
PROPER HOLOMORPHIC MAPPINGS OF

BALANCED DOMAINS IN Cn

JAIKRISHNAN JANARDHANAN

Abstract. We extend a well-known result, about the unit ball, by H. Alexander to a class

of balanced domains in Cn, n > 1. Specifically: we prove that any proper holomorphic self-

map of a certain type of balanced, finite-type domain in Cn, n > 1, is an automorphism.

The main novelty of our proof is the use of a recent result of Opshtein on the behaviour

of the iterates of holomorphic self-maps of a certain class of domains. We use Opshtein’s

theorem, together with the tools made available by finiteness of type, to deduce that the

aforementioned map is unbranched. The monodromy theorem then delivers the result.

1. Introduction

The central result of this paper is:

Theorem 1.1. Let Ω ⊂ Cn, n > 1, be a smoothly bounded balanced domain of (D’Angelo)
finite type. Assume that Ω has a smooth defining function that is plurisubharmonic in Ω.
Then every proper holomorphic self-map F : Ω→ Ω is an automorphism.

We recall that a domain Ω is said to be balanced if whenever z ∈ Ω and λ ∈ C, |λ| ≤ 1,
then we have λz ∈ Ω. The above theorem is motivated by the famous result of H. Alexander
[Ale77] showing the non-existence of non-injective proper holomorphic self-maps of the
unit ball in Cn, n > 1 — which the above theorem generalizes. Since its appearance,
Alexander’s theorem has been extended in many different ways. We refer the interested
reader to Section 3 of the survey article by Forstnerič [For93]. One such result is that
of Bedford and Bell [BB82], which extends Alexander’s theorem to bounded pseudoconvex
domains having real-analytic boundaries. Recent work relating to Alexander’s theorem has,
therefore, focused on domains whose boundaries need not be real-analytic. See, for instance,
the work of Berteloot [Ber98] and Coupet, Pan and Sukhov [CPS99, CPS01].

An alternative strategy for deriving a conclusion similar to that of Alexander’s theorem,
especially when a domain does not have real-analytic boundary, is to impose a condition on
its automorphism group. With a hypothesis on the automorphism group, there are often
interesting interactions between the symmetries of the domain and the boundary geometry.
These interactions allow one to simplify the structure of the branch locus of a branched
proper holomorphic self-map.

However, there is a new ingredient to our proof, which we briefly introduce here. In a
relatively recent paper, Opshtein proved the following result:

Result 1.2 ([Ops06], Théorème A). Let D ⊂ Cn, n ≥ 2, be a smoothly bounded domain
having a smooth defining function that is plurisubharmonic in D. Let f : D → D be a
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proper holomorphic self-map that is recurrent. Then the limit manifold of f is necessarily
of dimension higher than 1.

Refer to Section 3 for the definitions of the terms that occur in the above result. In [Ops06],
Opshtein suggests that his results could serve as a new set of tools for establishing Alexander-
type theorems. We found Opshtein’s viewpoint very useful in the context of Theorem 1.1:
Result 1.2 plays a key role in our proof of Theorem 1.1 (which we shall presently explain).

Another influence behind this work is the following result:

Result 1.3 (Coupet, Pan and Sukhov [CPS99]). Let Ω ⊂ C2 be a smoothly bounded balanced
pseudoconvex domain of (D’Angelo) finite type. Then every proper holomorphic self-map
F : Ω→ Ω is an automorphism.

Remark 1.4. In a later paper [CPS01], Coupet, Pan and Sukhov have extended their result
to smoothly bounded pseudoconvex quasi-circular domains of finite type in C2.

Let Ω and F be as in Theorem 1.1. Our proof of Theorem 1.1 and the proof of Result 1.3
share some key ideas. As Ω is simply connected, to prove that F is an automorphism it
suffices — in view of the monodromy theorem — to establish that F is unbranched. Thus,
a natural approach to proving Theorem 1.1 is to assume that F is branched, and use this
assumption together with the properties of Ω to reach a contradiction. To this end, we
prove the following result that establishes an important property of the branch locus of F .

