈ (0, 1). We can writeλs1pα1 + (1− λ)s2p

α
2 = spα

with

p =
1

Z

(
λs1p

α
1 + (1− λ)s2p

α
2

λs1 + (1− λ)s2

)1/α

, (28)

whereZ is the normalizing constant, ands =
(
λs1 + (1− λ)s2

)
Zα. Forα ∈ (0, 1), 0 < Z ≤ 1

by [18, Lemma 3] which implies thats ∈ [0, 1]. This proves the convexity of̂P.
Next, to prove thatP̂ is closed, letgn := snp

α
n ∈ P̂ be such thatgn → g in Lβ(µ). We

need to show thatg ∈ P̂. Sincesn = ‖gn‖β → ‖g‖β , we have‖g‖β ≤ 1. If ‖g‖β = 0, then
g = 0 µ-a.e., and hence obviouslyg ∈ P̂. Sinceβ = 1

α > 1, it follows that if ‖g‖β > 0, then
pαn = gn/‖gn‖β → g/‖g‖β in Lβ(µ), and thereforepn → (g/‖g‖β)

β in L1(µ).3 SinceP is
closed inL1(µ), we haveg/‖g‖β = p∗ ∈ P, andg = ‖g‖β · p∗ ∈ P̂.

Remark 2:The fact underlying the above proof is that the maximum or minimum of a
continuous function over a compact set is always attained. Although the actual setP in (25),
over which we wish to optimize the functional, is not compact, it was possible to modify it into
the setP̂ in (27) without affecting the optimal value in (26); the modified setP̂ was compact
in an appropriate topology where the functional also remains to be continuous.

3If β > 1 and{fn} converges tof in Lβ , then an application of the mean-value theorem and Hölder’s inequality
yields

∥

∥|fn|
β−|f |β

∥

∥ ≤ β(‖fn‖β+‖f‖β)
β−1 ‖fn−f‖1; hence,{|fn|β} converges to|f |β in L1. Since non-negative

functions are considered in our case, we can ignore the absolute values so{fβ
n } converges tofβ in L1.
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IV. T HE PYTHAGOREAN PROPERTY AND ITERATED PROJECTIONS

In this section we first revisit the Pythagorean property fora finite alphabet and use it to
prove a convergence theorem for iterative projections. Throughout this section, we assume that
the probability measures are defined on afinite setA. For a probability measureP , let its support
be given by Supp(P ) := {a ∈ A : P (a) > 0}; for a set of probability measuresP, let

Supp(P) :=
⋃

P∈P

Supp(P ). (29)

Let us first recall the Pythagorean property for a Rényi divergence on anα-convex set. As it
is in the cases of relative entropy [16] and relativeα-entropy [25], the Pythagorean property is
crucial in establishing orthogonality properties. In the sequel, we assume thatQ is a probability
measure with Supp(Q) = A.

Proposition 1 (The Pythagorean property):Let α ∈ (0, 1) ∪ (1,∞), let P ⊆ M be anα-
convex set, andQ ∈ M.

a) If P ∗ is a forwardDα-projection ofQ on P, then

Dα(P‖Q) ≥ Dα(P‖P ∗) +Dα(P
∗‖Q), ∀P ∈ P. (30)

Furthermore, ifα > 1, then Supp(P ∗) = Supp(P).
b) Conversely, if (30) is satisfied for someP ∗ ∈ P, thenP ∗ is a forwardDα-projection ofQ

on P.

Proof: a) In view of the proof of [18, Theorem 14], for everyP ∈ P and t ∈ [0, 1], let
Pt ∈ P be the(α, t)-mixture of (P ∗, P ); sinceDα(Pt‖Q) is minimized att = 0, then (see [18,
pp. 3806–3807] for detailed calculations)

0 ≤
d

dt
Dα(Pt‖Q)

∣∣∣
t=0

=
1

α− 1

( ∑
a P (a)αQ(a)1−α

∑
a P

∗(a)αQ(a)1−α
−
∑

a

P (a)αP ∗(a)1−α

)
(31)

which is equivalent to (30). To show that Supp(P ∗) = Supp(P) for α > 1, suppose that there
exist P ∈ P and a ∈ A such thatP ∗(a) = 0 but P (a) > 0. Then (31) is violated since
its right side is equal, in this case, to−∞ (recall that by assumption Supp(Q) = A so, if
α > 1,

∑
a P (a)αQ(a)1−α,

∑
a P

∗(a)αQ(a)1−α ∈ (0,∞), and
∑

a P (a)αP ∗(a)1−α = +∞).
This contradiction proves the last assertion in Proposition 1a).

b) From (30), we have

Dα(P‖Q) ≥ Dα(P‖P ∗) +Dα(P
∗‖Q)

≥ Dα(P
∗‖Q) ∀P ∈ P. (32)

Remark 3:The Pythagorean property (30) holds for probability measures defined on a general
alphabetA, as it is proved in [18, Theorem 14]. The novelty in Proposition 1 is in the last
assertion of a), extending the result for the relative entropy in [16, Theorem 3.1], for whichA
needs to be a finite set.

