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Quantum discord is a more general measure of quantum correlations than entangle-
ment and has been proposed as a resource in certain quantum information processing
tasks. The computation of discord is mostly confined to two-qubit systems for which an
analytical calculational scheme is available. The utilization of quantum correlations in
quantum information-based applications is limited by the problem of decoherence, i.e.,
the loss of coherence due to the inevitable interaction of a quantum system with its
environment. The dynamics of quantum correlations due to decoherence may be studied
in the Kraus operator formalism for different types of quantum channels representing
system-environment interactions. In this review, we describe the salient features of the

dynamics of classical and quantum correlations in a two-qubit system under Markovian
(memoryless) time evolution. The two-qubit state considered is described by the reduced
density matrix obtained from the ground state of a spin model. The models considered
include the transverse-field XY model in one dimension, a special case of which is the
transverse-field Ising model, and the XXZ spin chain. The quantum channels studied in-
clude the amplitude damping, bit-flip, bit-phase-flip and phase-flip channels. The Kraus
operator formalism is briefly introduced and the origins of different types of dynam-
ics discussed. One can identify appropriate quantities associated with the dynamics of
quantum correlations which provide signatures of quantum phase transitions in the spin
models. Experimental observations of the different types of dynamics are also mentioned.
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1. Introduction

Interacting quantum systems are characterized by the presence of correlations be-

tween the different parts. The correlations are of two types: classical and quantum.

Since the early days of quantum mechanics, the idea of entanglement has been in-

voked to probe the origins of quantum correlations 1. In later years, various quanti-

tative measures of entanglement have been proposed and the role of entanglement

in a number of quantum information-based protocols highlighted 2,3,4. A quantum

state, pure or mixed, is either entangled or separable, the latter condition implying

1
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the absence of quantum correlations as measured by entanglement in the state under

consideration. In recent years, a new measure of quantum correlations, the quan-

tum discord (QD), has been proposed based on the information theoretic concept

of mutual information 5,6,7. The QD is quantified by the difference between two

quantum extensions of the classical mutual information. The two representations

are identical in the classical domain.

In classical information theory, the total correlation between two random vari-

ables A and B is measured by their mutual information 8

I(A,B) = H(A) +H(B)−H(A,B) (1)

The random variablesA and B take on the values ‘a’ and ‘b’ respectively with prob-

abilities given by the sets {pa} and {pb}. The probability distribution {pab} defines

the outcome when joint measurements are carried out. The variables A and B are

correlated when {pab} does not have a product form {pa × pb}. In Eq. (1), H(A) =

−∑

a pa log2 pa, H(B) = −∑

b pb log2 pb and H(A,B) = −∑

a,b pab log2 pab are the

Shannon entropies for the variables A, B and the joint system AB respectively. The

probabilities pa, pb and pab satisfy the relations pa =
∑

b pab and pb =
∑

a pab. The

Shannon entropy of a random variable A quantifies our ignorance about A before

we measure its value or equivalently it provides a measure of how much informa-

tion is gained on an average after a measurement is carried out 8. An alternative

representation of the classical mutual information is given by 9,10

J(A,B) = H(A)−H(A|B) (2)

where H(A|B) is the conditional entropy and quantifies our lack of knowledge of

the value of A when that of B is known. The exact equivalence of the expressions

in Eqs. (1) and (2) can be demonstrated using the Bayes rule pab = pa|b pb and the

definition H(A|B) = −∑

a,b pab log2 pa|b of the conditional entropy.

The generalization of the classical mutual information to the quantum case is

achieved by replacing the classical probability distribution and the Shannon en-

tropy by the density matrix ρ and the von Neumann entropy S(ρ) = −tr (ρ log2 ρ),

respectively. The quantum generalizations of Eqs. (1) and (2) are given by

I (ρAB) = S (ρA) + S (ρB)− S (ρAB) (3)