Proposition 1.5. Let Ω ⊂ Cn, n > 1, be a smoothly bounded balanced pseudoconvex
domain of (D’Angelo) finite type. Let F : Ω → Ω be a proper holomorphic mapping, and
assume that the branch locus VF := {z ∈ Ω : JacC(F )(z) = 0} 6= ∅. Let X be an irreducible
component of VF . Then for each z ∈ X, the set (C · z) ∩ Ω is contained in X.

We ought to point out that Proposition 1.5 is a hypothetical statement. If F as in
Theorem 1.1 were branched, then it would have the above structure. The thrust of our
proof is that F can never be branched.

Coupet, Pan and Sukhov have proved a version of Proposition 1.5 for domains in C2

in which the domain need not be balanced, but is only required to admit a transverse T-
action. The point that is worth highlighting here is that by restricting ourselves to balanced
domains, we are able to give an almost entirely elementary proof of Proposition 1.5, and
that these methods have one significant payoff: we do not have to assume in the above
results that the T-action is transverse. We bypass the need for transversality by using some
results from dimension theory. These results are insensitive to dimension, which allows us
to state and prove Theorem 1.1 in Cn for all n > 1.

A key object used in the proofs of Proposition 1.5 and Theorem 1.1 is the function
τ : ∂Ω→ Z+ ∪ {0} introduced by Bedford and Bell (see [BB82, Bel84]). The number τ(p)
is the order of vanishing in the tangential directions of the Levi determinant of a smoothly
bounded pseudoconvex domain at the point p ∈ ∂Ω. The function τ has been used to study
the branching behaviour of proper holomorphic mappings in many earlier results. It turns
out that, owing to the hypothesis that Ω is of (D’Angelo) finite type, τ is bounded on ∂Ω.
We refer the reader to Section 2 for a more precise discussion.

Using Proposition 1.5, one can prove that F−1{0} = {0}. It is at this point that our
methods and the methods of Coupet–Pan–Sukhov diverge. We make use of Opshtein’s
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theorem to deal with the complexities posed by dimension. The key steps of Theorem 1.1
may be summarized as follows:

• We begin by assuming that F is branched.
• If z0 is a point in F−1{0} that is not 0, it follows from Proposition 1.5 that (C·z0)∩Ω

is contained in a sequence of distinct irreducible components of the branch loci of the
iterates F k, k = 1, 2, 3, . . . We note that, by Lemma 2.8, F extends holomorphically
to a neighbourhood of Ω, whence these irreducible components extend through ∂Ω.
• We pick a point q ∈ (C · z0) ∩ ∂Ω. Each iterate of F must be branched at q. Using

this fact, and that q is located on the closures of distinct irreducible components of
the branch loci of F k, one can show — using a result of Bell [Bel84] — that τ must
be unbounded on ∂Ω. This is impossible, whence F−1{0} = {0}.
• In particular, F fixes 0, whence there exists a limit manifold, call it M , associated

to the iterates of F . The circular symmetry of Ω makes it possible to deduce that
M is the intersection of a linear subspace of Cn with Ω, and that one may assume,
without loss of generality, that F |M is given by

(z1, . . . , zm, 0, . . . , 0) 7→ (eiθ1z1, . . . , e
iθmzm, 0, . . . , 0).

• If m > 1 then we can find a point p ∈ M ∩ ∂Ω that also lies in the (prolongation
of) the branch locus of F . We examine the orbit of p under the action of the group
generated by F |M . The behaviour of the function τ along this orbit contradicts the
upper semi-continuity of τ . Hence, m ≤ 1, which, however, contradicts Opshtein’s
theorem: Result 1.2 above.
• This proves that our assumption that F is branched must be false.

As is evident from the above outline, we will need some definitions and facts from the
theory of (iterative) dynamics of holomorphic self-maps. These will be presented in Sec-
tion 3. Section 4 is devoted to stating and proving certain propositions that are essential to
our proofs. The proofs of Proposition 1.5 and Theorem 1.1 will be presented in Section 5.

Before, we proceed further, we clarify that, in this paper, whenever we use use the word
“smooth”, it will refer to C∞-smoothness unless specified otherwise. By a smoothly bounded
domain, we shall mean a bounded domain whose boundary is C∞-smooth.

2. Boundary geometry

In this section, we shall summarize the properties of the function τ alluded to above. For
the sake of completeness, we first give the definition of D’Angelo finite type.