Corollary 1: Let α ∈ (0,∞). If a forwardDα-projection on anα-convex set exists, then it
is unique.
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Proof: For α = 1, since anα-convex set is particularized to a convex set, this result is
known in view of [16, p. 23]. Next, consider the case whereα ∈ (0, 1) ∪ (1,∞). Let P ∗

1 and
P ∗
2 be forwardDα-projections ofQ on anα-convex setP. Applying Proposition 1, we have

Dα(P
∗
2 ‖Q) ≥ Dα(P

∗
2 ‖P

∗
1 ) +Dα(P

∗
1 ‖Q).

SinceDα(P
∗
1 ‖Q) = Dα(P

∗
2 ‖Q), we must haveDα(P

∗
2 ‖P

∗
1 ) = 0 which yieldsP ∗

1 = P ∗
2 .

The last assertion in Proposition 1a) shows that Supp(P ∗) = Supp(P) if α ∈ (1,∞). The
following counterexample illustrates that this equality does not necessarily hold forα ∈ (0, 1).

Example 1:Let A = {1, 2, 3, 4}, α = 1
2 , f : A → R be given by

f(1) = 1, f(2) = −3, f(3) = −5, f(4) = −6 (33)

and letQ(a) = 1
4 for all a ∈ A. Consider the followingα-convex set:4

P :=

{
P ∈ M :

∑

a∈A

P (a)αf(a) = 0

}
. (34)

Let

P ∗(1) = 9
10 , P

∗(2) = 1
10 , P

∗(3) = 0, P ∗(4) = 0. (35)

It is easy to check thatP ∗ ∈ P. Furthermore, settingθ∗ = 1
5 andZ = 2

5 yields

P ∗(a)1−α = Zα−1
[
Q(a)1−α + (1− α) f(a) θ∗

]
, (36)

for all a ∈ {1, 2, 3}, and

P ∗(4)1−α > Zα−1
[
Q(4)1−α + (1− α) f(4) θ∗

]
. (37)

From (34), (36) and (37), it follows that for everyP ∈ P
∑

a∈A

P (a)αP ∗(a)1−α ≥ Zα−1
∑

a∈A

P (a)αQ(a)1−α. (38)

Furthermore, it can be also verified that

Zα−1
∑

a∈A

P ∗(a)αQ(a)1−α = 1. (39)

Assembling (38) and (39) yields

∑

a∈A

P (a)αP ∗(a)1−α ≥

∑
a∈A P (a)αQ(a)1−α

∑
a∈A P ∗(a)αQ(a)1−α

, (40)

which is equivalent to (30). Hence, Proposition 1b) impliesthatP ∗ is the forwardDα-projection
of Q on P. Note, however, that Supp(P ∗) 6= Supp(P); to this end, from (34), it can be verified
numerically that

P = (0.984688, 0.005683, 0.004180, 0.005449) ∈ P (41)

which implies that Supp(P ∗) = {1, 2} whereas Supp(P) = {1, 2, 3, 4}.

4This set is characterized in (43) as anα-linear family.
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Definition 7 (α-linear family): Let α ∈ (0,∞), andf1, . . . , fk be real-valued functions de-
fined onA. Theα-linear family determined byf1, . . . , fk is defined to be the following para-
metric family of probability measures defined onA:

Lα :=



P ∈ M : P (a) =

[
k∑

i=1

θifi(a)

] 1

α

, (θ1, . . . , θk) ∈ R
k



 . (42)

For typographical convenience, we have suppressed the dependence ofLα in f1, . . . , fk.
It is easy to see thatLα is anα-convex set. Without loss of generality, we shall assume that
f1, . . . , fk, as|A|-dimensional vectors, are mutually orthogonal (otherwise, by the Gram-Schmidt
procedure, these vectors can be orthogonalized without affecting the correspondingα-linear
family in (42)). Let F be the subspace ofR|A| spanned byf1, . . . , fk, and letF⊥ denote
the orthogonal complement ofF . Hence, there existfk+1, . . . , f|A| such thatf1, . . . , f|A| are
mutually orthogonal as|A|-dimensional vectors, andF⊥ = Span{fk+1, . . . , f|A|}. Consequently,
from (42),

Lα =

{
P ∈ M :

∑

a

P (a)αfi(a) = 0, ∀ i ∈ {k + 1, . . . , |A|}

}
. (43)

From (43), the setLα is closed. We shall now focus our attention on forwardDα-projections
on α-linear families.

