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PROPER HOLOMORPHIC MAPPINGS BETWEEN HYPERBOLIC

PRODUCT MANIFOLDS

JAIKRISHNAN JANARDHANAN

Abstract. We prove a result on the structure of finite proper holomorphic mappings

between complex manifolds that are products of hyperbolic Riemann surfaces. While

an important special case of our result follows from the ideas developed by Remmert

and Stein, the proof of the full result relies on the interplay of the latter ideas and a

finiteness theorem for Riemann surfaces.

1. Introduction

A natural problem in the study of holomorphic mappings is to give a description
of the automorphism group or the set of all proper holomorphic self-maps of a given
complex space. Of course, this problem is intractable in general even when posed for
arbitrary domains in C

n. One of the simplest classes of domains in C
n is the class of

products of planar domains. The following theorem due to Remmert and Stein gives
the precise structure of a proper holomorphic map between certain product domains.

Result 1.1 (Remmert–Stein [10]). Let D = D1 × · · · ×Dn and W = W1 × · · · ×Wn

be products of planar domains such that, for each j = 1, . . . , n, C \Dj has non-empty
interior and Wj ⊂ C is bounded. Let f = (f1, . . . , fn) be a proper holomorphic map from
D to W . Then, each fj, j = 1, . . . , n, is of the form fj(zp(j)), where p is a permutation
of {1, . . . , n}.

Remark 1.2. The proof of this result in the case n = 2 was given by Remmert and
Stein (Satz 12 in [10]). Their proof uses Rado’s theorem. The proof of the general
case requires a generalization of Rado’s theorem, but all other aspects of Remmert and
Stein’s proof remain unchanged: see [8, pp. 71–78], for instance.

The methods of Remmert–Stein cannot, as Remark 1.2 suggests, be applied when
the planar factors in Result 1.1 are replaced by compact Riemann surfaces. Yet, the
phenomenon exhibited by Result 1.1 occurs in some other settings as well. Another
result on mappings between product spaces is the following theorem of Peters which
generalizes a well-known result by Cartan [1]:

Result 1.3 (Peters [9]). Let X and Y be hyperbolic complex spaces. Then the natural
injection Aut(X)× Aut(Y ) → Aut(X × Y ) induces an isomorphism

Aut0(X)× Aut0(Y ) ∼= Aut0(X × Y ).
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2 JAIKRISHNAN JANARDHANAN

Here Aut0(X) denotes the connected component of the identity element of Aut(X).

To the best of our knowledge, there is no analogue of the above result for proper holo-
morphic maps in the literature, except for Result 1.1 (and a small technical improvement
thereof in [8, p. 77]). It is natural to ask whether a result similar to Result 1.1, with the
planar domains therein replaced by hyperbolic Riemann surfaces, holds true. However,
it is far from clear whether the methods seen in the proofs of either of the above results
are alone decisive in proving the hoped-for generalization. In our view, a key ingredient
that is needed is the phenomenon illustrated by the following example.

Example 1.4. Let D = C \ {0, 1}, and f = (f1, f2) be a proper holomorphic self-
map of D ×D. Note that D is hyperbolic. Even though most of the hypotheses of the
Remmert–Stein theorem are not satisfied, the conclusion still follows.
This is not hard to see. Fix z0 ∈ C \ {0, 1}. By the big Picard theorem, it follows
that 0, 1 and ∞ are removable singularities or poles of the map h := f1(z0, ·). Hence

h extends as a holomorphic map to Ĉ, and is therefore a rational map. If h is not
proper as a map from C \ {0, 1} to itself, then there is a sequence {xn} ⊆ C \ {0, 1}
that converges to either 0, 1 or ∞, such that some subsequence of the image sequence
{h(xn)} converges to a finite point in C \ {0, 1}. Hence h is a rational map that misses
at least one of the points 0, 1 or ∞, and must therefore be constant.

On the other hand, assume that h is a proper map from C \ {0, 1} to itself; then it
is a non-constant rational map. Thus, if h = P

Q
, where P and Q are two polynomials

having no common factors, at least one of P or Q has to be non-constant. Also, note
that h takes {0, 1,∞} to itself.