Definition 2.1. Let D ⊂ C be a domain, and let f : D → C be a smooth function.
We define the multiplicity of f at p ∈ D to be the least positive integer k such that the
homogeneous polynomial of degree k in the Taylor series of (f − f(p)) around p is not
identically zero, defining it to be +∞ if no such k exists. The multiplicity of a Cn-valued
function is defined to be the minimum of the multiplicities of its components. We denote
the multiplicity of a function f at a point p by vp(f).

Definition 2.2 (D’Angelo). Let M ⊂ Cn be a smooth real hypersurface, and let p ∈ M .
Let r be a defining function for M in some neighbourhood of the point p. We say that p is
a point of finite type (also known as finite 1-type) if there is a constant C > 0 such that

v0(r ◦ φ)

v0(φ)
≤ C,
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whenever φ : D→ Cn is a non-constant analytic disk such that φ(0) = p.

It is simple to prove that the above definition is independent of the choice of the defining
function r. Whenever we say below that a bounded domain is of finite type, we shall mean
that each boundary point is of finite type in the sense of the above definition.

We now define a function τ . This function was introduced by Bedford and Bell [BB82],
and has been used in many results to examine the branching behaviour of proper holomor-
phic mappings. It is used multiple times in our proof of Theorem 1.1

Definition 2.3. Let D ⊂ Cn be a smoothly bounded pseudoconvex domain and r a smooth
defining function for D. Define

Λr := det

[
0 rzi
rzj rzizj

]n
i,j=1

,

the determinant of the Levi-form of r (for a justification of this terminology, see [DK99,
Section 2]). For p ∈ ∂D, we define τ(p) to be the smallest non-negative integer m such that
there is a tangential differential operator T of order m on ∂D such that TΛr(p) 6= 0.

Remark 2.4. As any other defining function r′ can be written as h · r, where h is a positive
smooth function defined on some neighbourhood U of the boundary point p, we see that
the number τ(p) is independent of the choice of r. Note that by the pseudoconvexity of D,
Λr(p) ≥ 0 ∀p ∈ ∂D, and Λr(p) = 0 if and only if p is a point of weak pseudoconvexity.

Observe that τ is an upper semi-continuous function on ∂D.

Suppose f : D1 → D2 is a proper holomorphic mapping between bounded pseudoconvex
domains with C∞-smooth boundaries that extends smoothly to a ∂D1-open neighbourhood
of a point p ∈ ∂D1. Let ρ be a defining function for D2 such that ρ ◦ f is a local defining
function for ∂D1 near p (see [Bed84, Remark 2]). It follows that

Λρ◦f (z) = |JacC(f)(z)|2Λρ(f(z)),

for z ∈ ∂D1 and close to p, from which the next result is straightforward to prove.

Let us establish the following notation that we shall use in the remainder of this paper.
Given any open set D ⊂ Cn and a holomorphic map f : D → Cn, Vf will be defined as:

Vf := {z ∈ D : JacC(f)(z) = 0}.

Result 2.5 (Bell [Bel84]). Given a proper holomorphic mapping g : D1 → D2 between
bounded pseudoconvex domains in Cn, n > 1, with smooth boundaries, if g extends smoothly
to ∂D1 in a neighbourhood of p ∈ ∂D1, then τ(p) ≥ τ(g(p)), and when τ(p) 6= ∞, the
following are equivalent :

(i) τ(p) = τ(g(p));
(ii) g extends to a local diffeomorphism at p;

(iii) p 6∈ V g.

The next two results give an idea why the τ function is relevant to our main theorem.

Let D ⊂ Cn be a smoothly bounded pseudoconvex domain of finite type and let p ∈ ∂D.
It can be argued that τ(p) is finite. As the D’Angelo 1-type of p is finite, if we pick a
non-zero vector V ∈ Tp(∂D) ∩ iTp(∂D), then by definition there exists a k ∈ Z+ such that
the homogeneous polynomial of degree k in the Taylor expansion of ζ 7→ r(p+ ζV ) around
0 ∈ C is not identically zero (r here is a defining function of D). However, as this k depends
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on the choice of V ∈ Tp(∂D) ∩ iTp(∂D), it becomes quite technical to produce a single
finite-order tangential differential operator T at p such that TΛr(p) 6= 0. We could not find
an elementary proof of Result 2.6 (see below) in the literature, although it has been made
use of a number of times; see, for instance, [Pan91]. A recent work of Nicoara [Nic12, Main
Theorem 1.1] provides an effective upper bound for τ in terms of the D’Angelo 1-type. For
our purposes, the following consequence of Nicoara’s result suffices:

Result 2.6. Let D ⊂ Cn be a smoothly bounded pseudoconvex domain that is of finite type
in the sense of D’Angelo. Then there is an m ∈ Z+ such that τ(p) ≤ m ∀p ∈ ∂D.