Theorem 2 (Pythagorean equality):Let α > 1, and letP ∗ be the forwardDα-projection of
Q on Lα. Then,P ∗ satisfies (30) with equality, i.e.,

Dα(P‖Q) = Dα(P‖P ∗) +Dα(P
∗‖Q), ∀P ∈ Lα. (44)

Proof: For t ∈ [0, 1] andP ∈ Lα, let Pt be the(α, t)-mixture of (P,P ∗), i.e.,

Pt(a) =
1

Zt

[
(1− t)P ∗(a)α + tP (a)α

] 1

α

, (45)

where

Zt :=
∑

a

[(1− t)P ∗(a)α + tP (a)α]
1

α . (46)

SincePt ∈ P,

Dα(Pt‖Q) ≥ Dα(P
∗‖Q) = Dα(P0‖Q), (47)

which yields

lim
t↓0

Dα(Pt‖Q)−Dα(P0‖Q)

t
≥ 0. (48)

By Proposition 1a), ifα ∈ (1,∞), Supp(P ∗) = Supp(Lα). Hence, ifα > 1, for every
P ∈ Lα there existst′ < 0 such that

(1− t)P ∗(a)α + tP (a)α > 0

for all a ∈ Supp(Lα) and t ∈ (t′, 0). SinceA is finite, the derivative ofDα(Pt‖Q) exists at
t = 0. In view of (42) and sinceP,P ∗ ∈ Lα, for everyt ∈ (t′, 0), there existθ(t)1 , . . . , θ

(t)
k ∈ R

such that

(1− t)P ∗(a)α + tP (a)α =

k∑

i=1

θ
(t)
i fi(a)
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which yields thatPt ∈ Lα for t ∈ (t′, 0) (see (45)). Consequently, since (47) also holds for all
t ∈ (t′, 0), then

lim
t↑0

Dα(Pt‖Q)−Dα(P0‖Q)

t
≤ 0. (49)

From (48), (49), and the existence of the derivative ofDα(Pt‖Q) at t = 0, it follows that this
derivative should be equal to zero; since this derivative isequal to the right side of (31), it
follows that (31) holds with equality. Hence, for everyP ∈ P,

∑
a P (a)αQ(a)1−α

∑
a P

∗(a)αQ(a)1−α
=
∑

a

P (a)αP ∗(a)1−α. (50)

Taking logarithms on both sides of (50), and dividing byα− 1, yields (44).

The following theorem suggests an iterative algorithm to find the forwardDα-projection when
the underlyingα-convex set is an intersection of a finite number ofα-linear families.

Theorem 3 (Iterative projections):Letα ∈ (1,∞). Suppose thatL (1)
α , . . . ,L

(m)
α areα-linear

families, and let

P :=

m⋂

n=1

L
(n)
α (51)

whereP is assumed to be a non-empty set. LetP0 = Q, and letPn be the forwardDα-projection
of Pn−1 on L

(in)
α with in = nmod (m) for n ∈ N. Then,Pn → P ∗ (a pointwise convergence

by letting n → ∞).
Proof: Since (by definition)Pn is a forwardDα-projection ofPn−1 on anα-linear set

which includesP (see (51)), it follows from Theorem 2 that for everyP ∈ P andN ∈ N

Dα(P‖Pn−1) = Dα(P‖Pn) +Dα(Pn‖Pn−1), ∀n ∈ {1, . . . , N}. (52)

Hence, sinceP0 = Q, (52) yields

Dα(P‖Q) = Dα(P‖PN ) +

N∑

n=1

(
Dα(P‖Pn−1)−Dα(P‖Pn)

)

= Dα(P‖PN ) +

N∑

n=1

Dα(Pn‖Pn−1). (53)

Note thatP in (51), being a non-empty intersection of a finite number of compact sets, is a
compact set. Let{PNk

} be a subsequence of{Pn} in P which pointwise converges to someP ′

on the finite setA (hence,P ′ ∈ P). Letting Nk → ∞ in (53) implies that, for everyP ∈ P,

Dα(P‖Q) = Dα(P‖P ′) +

∞∑

n=1

Dα(Pn‖Pn−1) (54)

where, to obtain (54),Dα(P‖PNk
) → Dα(P‖P ′) sinceA is finite andPNk

→ P ′. Since (54)
yields

∑∞
n=1Dα(Pn‖Pn−1) < ∞ then Dα(Pn‖Pn−1) → 0 as n → ∞; consequently, since

Dα(·‖·) is monotonically non-decreasing inα (see, e.g., [18, Theorem 3]) andα > 1 then
D(Pn‖Pn−1) → 0, and by Pinsker’s inequality|Pn −Pn−1| → 0 asn → ∞. From the periodic
construction of{in} (with periodm), the subsequences{PNk