If P were non-linear, it would follow that either Q has the same degree as P , or Q is
some constant C. In the latter case, both P and P −Q are non-constant polynomials
with disjoint zero sets. From this, it follows that P is either zk or (z − 1)k, k > 1.
Therefore, the equation h = 1 has roots different from 0 and 1, which is a contradiction.
If P and Q have the same degree, then it follows that P

Q
is of the form Rk, where R

is a non-constant rational function, and the value 1 is attained by k distinct values,
which is also a contradiction. Hence P is linear, and a similar argument shows that
Q is also linear. Hence h is a fractional linear transformation that takes {0, 1,∞} to
itself. There are only six possibilities for the map h. From this it follows that, if for
some z0, f1(z0, ·) is an automorphism, then f1(z, ·) is the same automorphism for all
z ∈ C \ {0, 1} (see Lemma 3.3). Together with the conclusion of the first paragraph,
this proves that f1(z, ·) is either constant for all z, or is independent of z. Applying the
same argument to f2, we conclude that the conclusion of the Remmert–Stein theorem
still holds.

The key fact used in the above example is that there are only finitely many proper
holomorphic self-maps of C\{0, 1}. This is not true for the domains C and C\{0}. We
are motivated by all of this to generalize the result of Remmert and Stein to complex
manifolds that are products of certain hyperbolic Riemann surfaces.

Theorem 1.5. Let Rj and Sj , j = 1, . . . , n, be compact Riemann surfaces, and let Xj

(resp. Yj) be a connected, hyperbolic open subset of Rj (resp. Sj) for each j = 1, . . . , n.
Let F = (F1, . . . , Fn) : X1 × · · · × Xn → Y1 × · · · × Yn be a finite proper holomorphic
map. Then, denoting z ∈ X1× · · · ×Xn as (z1, . . . , zn), each Fi is of the form Fi(zπ(i)),
where π is a permutation of {1, . . . , n}.
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Remark 1.6. It is essential for F to be a finite map in the above theorem. Without
this requirement, Theorem 1.5 is false. To see this, let X be some compact hyperbolic
Riemann surface. The map F : X2 → X2 defined by F (z1, z2) := (z1, z1) is a proper
map. In fact, F satisfies all the assumptions of Theorem 1.5 except finiteness.

Remark 1.7. The conclusion of the above theorem can fail if even one of the factors is
non-hyperbolic. Consider X = D× (Ĉ \ {p}), where p ∈ Ĉ and D denotes the unit disc

in C. We know that Ĉ\{p} is not hyperbolic. We view Ĉ\{p} as C. It is easy to check
that any F ∈ Aut(D × C) is of the form

F (z1, z2) = (ψ(z1), A(z1)z2 +B(z1)),

where ψ ∈ Aut(D), A,B ∈ O(D) and A is non-vanishing.

The novelty of our proof, from the viewpoint of function theory, lies in our use
of the fact that the set of non-constant holomorphic maps between certain Riemann
surfaces is at most finite. This pheneomenon is well understood in the realm of compact
complex manifolds; see, for instance, [7, Chapters 6& 7]. However, the factors Xj and
Yj in Theorem 1.5 are not necessarily compact. We will see that the main idea in the
Remmert–Stein theorem (i.e. Result 1.1) is still useful in our more general setting.
Loosely speaking, we show that, in general, the manifold X1 × · · · × Xn splits into
two factors, one of which is the product of those non-compact factors to which the
Remmert–Stein method can be applied. The finiteness result that is essential to our
proof is a result by Imayoshi [4]. This result, plus some other technical necessities are
stated in Section 3. The proof of Theorem 1.5 is presented in Section 4.

2. A version of Montel’s Theorem

In the proof of our main result, we need a version of Montel’s theorem that is adapted
to our situation. The proof of this version requires some general results about normal
families. We state these results, with references, in this section. Throughout this
section, M and N will denote complex manifolds, and O(M,N) will denote the space
of holomorphic maps from M into N . We give O(M,N) the compact-open topology.
We begin with the definition of a normal family.

Definition 2.1. A subset F of O(M,N) is said to be normal if every sequence of
F contains a subsequence {fn} that is either convergent in O(M,N), or is compactly
divergent. By the latter we mean that given compact sets K ⊆ M and H ⊆ N ,
fn(K) ∩H = ∅ for all sufficiently large n.

Result 2.2 (see [5], Proposition 3). Let M be a complex manifold, and let N be a
complete Kobayashi hyperbolic complex manifold. Then O(M,N) is a normal family.

Result 2.3 (see [6], Theorem 5.5). Let X be a hyperbolic Riemann surface. Then X is
complete Kobayashi hyperbolic.

We now state and prove the version of Montel’s Theorem that we need, which is a
corollary of the last two results.