J (ρAB) = S (ρA)− S (ρA|ρB) (4)

where S (ρAB) is the quantum joint entropy and S (ρA|ρB) the quantum conditional

entropy. The latter quantity is, however, ambiguously defined as the magnitude of

the quantum conditional entropy (ignorance of A once B is known) depends ex-

plicitly on the type of measurement carried out on B. Since different measurement

choices yield different results, Eqs. (3) and (4) are no longer identical. We consider

von Neumann-type measurements on B defined in terms of a complete set of orthog-

onal projectors
{

ΠB
i

}

corresponding to the set of possible outcomes i. The state of

the system after the measurement is given by

ρi =
(

I ⊗ΠB
i

)

ρAB

(

I ⊗ΠB
i

)

/pi (5)
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with

pi = tr
((

I ⊗ΠB
i

)

ρAB

(

I ⊗ΠB
i

))

(6)

I denotes the identity operator for the subsystem A and pi is the probability of

obtaining the outcome i. From Eq. (4), an alternative expression of quantum mutual

information is given by 9,10

J
(

ρAB,
{

ΠB
i

})

= S (ρA)− S
(

ρAB

∣

∣

{

ΠB
i

})

(7)

The quantum analogue of the conditional entropy is

S
(

ρAB

∣

∣

{

ΠB
i

})

=
∑

i

piS (ρi) (8)

Henderson and Vedral 7 have shown that the maximum of J
(

ρAB,
{

ΠB
i

})

w.r.t.
{

ΠB
i

}

provides a measure of the classical correlations (CC), C (ρAB), i.e.,

C (ρAB) = max
{ΠB

i }
(

J
(

ρAB,
{

ΠB
i

}))

(9)

The difference between the total correlations I (ρAB) (Eq. (3)) and the CC, C (ρAB),

defines the QD, Q (ρAB).

Q (ρAB) = I (ρAB)− C (ρAB) (10)

The QD is defined for bipartite systems only and due to the computational difficulty

of carrying out the extremization process in Eq. (9), the calculation of the QD is

mostly confined to two-qubit systems. For any pure state, the QD reduces to the

entropy of entanglement 10 and the total correlations, measured by the mutual

information, are equally divided between the classical and quantum correlations,

i.e., C (ρAB) = Q (ρAB) =
1
2I (ρAB).

In the case of mixed states, however, the QD and the entanglement provide dif-

ferent measures of quantum correlations. In fact, there are mixed states which are

separable, i.e., unentangled but for which QD is non-zero. There is thus a shift in

focus in the case of the QD from the separability versus entanglement criteria to

the issue of classical versus quantum correlations. The relationship between the QD,

entanglement and classical correlations is not as yet clearly understood even for the

simple two-qubit system. The QD is not always larger than entanglement and is

not always less than classical correlations 12. The QD defined by Eqs. (3), (9) and

(10) does not provide a measure of quantum correlations in multipartite systems.

Recently, the concept of relative entropy has been utilized to obtain measures of

classical and non-classical correlations in a given quantum state 13,14. The relative

entropy between two quantum states x and y is given by S(x||y) = tr
(

x log2
x
y

)

. It

is a non-negative quantity and hence serves as a “distance” measure of the state x

from the state y. The relative entropy of entanglement is the distance of the entan-

gled state ρ to the closest separable state σ. Similarly, the discord is measured by the

distance between the quantum state and its closest classical state. Analogous defini-

tions exist for quantum dissonance (non-classical correlations for separable states),
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total mutual information and classical correlations. The measures are valid in the

multipartite case and for arbitrary dimensions of the system. Since the different

types of correlations have a common measure, additivity relations connecting the

correlations can be derived. Other alternative measures of non-classical correlations

include the geometric QD 15 and the Gaussian QD 16. In this review, we confine

ourselves to the original definition of the QD as embodied in Eqs. (3), (9) and (10).