}, {PNk+1}, . . . , {PNk+m−1} have
their limits in L

(1)
α , . . . ,L

(m)
α , respectively. Since|Pn − Pn−1| → 0 as n → ∞, all these
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subsequences have the same limitP ′, which therefore implies thatP ′ ∈ P. SubstitutingP = P ′

in (54) yields

Dα(P
′‖Q) =

∞∑

n=1

Dα(Pn‖Pn−1) (55)

and assembling (54) and (55) yields

Dα(P‖Q) = Dα(P‖P ′) +Dα(P
′‖Q), ∀P ∈ P. (56)

Hence, (56) implies thatP ′ is the forwardDα-projection ofQ onP. Since{PNk
} is an arbitrary

convergent subsequence of{Pn}, and the forwardDα-projection is unique, every convergent
subsequence of{Pn} has the same limitP ∗. This proves thatPn → P ∗ asn → ∞.

V. FORWARD PROJECTION ON ANα-L INEAR FAMILY

We identify in this section a parametric form of the forwardDα-projection on anα-linear
family, which turns out to be a generalization of the well-known exponential family.

Theorem 4 (Forward projection on anα-linear family): Let α ∈ (0, 1) ∪ (1,∞), and letP ∗

be the forwardDα-projection ofQ on anα-linear familyLα (as defined in (42) wheref1, . . . , fk,
as |A|-dimensional vectors, are mutually orthogonal). The following hold:
a) If Supp(P ∗) = Supp(Lα), thenP ∗ satisfies (44).
b) If

Supp(P ∗) = Supp(Lα) = A, (57)

then there existfk+1, . . . , f|A| such thatf1, . . . , f|A| are mutually orthogonal as|A|-dimensional
vectors, andθ∗ = (θ∗k+1, . . . , θ

∗
|A|) ∈ R

|A|−k such that for alla ∈ A

P ∗(a) = Z(θ∗)−1

[
Q(a)1−α + (1− α)

|A|∑

i=k+1

θ∗i fi(a)

] 1

1−α

(58)

whereZ(θ∗) is a normalizing constant in (58).

Proof: The proof of Item a) follows from the proof of Theorem 2 which yields thatP ∗

satisfies the Pythagorean equality (44).
We next prove Item b). Eq. (44) is equivalent to (50), which can be re-written as

∑

a

P (a)α
[
cP ∗(a)1−α −Q(a)1−α

]
= 0, ∀P ∈ Lα (59)

with c =
∑

a P
∗(a)αQ(a)1−α. Recall that if a subspace of the Euclidean spaceR

|A| contains a
vector whose all components are strictly positive, then this subspace is spanned by the vectors
whose all components are nonnegative. In view of (42), the subspaceF which is spanned by
f1, . . . , fk (recall that these functions are regarded as|A|-dimensional vectors) contains(P ∗)α

whose support isA (see (57)). Consequently, it follows from (42) that{Pα : P ∈ Lα} spans
the subspaceF of R|A|. From (59), it also follows thatc (P ∗)1−α −Q1−α ∈ F⊥, which yields
the existence ofθ∗i ∈ R for i ∈ {k + 1, . . . , |A|} such that for alla ∈ A

cP ∗(a)1−α −Q(a)1−α = (1− α)

|A|∑

i=k+1

θ∗i fi(a) (60)

with a scaling of{θ∗i } by 1− α 6= 0 in the right side of (60). Hence,P ∗ satisfies (58) wherec
in the left side of (60) is the normalizing constantZ(θ∗) in (58).
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Remark 4: In view of Example 1, the condition Supp(P ∗) = Supp(Lα) is not necessarily
satisfied forα ∈ (0, 1). However, due to Proposition 1 a), this condition is necessarily satisfied
for all α ∈ (1,∞).

For α ∈ (0,∞), the forwardDα-projection on anα-linear familyLα motivates the definition
of the following parametric family of probability measures. Let Q ∈ M, and let

Eα :=

{
P ∈ M : P (a) = Z(θ)−1

[
Q(a)1−α + (1− α)

|A|∑

i=k+1

θifi(a)

] 1

1−α

,

θ = (θk+1, . . . , θ|A|) ∈ R
|A|−k

}
. (61)

We shall call the familyEα anα-exponential family,5 which can be verified to be a(1−α)-convex
set. We next show thatEα generalizes theexponential familyE defined in [16, p. 24]:

E =

{
P ∈ M : P (a) = Z(θ)−1Q(a) exp

(
|A|∑

i=k+1

θifi(a)

)
,

θ = (θk+1, . . . , θ|A|) ∈ R
|A|−k

}
. (62)

To this end, let theα-exponentialandα-logarithm functions be, respectively, defined by

eα(x) :=




exp(x) if α = 1,
(
max

{
1 + (1− α)x, 0

}) 1

1−α

if α ∈ (0, 1) ∪ (1,∞),
(63)

lnα(x) :=

{
ln(x) if α = 1,

x1−α−1
1−α if α ∈ (0, 1) ∪ (1,∞).