Corollary 2.4. Let X be a connected complex manifold and let R be a hyperbolic open
connected subset of a compact Riemann surface S. Then, given any sequence {fν} ⊂
O(X,R), there exists a subsequence {fνk} and a holomorphic map f0 : X → R (the
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closure taken in S whenever R is non-compact) such that fνk → f0 uniformly on compact
subsets of X.

Proof. We begin by noting that if R is compact, then the result follows immediately
from Results 2.3 and 2.2.

We now consider the case when R is a punctured Riemann surface. By Result 2.2,
O(X,R) is a normal family. There is nothing to prove if there exists a subsequence {fνk}
that converges uniformly on compact subsets of X. Therefore, let us consider the case
when we get only a compactly divergent subsequence {fνk}. Let {Kj : j ∈ Z+} be an
exhaustion of X by connected compact subsets, and let {Lj : j ∈ Z+} be an exhaustion
of R by compact subsets. Since R is obtained from S by deleting finitely many points
from it, compact divergence implies that we can extract a further subsequence from
{fνk} — which we shall re-index again as {fνk} — such that fνk(K1) ⊂ D∗ ∀k, where
D∗ is a deleted neighbourhood of one of the punctures, say p0. Now, given any j ∈ Z+,
there exists a k(j) ∈ Z+ such that, by the connectedness of the Kj ’s, we have:

fνk(Kj) ⊂ (D∗ \ Lj) ∀k ≥ k(j).

This just means that fνk → p0 uniformly on compacts as k → ∞.

In the general case, as R is hyperbolic, we can make sufficiently many punctures in S
to get a Riemann surface R′ that is hyperbolic and R ⊆ R′ ⊂ S . By considering each
fν as a mapping in O(X,R′), we can find, by the preceding argument, a subsequence
{fνk} and a holomorphic map f0 : X → R′ such that fνk → f0 uniformly on compact

subsets of X. As each fνk ∈ O(X,R), we must have f0 ∈ O(X,R), and we are done. �

3. Some technical necessities

In this section we summarize several results that we need for the proof of Theorem
1.5. We state these results with appropriate references. We begin with an extension
of a classical result due to de Franchis [3], which states that there are at most finitely
many non-constant holomorphic mappings between two compact hyperbolic Riemann
surfaces. We shall call a Riemann surface obtained by removing a finite, non-empty
set of points from some compact Riemann surface a punctured Riemann surface. A
Riemann surface obtained by removing n points from a compact Riemann surface of
genus g will be called a Riemann surface of finite type (g, n). Imayoshi extended de
Franchis’ result as follows:

Result 3.1 (Imayoshi [4]). Let R be a Riemann surface of finite type and let S be a
Riemann surface of finite type (g, n) with 2g − 2 + n > 0. Then the set of non-constant
holomorphic maps from R into S is at most finite.

The above result combined with the following lemma will play a key role in the proof
of the main theorem. To state this lemma, we need a definition.

Definition 3.2. Let F : X → Y be a map between two sets, and suppose thatX = X1×
· · ·×Xn. We say that F is independent of Xj if, for each fixed (x01, . . . , x

0
j−1, x

0
j+1, . . . , x

0
n),

x0i ∈ Xi, the map

Xj ∋ xj 7−→ F (x01, . . . , x
0
j−1, xj , x

0
j+1, . . . , x

0
n),

is a constant map. We say that F varies along Xj if F is not independent of Xj .
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Lemma 3.3. Let R and S be as in Result 3.1, and let X be a connected complex
manifold. Let F : R × X → S be a holomorphic mapping with the property that for
some x0 ∈ X, the mapping R ∋ z 7→ F (z, x0) ∈ S is a non-constant mapping. Then F
is independent of X.

Proof. Let dR and dS be metrics that induce the topology of R and S, respectively.
By Result 3.1, the set of non-constant holomorphic mappings from R to S is at most
finite. By our hypotheses, there is at least one such map. Let F1, . . . , Fk be the only
distinct non-constant mappings in O(R,S). Let x0 ∈ X be such that the map F (·, x0)
is non-constant. By continuity of F , there is an X-open neighbourhood U0 ∋ x0 such
that F (·, x) is non-constant for x ∈ U0. Choose ε > 0 and rij ∈ R, 1 ≤ i, j ≤ k, i 6= j,
such that dS(Fi(rij), Fj(rij)) > ε. By the continuity of F , we can find a neighbourhood
U ⊂ U0 of x0 such that, for each of the rij’s, we have dS(F (rij , x), F (rij , y)) < ε ∀x, y ∈
U . This is possible only if F (·, x) ≡ F (·, y), ∀x, y ∈ U . It follows that

• ∃j0 ≤ k such that F (·, x) = Fj0 ∀x ∈ U ;
• For each fixed r ∈ R, the map F (r, ·) is constant on U .