Condensed matter systems like molecular magnets (represented by spin clusters)

and spin chains have been extensively studied to characterize as well as quantify the

quantum correlations present in the ground and thermal states of the spin systems
2,3,17,18. While the bulk of the studies are devoted to entanglement in its various

forms, there are now several studies on the QD properties of well-known spin mod-

els 7,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32. Many of these studies focus on

how the QD and associated quantities provide signatures of quantum phase tran-

sitions in specific spin systems. Quantum phase transitions (QPTs) in interacting

systems occur at T = 0 and are brought about by tuning a non-thermal parame-

ter g, e.g., pressure, chemical composition or external magnetic field, to a special

value gc
33,34. The transition is driven by quantum fluctuations and brings about

qualitative changes in the ground state wave function at the transition point. It

is then reasonable to expect that the quantum correlations present in the ground

state would provide signatures of the occurrence of a QPT. Apart from the effect of

changing parameters on the quantum correlations of a system, the inevitable inter-

action of the system with its environment results in decoherence, i.e., a destruction

of quantum properties including correlations 8. The dynamics of entanglement and

QD under system-environment interactions have been investigated in a number of

recent studies 20,29,35,36,37,38,39,40,41. One feature which emerges out of such

studies is that the QD is more robust than entanglement in the case of Markovian

(memoryless) time evolution. The dynamics may bring about the sudden disap-

pearance of entanglement at a finite time termed the ‘entanglement sudden death’
35,36. The QD, on the other hand, decays in time but vanishes only asymptot-

ically 20,29,37,39,40,41. Also, under Markovian time evolution and for a class of

initial states, the decay rates of the classical and quantum correlations exhibit sud-

den changes 38,39. In two recent studies, the dynamics of the mutual information

I (ρAB), the classical correlations C (ρAB) and the quantum correlations Q (ρAB),

as measured by the QD, have been studied in two-qubit states the density matri-

ces of which are the reduced density matrices obtained from the ground states of

the transverse-field Ising model (TIM) and the transverse-field XY model in one

dimension (1d) 29,40. The time evolution brought about by system-environment

interactions is assumed to be Markovian in nature and the quantum channels, rep-

resenting qubit-environment interactions, include amplitude damping (AD), bit-flip

(BF), phase-flip (PF) and bit-phase-flip (BPF). A significant outcome of the studies

is the identification of appropriate quantities associated with the dynamics of the

correlations which signal the occurrence of a QPT. The TIM in 1d is a special case

of the transverse-field XY model in 1d. The latter model has a rich phase diagram
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exhibiting QPTs 42,43,44,45,46,47. In fact, both the spin models are well-known

statistical mechanical models which illustrate QPTs. In this review, we combine the

themes of quantum correlations, decoherence and QPTs in the study of spin models

like the TIM in 1d, the transverse-field XY chain and the XXZ spin chain. In Sec-

tion 2, we describe the spin models and the QPTs associated with them. In Section

3, we introduce the Kraus operator formalism for describing the time evolution of

open quantum systems, i.e., systems interacting with specific environments. Some

representative quantum channels are described as also the dynamics of mutual in-

formation, classical and quantum correlations. Section 4 describes the main results

obtained so far 29,40 as well as some new results. The methodology reported in the

review is general in nature and applicable to other condensed matter models ex-

hibiting QPTs. In Section 5, some concluding remarks are made and future research

directions pointed out.

2. Quantum Phase Transitions in Spin Models

Fig. 1. Criticality of the transverse-field XY model in the (γ, λ) parameter space. The transverse-
field Ising model (γ = ±1) has a QCP at λc = 1. The line λ = 1 represents criticality of the XY

model with universality class the same as that of the transverse-field Ising model. The γ = 0 line
(XX model) represents the anisotropy transition line for λ ∈ [0, 1] with the transition belonging
to a new universality class.

The fully anisotropic Heisenberg spin chain in a magnetic field is described by
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the Hamiltonian

HXY Z = −
L
∑

i=1

[

Jxσ
x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

]

− h

L
∑

i=1

σz
i (11)

where σα
i (α = x, y, z) is the Pauli spin operator at the ith site, Jx, Jy and Jz

are the strengths of the nearest-neighbour (n.n.) exchange interactions and h the

external magnetic field. L denotes the total number of spins in the chain. A num-

ber of spin models are special cases of the fully anisotropic model: (i) XXZ spin

model in a magnetic field (Jx = Jy 6= Jz, h 6= 0), (ii) transverse-field XY model

(Jx 6= Jy, Jz = 0, h 6= 0), (iii) transverse-fieldXX model (Jx = Jy, Jz = 0, h 6= 0)

and (iv) the TIM (Jy = Jz = 0, h 6= 0). One can also consider cases for which h = 0.