(64)

In view of (61), (63) and (64), theα-exponential familyEα includes all the probability measures
P defined onA such that for alla ∈ A

P (a) = Z(θ)−1 eα

(
lnα(Q(a)) +

|A|∑

i=k+1

θifi(a)

)
, (65)

whereas anyP ∈ E can be written as

P (a) = Z(θ)−1 exp

(
ln(Q(a)) +

|A|∑

i=k+1

θifi(a)

)
. (66)

This is an alternative way to notice that the familyEα can be regarded as a continuous extension
of the exponential familyE whenα ∈ (0, 1)∪(1,∞). It is easy to see that the reference measure
Q in the definition ofEα is always a member ofEα. As in the case of the exponential family,
theα-exponential familyEα also depends on the reference measureQ only in a loose manner.
In view of (61), any other member ofEα can play the role ofQ in defining this family. The
proof is very similar to the one for theα-power-law family in [25, Proposition 22]. It should
be also noted that, forα ∈ (1,∞), all members ofEα have the same support (i.e., the support
of Q).

5Note that theα-power-law familyin [25, Definition 8] is a different extension of the exponential family E .
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VI. ORTHOGONALITY OF α-L INEAR AND α-EXPONENTIAL FAMILIES

In this section, we first prove an “orthogonality” relationship between anα-exponential family
and its associatedα-linear family. We then use it to transform the reverseDα-projection on an
α-exponential family into a forwardDα-projection on anα-linear family.

Let us begin by making precise the notion of orthogonality between two sets of probability
measures with respect toDα (α > 0).

Definition 8 (Orthogonality of sets of probability measures): Let α ∈ (0, 1)∪ (1,∞), and let
P and Q be sets of probability measures. We say thatP is α-orthogonal toQ at P ∗ if the
following hold:

1) P ∩ Q = {P ∗}
2) Dα(P‖Q) = Dα(P‖P ∗) +Dα(P

∗‖Q) for everyP ∈ P andQ ∈ Q.
Note that, whenα = 1, this refers to the orthogonality between the linear and exponential

families in [16, Corollary 3.1].
We are now ready to state our second main result namely, the orthogonality betweenLα and

Eα.

Theorem 5 (Orthogonality ofLα and Eα): Let α ∈ (1,∞), let Lα andEα be given in (42)
and (61), respectively, and letP ∗ be the forwardDα-projection ofQ on Lα. The following
hold:
a) Lα is α-orthogonal to cl(Eα) at P ∗.
b) If Supp(Lα) = A, thenLα is α-orthogonal toEα at P ∗.

Proof: In view of Proposition 1 a), forα ∈ (1,∞), the condition Supp(P ∗) = Supp(Lα)
is satisfied. Consequently, forα ∈ (1,∞), Theorem 4a) implies thatP ∗ satisfies (44). We next
prove the following:

i) Every P̃ ∈ Lα ∩ cl(Eα) satisfies (44) withP̃ in place ofP ∗.
ii) Lα ∩ cl(Eα) is non-empty.

To prove Item i), sincẽP ∈ cl(Eα), there exists a sequence{Pn} in Eα such thatPn → P̃ . Since
Pn ∈ Eα, from (61), there existsθ(n) := (θ

(n)
k+1, . . . , θ

(n)
|A|) ∈ R

|A|−k such that for alla ∈ A

Pn(a)
1−α = Z(θ(n))α−1

[
Q(a)1−α + (1− α)

|A|∑

i=k+1

θ
(n)
i fi(a)

]
. (67)

SinceP, P̃ ∈ Lα, from (43), for all i ∈ {k + 1, . . . , |A|}
∑

a

P (a)αfi(a) = 0, (68)

∑

a

P̃ (a)αfi(a) = 0. (69)

SinceA is finite, assembling (67)–(69) yields (after switching theorder of summations over
a ∈ A and i ∈ {k + 1, . . . , |A|})

∑

a

P (a)αPn(a)
1−α = Z(θ(n))α−1

∑

a

P (a)αQ(a)1−α, (70)