As X is connected, the Identity Theorem implies that F (r, ·) ≡ Fj0(r). This proves that
F is independent of X. �

The next result is the well known Remmert’s Proper Mapping Theorem. For the
proof, refer to [2, p. 31].

Result 3.4 (Proper Mapping Theorem). Let X and Y be complex manifolds, and let A
be an analytic subset of X. Let f : A → Y be a proper finite holomorphic map. Then,
f(A) is an analytic subset of Y , and at every w ∈ f(A)

dimwf(A) = max{dimzA : f(z) = w}.

In particular, dimA = dimf(A). Furthermore, if A = X and dim(X) = dim(Y ) then
F is surjective.

The following result due to Kobayashi [7, p. 284] can be thought of as an higher
dimensional analogue of the big Picard theorem. For this, we first need to make a
definition.

Definition 3.5. Let Z be a complex manifold and let Y be a relatively compact complex
submanifold of Z. We call a point p ∈ Y a hyperbolic point if every neighbourhood U
of p contains a smaller neighbourhood V of p, V ⊂ U , such that

KY (V ∩ Y, Y \ U) := inf{KY (x, y) : x ∈ V ∩ Y, y ∈ Y \ U} > 0,

where KY denotes the Kobayashi pseudo-distance on Y . We say that Y is hyperbolically
imbedded in Z if every point of Y is a hyperbolic point.

Result 3.6 (Kobayashi). Let Y and Z be complex manifolds, and let Y be hyperbolically

imbedded in Z. Then every map h ∈ O (D∗, Y ) extends to a map h̃ ∈ O(D, Z).

Lemma 3.7. If Y is a hyperbolic open connected subset of a compact Riemann surface
Z, then Y is hyperbolically imbedded in Z.

Proof. The lemma is obvious if Y has only isolated boundary points. If not, then, as Y is
hyperbolic, we can make sufficiently many punctures in Z to get a hyperbolic Riemann

surface Ỹ such that Y ⊂ Ỹ ⊂ Z. It follows that Ỹ is hyperbolically imbedded in Z.
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Now let y ∈ Y . Then, y ∈ Ỹ . Let U be a neighbourhood of y, and let V be a smaller
neighbourhood of y such that

K
Ỹ
(V ∩ Ỹ , Ỹ \ U) > 0.

As KY ≥ K
Ỹ

on Y × Y and Y ⊆ Ỹ , it follows that y is also a hyperbolic point of Y .
Consequently, Y is hyperbolically imbedded in Z. �

We require one more result, a generalization of Rado’s theorem that is proved in [8].

Lemma 3.8. Let (φµν), 1 ≤ µ ≤ k, 1 ≤ ν ≤ l, be a matrix of holomorphic functions
on D ⊆ U , where D and U are connected open subsets of C, and U \D is a non-empty
indiscrete set. Suppose that

l∏

ν=1

k∑

µ=1

|φµν(z)|
2 → 0 as D ∋ z → ζ

for any ζ ∈ ∂D ∩ U . Then, for some ν0, 1 ≤ ν0 ≤ l, we have

φµν0 ≡ 0, µ = 1, . . . , k.

Proof. Suppose each column of (φµν) has a member that is not identically 0 on D. Let
f be the product of these members. We extend f to be a function on U by defining
f ≡ 0 on U \D. By hypothesis, f is continuous on U and holomorphic on D. Therefore
by the classical Rado’s theorem f ≡ 0, a contradiction. �

4. Proof of the main theorem

We begin this section by considering a special case of Theorem 1.5 whose proof
contains some technicalities. Since these technicalities would lengthen the proof of
Theorem 1.5 if we were to embark on it directly, we shall isolate the technical portion
of our proof in the following proposition. Its proof consists of rephrasing the Remmert–
Stein argument relative to a coordinate patch; see [8, pp. 71–78]. We shall therefore be
brief and explain in detail only those points that differ from the proof in [8].

Proposition 4.1. Let X = X1 × · · · ×Xn and Y = Y1 × · · · × Yn, n ≥ 2, be complex
manifolds. Assume that each Xj and each Yj satisfy the hypothesis of Theorem 1.5
and that Y is non-compact. Further assume that, for each j, Rj \Xj is a non-empty
indiscrete set. Let F : X → Y be a finite proper holomorphic map. Then, denoting z ∈
X1 × · · · ×Xn as (z1, . . . , zn), each Fi is of the form Fi(zπ(i)), where π is a permutation
of {1, . . . , n}.