The next result is by Coupet, Pan and Sukhov [CPS01]. Since the statement of the
result below is slightly different from that of [CPS01, Lemma 1], and its proof is sufficiently
important for our purposes, we provide a proof of it. Here, and elsewhere in this paper, F ν

will denote the ν-th iterate of F .

Lemma 2.7 (a paraphrasing of Lemma 1 of [CPS01]). Let Ω ⊂ Cn, n > 1, be a bounded
pseudoconvex domain with C∞-smooth boundary that is also of finite type. Let F : Ω → Ω
be a proper holomorphic mapping (which extends smoothly to ∂Ω by [Cat87] together with
[BC82] or [DF82]). Assume that VF 6= ∅ and let L1 be any irreducible component of VF .
Inductively select any irreducible component of F−1(Lν), ν = 1, 2, 3, . . . , and denote it by
Lν+1. Then:

a) Lν is an irreducible component of VF ν .
b) Li 6= Lj if i 6= j.

Proof. It is elementary to see that VF ν+1 ⊃ F−1(VF ν ). From this (a) is immediate. Note that
the restriction of F to each Lν+1 is proper, and consequently F (Lν+1) = Lν . We now show
that the stated procedure for constructing {Lν}, irrespective of the choices made, ensures
that Lν+1 6= Lj ∀j ≤ ν, ν = 1, 2, 3, . . .. Suppose not, and let m be the smallest positive
integer such that Lm = Lm+p for some positive integer p. If m > 1, then F (Lm) = F (Lm+p),
and so Lm−1 = Lm+p−1, contradicting the definition of m. So, m = 1 and L1 = L1+p. Since

F p(L1+p) = L1, we have F p(L1) = L1. As L1 ⊂ VF p , for any q ∈ L1 ∩ ∂Ω, we see, by
Result 2.5, that

0 ≤ · · · τ(F kp(q)) < τ(F (k−1)p(q)) < · · · < τ(q). (1)

This, in view of Result 2.6, contradicts the finite-type hypothesis on ∂Ω. �

The extendability of F as stated in the previous lemma — and, indeed, a stronger conclu-
sion — is guaranteed when Ω is as in Theorem 1.1. We shall need this stronger conclusion,
presented in the next lemma, in our proof. This lemma is an easy consequence of [Bel82,
Theorem 2]; see [BJ14, Lemma 4.2] for a proof.

Lemma 2.8. Let f : D1 → D2 be a proper holomorphic map between bounded balanced
domains. Assume that the intersection of every complex line passing through 0 with ∂D1 is
a circle. Then f extends holomorphically to a neighbourhood of D1.

3. Dynamics of holomorphic mappings

In this section we summarize some material from the theory of (iterative) dynamics of
holomorphic self-maps of a taut manifold. Given complex manifolds X and Y , Hol(X,Y )
will denote the space of holomorphic mappings from X to Y , where the topology on
Hol(X,Y ) is the compact-open topology. We are interested in the set Γ(f) which is defined
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to be the set of all limit points of the iterates of a holomorphic mapping f ∈ Hol(X,X),
where X is a taut complex manifold. Of course, Γ(f) might be empty. The following result
describes the possible behaviours of the iterates.

Result 3.1 ([Aba89], Chapter 2.1). Let X be a taut manifold, and f ∈ Hol(X,X). Then
either the sequence {fk} of iterates of f is compactly divergent, or there exists a complex
submanifold M of X and a holomorphic retraction ρ : X →M (i.e., ρ2 = ρ) such that every
limit point h ∈ Hol(X,X) of {fk} is of the form h = γ ◦ ρ, where γ is an automorphism of
M . Moreover,

(1) even ρ is a limit point of the sequence {fk},
(2) f |M is an automorphism of M .