∑

a

P̃ (a)αPn(a)
1−α = Z(θ(n))α−1

∑

a

P̃ (a)αQ(a)1−α, (71)

and, from (70) and (71),
∑

a

P̃ (a)αPn(a)
1−α =

∑
a P (a)αPn(a)

1−α

∑
a P (a)αQ(a)1−α

·
∑

a

P̃ (a)αQ(a)1−α. (72)
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SincePn → P̃ , letting n → ∞ in (72) yields

1 =

∑
a P (a)αP̃ (a)1−α

∑
a P (a)αQ(a)1−α

·
∑

a

P̃ (a)αQ(a)1−α, (73)

which is equivalent to (44) whenP ∗ is replaced byP̃ .
To prove Item ii), note that if Supp(Lα) = A, then Theorem 4b) yields thatP ∗ ∈ Lα ∩ Eα,

and we are done. So suppose that Supp(Lα) 6= A, and consider the following sequence of
α-linear families:

L
(n)
α :=

{
P ∈ M :

∑

a

P (a)αf̃i(a) = 0, i ∈ {k + 1, . . . , |A|}
}
, (74)

where

f̃i(a) := fi(a)− η
(n)
i Q(a)1−α, ∀ a ∈ A (75)

with

η
(n)
i :=

1
n

∑
aQ(a)αfi(a)

(1− 1
n)
∑

a P
∗(a)αQ(a)1−α + 1

n

, i ∈ {k + 1, . . . , |A|}. (76)

The f̃i’s and η
(n)
i ’s in (75) and (76) are selected such that the

(
α, 1

n

)
-mixture of (P ∗, Q) is a

member ofL (n)
α . This implies that Supp(L (n)

α ) = A (recall that we assume that Supp(Q) = A).
Notice also thatη(n)i → 0 asn → ∞. Hence,L (n)

α asymptotically coincides withLα asn → ∞.
Now, letPn be the forwardDα-projection ofQ onL

(n)
α . Then by Proposition 1, Supp(Pn) = A,

and hence by Theorem 4, there existsθ(n) := (θ
(n)
k+1, . . . , θ

(n)
|A|) ∈ R

|A|−k such that for alla ∈ A

Pn(a)
1−α = Z(θ(n))α−1

[
Q(a)1−α + (1− α)

|A|∑

i=k+1

θ
(n)
i f̃i(a)

]
(77)

= Z(θ(n))α−1
[
Q(a)1−α + (1− α)

|A|∑

i=k+1

θ
(n)
i

(
fi(a)− η

(n)
i Q(a)1−α

)]
(78)

= Z(θ(n))α−1
[(

1− (1− α)

|A|∑

i=k+1

θ
(n)
i η

(n)
i

)
Q(a)1−α

+ (1− α)

|A|∑

i=k+1

θ
(n)
i fi(a)

]
. (79)

Multiplying the left side of (77) and the right side of (79) byP ∗(a)α, summing over alla ∈ A,
and using the fact that

∑
a P

∗(a)αfi(a) = 0 for all i ∈ {k + 1, . . . , |A|} yields

∑

a

P ∗(a)αPn(a)
1−α = Z(θ(n))α−1

(
1− (1− α)

|A|∑

i=k+1

θ
(n)
i η

(n)
i

)∑

a

P ∗(a)αQ(a)1−α. (80)

This implies that the term1− (1−α)
|A|∑

i=k+1

θ
(n)
i η

(n)
i is positive for alln; hence, dividing the left

side of (77) and the right side of (79) by this positive term yields thatPn ∈ Eα. This implies
that the limit of every convergent subsequence of{Pn} is a member of cl(Eα), as well as of
Lα.
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In view of Items i) and ii), as listed at the beginning of this proof, it now follows from
Proposition 1 b) and Corollary 1 thatLα ∩ cl(Eα) = {P ∗}. Recall that, forα ∈ (1,∞),
Theorem 4a) implies thatP ∗ satisfies (44); furthermore, sinceQ in (61) can be replaced by any
other member ofEα, the satisfiability of (44) forQ ∈ Eα yields its satisfiability with any other
member ofEα replacingQ. SinceA is finite, (44) is also satisfied with any member of cl(Eα)
replacingQ; this can be justified for anỹQ ∈ cl(Eα) by selecting a sequence{Q̃n} in Eα which
pointwise converges tõQ, and by lettingn → ∞. This proves Item a).

We next prove Item b). Since by our assumption Supp(Lα) = A and α ∈ (1,∞) then
Proposition 1 a) implies that condition (57) holds. From Proposition 1 b), Corollary 1 and
Theorem 4, it follows that the forwardDα-projectionP ∗ is the unique member ofLα ∩ Eα

satisfying (44). Similarly to the previous paragraph, (44)is satisfied not only for forQ ∈ Eα,
but also for any other member ofEα replacingQ. This proves Item b).