In particular, if there is a mapping with the above properties from X to Y , then Y

cannot have any compact factors.

Proof. For 1 ≤ j ≤ n, let Rj and Sj be as in Theorem 1.5. Let p = (p1, . . . , pn) be a
point in R1×· · ·×Rn such that, for each 1 ≤ i ≤ n, pi is a limit point of the set Ri \Xi

and belongs to ∂Xi.
Let (Uk, ψk) be connected holomorphic co-ordinate charts of Rk, chosen in such a way

that pi ∈ Ui and the image of (
∏n

k=1 Uk) ∩X under each Fj lies in some holomorphic
co-ordinate chart (Vj , ρj) of Sj. Let Wi be a connected component of Ui ∩Xi such that
pi ∈ ∂Wi. For (z1, . . . , zn) ∈

∏n
k=1 ψk(Wk), let

gj(z1, . . . , zn) := ρj ◦ Fj(ψ
−1
1 (z1), . . . , ψ

−1
n (zn)).
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In view of Corollary 2.4, we can rephrase the arguments in [8, p. 75] to conclude:
n∏

j=1

n∑

k=1,k 6=i

∣∣∣∣
∂gj

∂zk
(z1, . . . , zi−1, w, . . . , zn)

∣∣∣∣
2

→ 0 as w → ζ ∈ ψi(∂Wi),

where ζ is any arbitrary point in ψi(∂Wi). Let us take D = ψi(Wi) and U = ψi(Ui) in
Lemma 3.8. Note that ψi(pi) ∈ U \D, whence U \D is indiscrete. Thus, we have that
for each (z1, . . . , zi−1, zi+1, . . . , zn) ∈

∏n
k=1,k 6=i ψk(Wk), there is a j = j(z) such that

hj(z1, . . . , zi−1, w, zi+1, . . . , zn) :=

n∑

k=1,k 6=i

∣∣∣∣
∂gj

∂zk
(z1, . . . , zi−1, w, . . . , zn)

∣∣∣∣
2

is zero ∀w ∈ D. At this point, we can again argue exactly as in [8, p. 75] to conclude
that there exists an integer σ(i), 1 ≤ σ(i) ≤ n, such that

∂gσ(i)

∂zk
≡ 0 on ψ1(W1)× · · · × ψn(Wn), k = 1, . . . , n, k 6= i.

Therefore onW1×· · ·×Wn, Fσ(i) is independent of z1, . . . , zi−1, zi+1, . . . , zn. By applying
the Identity Theorem, we conclude that Fσ(i) is independent of the same variables on
X. By Remmert’s Proper Mapping Theorem, F is surjective. This implies that Fσ(i)

varies along Xi. Since the choice of 1 ≤ i ≤ n in the preceding argument was arbitrary,
for each i there exists precisely one σ(i) such that Fσ(i)(z) = Fσ(i)(zi) ∀z ∈ X. The

permutation π = σ−1, and we are done with the proof of the first part.

To establish the final part of this result, assume that Ys+1, . . . , Yn are all compact,
for some s < n. Fix an i as in the previous paragraph. The heart of the argument
above, see [8, p. 75], consists of using Montel’s theorem (Corollary 2.4 in our present
set-up) to construct a map (φ1, . . . , φn) : Z → ∂Y , where Z :=

∏n
k=1,k 6=iXk. Set

Ej := {z ∈ Z : φj(z) ∈ ∂Yj}. Clearly :

{l : 1 ≤ l ≤ n, int(El) 6= ∅} ⊆ {1, . . . , s}. (4.1)

In view of (4.1), the argument in [8, p. 75] reveals that, for each i, σ(i) ∈ {1, . . . , s}.
Since s < n, by assumption, there would exist i 6= i′ such that σ(i) = σ(i′). But this
would contradict the surjectivity of F , and we are done.

�

4.2. The proof of Theorem 1.5. For 1 ≤ j ≤ n, let Rj and Sj be the compact Rie-
mann surfaces in the statement of the theorem. We start off with a simple consequence
of the finiteness of F .
Claim A: For any holomorphic finite map F : X → Y , given any Xi, 1 ≤ i ≤ n, there is
some Fj that varies along Xi. To see this, assume that there is a factor Xi such that all
the Fj ’s are independent of Xi. Then for any point x = (x1, . . . , xn) ∈ X, by Definition
3.2, the inverse image of F (x) contains the set {x1}×· · · {xi−1}×Xi×{xi+1}×· · · {xn}.
But this contradicts the finiteness of F .