Definition 3.2. With the notation as in Result 3.1, we say that f is non-recurrent if the
sequence {fk} of iterates of f is compactly divergent. Otherwise, we say that f is recurrent,
and we call the map ρ the limit retraction, and the manifold M the limit manifold.

The behaviour of the iterates of a holomorphic self-map of a taut manifold X depends on
whether f has a fixed point or not. The following theorem gives a quantitative description of
the behaviour of the complex derivative f ′ at a fixed point of f ; see [Aba89, Theorem 2.1.21]
for a proof.

Result 3.3. Let X be a taut complex manifold, and let f ∈ Hol(X,X) have some fixed
point z0 ∈ X. Then

(1) the spectrum of f ′(z0) is contained in D;
(2) Tz0X admits a f ′(z0)-invariant splitting Tz0X = LN ⊕ LU such that the spectrum

of f ′(z0)|LN is contained in D, the spectrum of f ′(z0)|LU is contained in ∂D and
f ′(z0)|LU is diagonalizable;

(3) LU is the complex tangent space at z0 of the limit manifold of f .

The space LU is called the unitary space of f at z0.

The next result gives quite precise information about the set Γ(f); see [Aba89, Corol-
lary 2.4.4] for a proof.

Result 3.4. Let X be a taut manifold, and let f ∈ Hol(X,X) be recurrent with limit
retraction ρ : X → M . Then Γ(f)|M is isomorphic to a compact abelian subgroup of
Aut(M); in particular, it is the closed subgroup generated by f |M ∈ Aut(M).

We point out that Result 3.1 guarantees that f |M is an automorphism of M .

To conclude this section, we reiterate that one of the main results of [Ops06] plays a
central role in the final step in our proof of Theorem 1.1. This is Result 1.2 above. All the
terms occurring in that result have now been defined in this section.

4. Some essential propositions

We begin with some material on complex geodesics. In what follows, given a domain
D ⊂ Cn, we will denote the Kobayashi pseudo-distance by KD, and the infinitesimal
Kobayashi metric by κD. We will denote the Poincaré metric and distance on D by ω
and pD, respectively.

The notion of complex geodesics was introduced by Vesentini ([Ves81]) and is a useful
tool in the study of holomorphic mappings.
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Definition 4.1. Let D ⊂ Cn be a domain, and let φ : D→ D be a holomorphic map.

(i) Let a, b ∈ D. The map φ is said to be a KD-geodesic for (a, b) if there exist points
x, y ∈ D such that φ(x) = a, φ(y) = b, and pD(x, y) = KD(a, b).

(ii) Let a ∈ D and V ∈ Cn \ {0}. The map φ is said to be a κD-geodesic for (a, V ) if
there exists a number α ∈ C and a point x ∈ D such that φ(x) = a, V = αφ′(x), and
κD(a;V ) = ω(x;α).

We need one more notion before we can state an important uniqueness result for certain
geodesics.

Definition 4.2. Let D ⊂ Cn be a bounded domain. We say that a point a ∈ ∂D is
holomorphically extreme if there is no non-constant holomorphic mapping φ : D→ D such
that φ(0) = a.

Example 4.3. Every boundary point of a smoothly bounded pseudoconvex domain of finite
type is holomorphically extreme. This follows easily from the fact that any such point admits
a continuous plurisubharmonic barrier. The existence of a continuous plurisubharmonic
barrier follows from [Sib87] together with [Cat84]. Thus every boundary point of Ω in
Theorem 1.1 is holomorphically extreme.

The following uniqueness result for KD-geodesics illustrates the importance of the above
definition; see [JP93, Proposition 8.3.5] for a proof.

Result 4.4. Let D ⊂ Cn be a bounded balanced pseudoconvex domain, and let a ∈ D, a 6=
0, be such that a/MD(a) ∈ ∂D is holomorphically extreme, where MD is the Minkowski
functional of D. Then the mapping

φa : D 3 λ 7→ λa/MD(a)

is the unique (modulo Aut(D)) KD-geodesic (κD-geodesic) for (0, a) (resp., (0, a/MD(a))).