Remark 5: In view of Example 1, ifα ∈ (0, 1), Supp(P ∗) is not necessarily equal to
Supp(Lα); this is consistent with Theorem 5 which is stated only forα ∈ (1,∞). Nevertheless,
in view of the proof of Theorem 2, the following holds forα ∈ (0, 1): if the condition
Supp(P ∗) = Supp(Lα) = A is satisfied, thenLα is α-orthogonal toEα at P ∗.

VII. R EVERSEPROJECTION ON ANα-EXPONENTIAL FAMILY

In this section, we define reverseDα-projections, and we rely on the orthogonality property in
Theorem 5 (and the note in Remark 5) to convert the reverseDα-projection on anα-exponential
family into a forward projection on anα-linear family.

Definition 9 (ReverseDα-projection): Let P ∈ M, Q ⊆ M, andα ∈ (0,∞). If there exists
Q∗ ∈ Q which attains the global minimum ofDα(P‖Q) over allQ ∈ Q andDα(P‖Q∗) < ∞,
thenQ∗ is said to be areverseDα-projectionof P on Q.

Theorem 6:Let α ∈ (0, 1) ∪ (1,∞), and letEα be anα-exponential family determined by
Q, fk+1, . . . , f|A|. Let X1, . . . ,Xn be i.i.d. samples drawn at random according to a probability
measure inEα. Let P̂n be the empirical probability measure ofX1, . . . ,Xn, and letP ∗

n be the
forwardDα-projection ofQ on theα-linear family

L
(n)
α :=

{
P ∈ M :

∑

a∈A

P (a)αf̂i(a) = 0, i ∈ {k + 1, . . . , |A|}
}
, (81)

where

f̂i(a) := fi(a)− η̂
(n)
i Q(a)1−α, ∀ a ∈ A (82)

with

η̂
(n)
i :=

∑
a P̂n(a)

αfi(a)∑
a P̂n(a)αQ(a)1−α

, i ∈ {k + 1, . . . , |A|}. (83)

The following hold:

a) If Supp(L (n)
α ) = A for α ∈ (1,∞) or Supp(P ∗

n) = Supp(L (n)
α ) = A for α ∈ (0, 1), then

P ∗
n is the reverseDα-projection ofP̂n on Eα.

b) Forα ∈ (1,∞), if Supp(L (n)
α ) 6= A, then the reverseDα-projection ofP̂n on Eα does not

exist. Nevertheless,P ∗
n is the reverseDα-projection ofP̂n on cl(Eα).

Proof: To prove Item a), note thatL (n)
α in (81)–(83) is constructed in such a way that

P̂n ∈ L
(n)
α . (84)
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Following (61), letEα = Eα(fk+1, . . . , f|A|;Q) denote theα-exponential family determined by
fk+1, . . . , f|A| andQ. We claim that

Eα(fk+1, . . . , f|A|;Q) = Eα(f̂k+1, . . . , f̂|A|;Q). (85)

Indeed, ifP ∈ Eα(fk+1, . . . , f|A|;Q), then there existθ = (θk+1, . . . , θ|A|) ∈ R
|A|−k and a

normalizing constantZ = Z(θ) such that for alla ∈ A

P (a)1−α = Zα−1
[
Q(a)1−α + (1− α)

|A|∑

i=k+1

θifi(a)
]

(86)

= Zα−1
[(

1 + (1− α)

|A|∑

i=k+1

θiη̂
(n)
i

)
Q(a)1−α + (1− α)

|A|∑

i=k+1

θif̂i(a)
]

(87)

where (86) and (87) follow, respectively, from (61) and (82). Multiplying the left side of (86)
and the right side of (87) bŷPn(a)

α, summing over alla ∈ A, and using (84) yields

∑

a

P̂n(a)
αP (a)1−α = Zα−1

(
1 + (1− α)

|A|∑

i=k+1

θiη̂
(n)
i

)
∑

a

P̂n(a)
αQ(a)1−α. (88)

Eq. (88) yields1 + (1 − α)
|A|∑

i=k+1

θiη̂
(n)
i > 0. Consequently, by rescaling (87) appropriately, it

follows thatP ∈ Eα(f̂k+1, . . . , f̂|A|;Q) which therefore implies that

Eα(fk+1, . . . , f|A|;Q) ⊆ Eα(f̂k+1, . . . , f̂|A|;Q). (89)

Similarly, one can show that the reverse relation of (89) also holds, which yields (85). The proof
of a) is completed by considering the following two cases:

• If α ∈ (1,∞) and Supp(L (n)
α ) = A, in view of Theorem 5b),L (n)

α is α-orthogonal to
Eα = Eα(f̂k+1, . . . , f̂|A|;Q) at P ∗

n ; hence, due to (84),

Dα(P̂n‖Q) = Dα(P̂n‖P
∗
n) +Dα(P

∗
n‖Q), ∀Q ∈ Eα. (90)

SinceP ∗
n ∈ Eα, the minimum ofDα(P̂n‖Q) subject toQ ∈ Eα is uniquely attained at

Q = P ∗
n .