Let XC and YC denote the product of those factors of X and Y , respectively, that are
either compact, or compact with finitely many punctures, and let XB and YB denote the
product of the remaining factors. Since Proposition 4.1 already establishes our theorem
if XC = ∅, we may assume, without loss of generality, that XC := X1 × . . .×Xp, 1 ≤
p ≤ n. Note that if XC = ∅ and there exists a proper holomorphic map F : X → Y ,
then Y cannot be compact.
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Claim B: The maps Fi are independent of X1, . . . ,Xp, whenever Si \Yi is a non-empty
indiscrete set. To see this, fix x′ ∈ X2 × · · · ×Xn. The map Fi(·, x

′) is a holomorphic
map from X1 into a hyperbolically imbedded Riemann surface. Now, R1 is the compact
Riemann surface from which X1 is obtained by deleting at most finitely many points.

From Result 3.6, it follows that Fi(·, x
′) extends holomorphically to a map f̃i from R1

into Si. If f̃i is non-constant, then by the compactness of R1, it follows that the image

set of R1 under f̃i is both compact and open. But, this means that Si = f̃i(R1), which is

not possible as Si \Yi is a non-empty indiscrete set, and f̃i(R1) is obtained by adjoining
at most finitely many points to Yi. This proves that Fi is independent of X1. Repeating
the same argument for the factors X2, . . . ,Xp, the claim is proved.

Now note that, in view of Claim B, if 1 ≤ i ≤ p and Fj is a map that varies along Xi,
then Yj is either compact, or compact with finitely many punctures. Then, by Lemma
3.3, Fj is independent of all the factors of X other than Xi. Without loss of generality,
we may assume that YC = Y1 × . . . Yk, 1 ≤ k ≤ n. Combining our last deduction with
Claim A, we infer that:

(1) p ≤ k ≤ n;
(2) Without loss of generality, there is an enumeration of the factors of YC such

that for each 1 ≤ i ≤ p, there is a unique σ(i), 1 ≤ σ(i) ≤ p, such that
Fσ(i)(z) = Fσ(i)(zi) ∀z ∈ X.

Suppose k > p. Then, in view of the (harmless) assumption in (2), we need to
analyse the behaviour of Fi, p + 1 ≤ i ≤ k. Note that we already know from Claim B
that Fk+1, . . . , Fn is independent of XC . Assume that Fp+1 varies along some Xi, 1 ≤
i ≤ p; then from Lemma 3.3, Fp+1 is independent of all other factors of X. From
Remmert’s Proper Mapping Theorem (Result 3.4), F is a surjective map fromX onto Y .
Hence, combining the last two assertions with (2), (F1, . . . , Fp+1) determines a surjective
holomorphic map (F1, . . . , Fp+1) : XC → Y1×· · ·×Yp+1 from a space of dimension p to a
space of dimension p+1, which contradicts Sard’s theorem. Hence, Fp+1 is independent
of X1, . . . ,Xp. Repeating the same argument for each map Fj , p + 1 ≤ j ≤ k, we
conclude that each Fj , p+ 1 ≤ j ≤ n, is independent of XC .

Whether or not k > p, the previous paragraph implies that Fi, p + 1 ≤ i ≤ n, are
independent of XC , whence they determine a surjective map FB = (Fp+1, . . . , Fn) :
XB → Yp+1 × . . . × Yn. This map is clearly finite. We will now show that it is proper.

Consider a compact set K ⊆ Yp+1× . . .×Yn. We must show that F−1
B (K) is a compact

subset of XB . Let H ⊆ Y1 × · · · × Yp be some compact set. Then, by the properness of
F , it follows that F−1(H ×K) is compact. But, given the independence of the various
Fi’s from certain factors of X,

F−1(H ×K) = (F1, . . . , Fp)
−1(H)× F−1

B (K).

Thus, F−1
B (K) is compact, as required.

As XB is non-compact, and FB is a proper map, it follows that Yp+1×· · ·×Yn is also
non-compact. We now apply Proposition 4.1 to the map FB to get a permutation π of
{p + 1, . . . , n} such that, for each p < i ≤ n, we have Fi(z) = Fi(zπ(i)). Juxtaposing π

with the permutation σ−1 of {1, . . . , p}, we are done. �
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