We now prove a proposition that is a simple consequence of the above uniqueness result.
This proposition has already been obtained by Vesentini in the more general context of
reflexive Banach spaces. We use his techniques to give a simple proof in our special case.

Proposition 4.5. Let D ⊂ Cn be a bounded, balanced pseudoconvex domain, all of whose
boundary points are holomorphically extreme. Let ρ : D → D be a holomorphic retraction
such that ρ(0) = 0. Then M := ρ(D) = D ∩ V , where

V := {v ∈ Cn : ρ′(0)v = v}.
Proof. If ρ ≡ 0, then there is nothing to prove. So assume that ρ is non-constant. From
Result 3.1, it follows that M is a connected complex submanifold of D whose complex
tangent space at 0 is V . Let v ∈ V ∩ D, v 6= 0. From Result 4.4 and our assumption on
∂D, it follows that the mapping

φ : D 3 λ 7−→ λv/MD(v) ∈ D
is the unique (modulo Aut(D)) κD-geodesic for (0, v/MD(v)). Note that

κD(ρ ◦ φ(0); (ρ ◦ φ)′(0)) = κD(0; v/MD(v)) = κD(φ(0); v/MD(v)),

whence ρ ◦ φ is also a κD-geodesic for (0, v/MD(v)). By uniqueness, it follows that ρ ◦ φ =
φ ◦ψ, where ψ ∈ Aut(D). Substituting ψ−1(MD(v)) (∈ D) into this equation, we see that v
lies in the image of ρ. Hence V ∩D ⊂M . Now, V and M have the same dimension. Since
M is connected, it follows from the principle of analytic continuation that M = D ∩V . �
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5. Proofs of Proposition 1.5 and Theorem 1.1

If we assume that the map F : Ω → Ω, as stated in Theorem 1.1 is branched, then our
assumptions on the geometry of Ω stated in the first sentence of Theorem 1.1 give us a
structural result for the branch locus VF of F . We begin with the proof of this result —
i.e., Proposition 1.5. We mention here that some of the arguments used in the proof were
inspired by the arguments used in [CP07].

A comment about notation: in what follows, dimH(S) will denote the Hausdorff dimen-
sion of the set S ⊂ Cn.

The proof of Proposition 1.5. Let X1, . . . , Xm be the distinct irreducible components of the
variety VF . By Lemma 2.8, F extends holomorphically to a neighbourhood N of Ω. For

the moment, let F̃ denote this extension.

Lemma 5.1. Let X be an arbitrary irreducible component of the variety VF (viewed as a
subvariety of Ω). Let E := X \ X. There exists a non-empty open (relative to E) subset
ωX ⊂ E such that, for each p ∈ ωX , there exists a connected neighbourhood Np 3 p satisfying

dimH(E ∩Np) ≥ 2n− 3.

Proof. Let F̃ be as introduced just prior to the lemma. Note that X lies in an irreducible

component X̃ of V
F̃

. Let S denote the subvariety of singular points of X̃. Applying the
maximum modulus principle on the irreducible variety X to the functions

∂JacC(F )

∂zj

∣∣∣∣
X

, j = 1, 2, . . . , n

(which vanish simultaneously in X precisely on S ∩ X), we see that E ∩ S  E. Let

ωX := E \ S. Since non-singularity is an open condition on X̃, ωX is open relative to E.

Pick a point p ∈ ωX . By definition, ∃rp > 0 such that B(p, rp) ∩ S = ∅ and X̃ ∩B(p, rp) is
a complex submanifold of B(p, rp).

Claim: For each r ∈ (0, rp), (X̃ \ Ω) ∩B(p, r) 6= ∅.
Assume this is false. Then, ∃r ∈ (0, rp) such that X̃ ∩B(p, r) ⊂ Ω. This implies that there

exists a non-constant holomorphic map ψ : D→ Cn such that ψ(D) ⊂ X̃ ∩B(p, r) ∩ Ω and
ψ(D)∩ ∂Ω 6= ∅. But this is impossible as every point of ∂Ω is holomorphically extreme (see
Example 4.3). Hence the claim.

Now, let r∗p ∈ (0, rp) be so so small that B(p, r∗p) \ ∂Ω has exactly two connected compo-
nents (possible as ∂Ω is an imbedded smooth submanifold),

B(p, r∗p) \ ∂Ω = C+ t C−.