• If α ∈ (0, 1) and Supp(P ∗
n) = Supp(L (n)

α ) = A, then (90) holds in view of Remark 5 and
(84). The minimum ofDα(P̂n‖Q) subject toQ ∈ Eα is thus uniquely attained atQ = P ∗

n .
To prove Item b), forα ∈ (1,∞), note thatP ∗

n ∈ Eα if and only if Supp(L (n)
α ) = A. Indeed,

the ’if’ part follows from Item a). The ’only if’ part followsfrom the fact that all members of
Eα have the same support,Q is a member ofEα which by assumption has full support, andP ∗

n

is in bothEα (by assumption) andL (n)
α (by definition).

To prove the first assertion in Item b), note that by Theorem 5a), P ∗
n ∈ cl(Eα) and (90) holds

for everyQ ∈ cl(Eα). Hence,

min
Q∈cl(Eα)

Dα(P̂n‖Q) = Dα(P̂n‖P
∗
n). (91)

Due to the continuity ofDα(P̂n‖Q) for Q which is defined on the finite setA, it follows from
(91) that

inf
Q∈Eα

Dα(P̂n‖Q) = Dα(P̂n‖P
∗
n). (92)

In view of (90), the minimum ofDα(P̂n‖Q) over Q ∈ Eα is not attained. Finally, the last
assertion in b) is due to (90) which, in view of Theorem 5a), holds for all Q ∈ cl(Eα).
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VIII. S UMMARY AND CONCLUDING REMARKS

In [18, Theorem 14], van Erven and Harremoës proved a Pythagorean inequality for Rényi
divergences onα-convex sets under the assumption that the forward projection exists. Motivated
by their result, we study forward and reverse projections for the Rényi divergence of orderα on
α-convex sets. The results obtained in this paper, forα ∈ (0,∞), generalize the known results
for α = 1; this special case corresponds to projections of the relative entropy on convex sets,
as studied by Csiszáret al. in [12], [13], [15], [16]. The main contributions of this paper are as
follows:
1) we prove a sufficient condition for the existence of a forward projection in the general

alphabet setting.
2) we prove a projection theorem on anα-linear family in the finite alphabet setting, and the

parametric form of this projection gives rise to anα-exponential family.
3) we prove an orthogonality property betweenα-linear andα-exponential families; it yields a

duality between forward and reverse projections, respectively, on these families.
4) we prove a convergence result of an iterative algorithm for calculating the forward projection

on an intersection of a finite number ofα-linear families.

For α = 0, the notion of anα-convex set is continuously extended to alog-convex set. Since
D0(P‖Q) = − logQ

(
Supp(P )

)
(see, e.g., [18, Theorem 4]), if there existsP ∈ P such that

Supp(P ) = Supp(Q) then any such probability measure is a forwardD0-projection ofQ on P
for which D0(P‖Q) = 0. Note that, in this case, a forwardD0-projection ofQ on P is not
necessarily unique.

For α = 0 and a finite setA, the notion of anα-linear family is the whole simplex of
probability measures (with the convention that00 = 1 in (43)), provided that

∑
a fi(a) = 0 for

all i ∈ {k + 1, . . . , |A|}; otherwise, the 0-linear family is an empty set. In the former case, the
forwardD0-projection ofQ on P is any probability measureP with a full support since in this
caseD0(P‖Q) = 0; the forwardD0-projection is, however, meaningless in the latter case where
P is an empty set.

The Rényi divergence of order∞ is well defined (see, e.g., [18, Theorem 6]); furthermore,
a set is defined to be∞-convex if for all P0, P1 ∈ P, the probability measureS0,1 whose
µ-densitys0,1 is equal to the normalized version ofmax{p0, p1}, is also included inP (this
definition follows from (15) by lettingα → ∞). In this case, Theorems 1 and 2 continue to
hold for α = ∞ (recall that Theorem 2 refers to the setting whereA is finite).

Consider the case whereα = ∞ andA is a finite set. By continuous extension, the∞-linear
family necessarily includes all the probability measures that are not a point mass (see (43)), and
the ∞-exponential family only includes the reference measureQ (see (61)). Consequently, the
results in Theorems 3–6 become trivial forα = ∞.
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