By our above claim, C± ∩ X̃ 6= ∅. Thus ∂Ω ∩ X̃ ∩ B(p, r∗p) disconnects the manifold

X̃ ∩B(p, r∗p).

In what follows, dimI will denote the inductive dimension. The precise definition is rather
involved and we refer the reader to [HW41, Chapters II and III]. The fact that we need is

Corollary 1 to [HW41, Theorem IV.4]: since ∂Ω ∩ X̃ ∩B(p, r∗p) disconnects X̃ ∩B(p, r∗p)

dimI(∂Ω ∩ X̃ ∩B(p, r∗p)) ≥ dimR(X̃ ∩B(p, r∗p))− 1 = 2n− 3. (2)
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It is well-known that the Hausdorff dimension dominates the inductive dimension; see for
instance [HW41, Chapter VII, §4]. By (2), therefore, writing Np := B(p, r∗p),

dimH(Np ∩ E) ≥ 2n− 3.

Since the above is true for any p ∈ ωX , we are done. �

Since the extension F̃ of F is uniquely determined by the latter, for the remainder of the

proof we shall not use different symbols for F : Ω→ Ω and F̃ .

Let E be as in Lemma 5.1. Let us fix a point z0 ∈ E for the moment. From Result 2.5, all
the points of E are necessarily weakly pseudoconvex. Note that τ(eiθz0) = τ(z0). From the
fact that τ is upper semi-continuous, it follows that the set {w ∈ ∂Ω : τ(w) < τ(F (z0)) + 1}
is open in ∂Ω, and consequently so is its inverse image under F , {z ∈ ∂Ω : τ(F (z)) <
τ(F (z0)) + 1}. The latter set obviously contains z0. This implies that for θ close to 0, we
must have τ(F (eiθz0)) ≤ τ(F (z0)) < τ(z0) = τ(eiθz0) which, by Result 2.5, implies that for
θ close to 0, we have eiθz0 ∈ VF . Restricting JacC(F ) to the set D · z0, and observing that
the boundary-values of this restriction vanish on an arc of ∂D, we see that JacC(F ) must
vanish on the set D · z0. As z0 ∈ E was arbitrary, we get that for each z ∈ E, D · z ⊂ Xi,
for some i. Let us define

Ei := {w ∈ E : D · w ⊂ Xi}, i = 1, . . . ,m.

Since, by Lemma 5.1, E is of Hausdorff dimension at least 2n−3, there is an i0, 1 ≤ i0 ≤ m,
such that dimH(Ei0) ≥ 2n− 3. Let us call this set E′. Then:⋃

z∈E′
D · z ⊂ Xi0 .

As X and Xi0 are irreducible varieties the intersection of whose closures is of Hausdorff
dimension at least 2n − 3, it must be that X = Xi0 . This follows from the stratification
of X ∩Xi0 [Chi89, Chapter 1, § 5.5], the properties of the Hausdorff measure and [Chi89,
Corollary 1 of Chapter 1, § 5.3].

We have proved that ⋃
z∈E′

D · z ⊂ X. (3)

Now fix λ ∈ D, and consider the holomorphic function hλ(z) := JacC(F )(λz) defined on X.
From what we have shown, (3) in particular, hλ vanishes on a subset of Hausdorff dimension
at least 2n − 3 of the irreducible variety X. Hence hλ must vanish identically on X, and
this is true for each λ ∈ D. Thus, we have shown that, given z ∈ X, (D · z) ∩ Ω ⊂ VF .
Since VF comprises finitely many irreducible components, by a similar argument as in the
previous paragraph (with the role of E now taken by X), we actually have (D · z)∩Ω ⊂ X.
By analytic continuation, it follows that if z ∈ X, then (C · z) ∩ Ω ⊂ X. �

We now have all the tools needed to prove our main theorem. Owing to the fact that the
domain Ω admits a smooth defining function that is plurisubharmonic in Ω, it is a fortiori
pseudoconvex. We shall use this fact without explicit mention in our proof.

The proof of Theorem 1.1. Observe that Ω is contractible. Thus, to prove that F is an
automorphism it suffices, in view of the monodromy theorem, to establish that F is un-
branched. So we will assume that F is branched and reach a contradiction. We will not,
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hereafter, remark upon the well-definedness of quantities such as JacC(F )(p) for p ∈ ∂Ω. In
view of Lemma 2.8, these are indeed well-defined.

Step 1. Proving that F−1{0} = {0}. If not, there is point 0 6= z0 ∈ Ω such that F (z0) = 0.
From Lemma 2.7, we have distinct irreducible subvarieties Li ⊂ VF i such that F |Li+1 :
Li+1 → Li is a proper holomorphic mapping. By Proposition 1.5, each Li contains 0,
whence we can select each Li as described in Lemma 2.7 and ensure that z0 ∈ Li ∀i ≥ 2.
Again from Proposition 1.5, it follows that Λ := (C · z0) ∩ Ω ⊂ Li ∀i ≥ 2. This means that
the sets F k(Λ) ⊂ L2,∀k ∈ Z+. Let q ∈ (C · z0) ∩ ∂Ω = Λ \ Λ. It is elementary that

VFn =
n−1⋃
k=0

(F k)−1(VF ), n ∈ Z+,

with the understanding that F 0 = idΩ. Thus — we refer to the recipe for the Li’s in Lemma
2.7 — L2 ⊂ VF 2k∀k ∈ Z+. Note that q ∈ L2 \ L2. At this stage, we are precisely in the
situation prior to (1) in the proof of Lemma 2.7, except that q belongs to the (prolongation
of) the branch locus of F 2. Therefore, it follows as in the proof of Lemma 2.7 (taking p = 2
in the relevant argument), that

0 ≤ · · · < τ(F 2k(q)) < · · · < τ(F 4(q)) < τ(F 2(q)) < τ(q),

which contradicts the conclusion of Result 2.6. Our claim follows.

We should point out (although we shall not make use of it below) that from a theorem
of Bell [Bel82, Theorem 1], it follows that F is a polynomial mapping.

Step 2. Analyzing the limit manifold of F . As 0 is a fixed point of F , it follows that F
is recurrent. Let ρ : Ω → M be the limit retraction. As Ω is pseudoconvex and of finite
type, by Example 4.3 every point in ∂Ω is holomorphically extreme. Consequently, from
Proposition 4.5 and Result 3.3 it follows that M = LU ∩Ω, where LU is the unitary space of
F at 0. Recall that F ′(0)|LU is diagonalizable; see Result 3.3. So without loss of generality,
(replacing Ω by a suitable linear image and conjugating F by a suitable linear operator, if
needed) we may assume that LU = Cm × {0Cn−m}, and that F ′(0)|LU is given by

(z1, z2, . . . , zm, 0, . . . , 0) 7→ (eiθ1z1, e
iθ2z2, . . . , e

iθmzm, 0, . . . , 0). (4)

By Cartan’s uniqueness theorem, it also follows that F |M ≡ F ′(0)|M .

Step 3. Proving that dimM ≤ 1. Suppose dimM > 1. From the previous steps, we have
that 0 ∈ VF ∩M . Therefore the set {z ∈ M : JacC(F )(z) = 0} is a non-empty analytic
subvariety of M . As dimM > 1, it follows that there exists a point p ∈M ∩ ∂Ω such that
JacC(F )(p) = 0.

From Result 3.4, and the fact that the maps F k|M , k ∈ Z, are all of the special form (4),
it follows that there is a strictly increasing sequence {nk} ∈ N such that Fnk |M → (F |M )−1

uniformly on M . Let pk := (F |M )−nk(p). By Result 2.5, it follows that τ(pk+1) ≥ τ(pk) ≥
τ(p). But, pk → F (p), and as p ∈ V F , τ(F (p)) < τ(p), which means that

lim sup
k→∞

τ(pk) ≥ τ(p) > τ(F (p)),

which contradicts the fact that τ is upper semi-continuous. This proves that dim(M) ≤ 1.
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The conclusion of Step 3 is in conflict with the conclusion of Opshtein’s theorem, i.e.,
Result 1.2. Therefore, F is unbranched. As Ω is simply connected, it follows from the
monodromy theorem (just continue the germ of a local inverse of F at 0 along paths in
Ω from 0 to z ∈ Ω: the germ obtained at z will be a local inverse by the permanence of
relations) that F is an automorphism. �
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