The TIM in this case reduces to the Ising model which has no quantum character.

The transverse-field XY model in 1d describes an interacting spin system for

which many exact results on the ground and excited state properties including spin

correlations are known 42,43,44. The corresponding Hamiltonian is written as

HXY = −λ

2

L
∑

i=1

{

(1 + γ)σx
i σ

x
i+1 + (1 − γ)σy

i σ
y
i+1

}

−
L
∑

i=1

σz
i (12)

where γ is the degree of anisotropy (−1 ≤ γ ≤ 1) and λ is inversely proportional

to the strength of the transverse magnetic field in the z direction (λ > 0). The

Hamiltonian satisfies periodic boundary condition, i.e., L + 1 ≡ 1 and is transla-

tionally invariant. Two special cases of the XY model are the TIM with γ = ±1

and the isotropic XX model (γ = 0) in a transverse magnetic field. For the full

range of values of the anisotropic parameter, HXY can be diagonalized exactly in

the thermodynamic limit L → ∞ 42,43,44. This is achieved via the successive appli-

cations of the Jordan-Wigner and Bogoliubov transformations. Figure 1 describes

the critical transitions associated with the transverse-field XY model in the (γ, λ)

parameter space. For non-zero values of γ, a second-order QPT occurs at the critical

point λc = 1 separating a ferromagnetic ordered phase (λ > 1) from a quantum

paramagnetic phase (λ < 1). The transition is characterized by the order param-

eter 〈σx〉, the magnetization in the x direction, which has a non-zero expectation

value only in the ordered ferromagnetic phase (λ > 1). The magnetization in the z

direction, 〈σz〉, is non-zero for all values of λ with its first derivative exhibiting a

singularity at the critical point λc = 1. When 0 < |γ| ≤ 1, the critical point transi-

tion occurring at λc = 1 belongs to the Ising universality class. For λ ∈ [0, 1], there

is another QPT, termed the anisotropy transition, at the critical point γ = 0. The

transition belongs to a different universality class and separates two ferromagnetic

phases with orderings in the x and y directions respectively 42,43,44,45,46. The TIM

Hamiltonian in 1d is obtained from Eq. (12) by putting γ = 1 and is given by

HTIM = −λ

L
∑

i=1

σx
i σ

x
i+1 −

L
∑

i=1

σz
i (13)
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When the parameter λ = 0, all the spins are oriented in the positive z direction in

the ground state whereas in the extreme limit λ = ∞ the ground state is doubly

degenerate with all the spins pointing in either the positive or the negative x direc-

tion. As mentioned before, a QPT occurs at the critical point λc = 1 with 〈σx〉 6= 0

in the ordered ferromagnetic phase (λ > 1). The XXZ spin chain in a zero magnetic

field has the Hamiltonian

HXXZ = −J

2

L
∑

i=1

[

σx
i σ

x
i+1 + σy

i σ
y
i+1 +∆σz

i σ
z
i+1

]

(14)

Two QPTs, one first-order and the other infinite-order, occur at the respective

points ∆ = 1 (ferromagnetic point) and ∆ = −1 (antiferromagnetic point). At

the latter point, the XXZ spin chain undergoes a QPT from an antiferromagnetic

phase (∆ < −1) to an XY phase for −1 < ∆ < 1.

In recent years, quantum information-related measures like entanglement, dis-

cord and fidelity 2,3,9,19,48,49,50,51,52 have been shown to provide signatures of

QPTs. An nth order QPT is characterized by a discontinuity/divergence in the

nth derivative of the ground state energy with respect to the tuning parameter g

as g → gc, defining the transition point. At a first-order QPT point, appropriate

entanglement measures and the QD are known to become discontinuous 9,19,46,22

whereas a second-order (critical point) QPT is signaled by the discontinuity or di-

vergence of the first derivative of the quantum correlation measures with respect

to the tuning parameter at the critical point 9,19,22. At a quantum critical point,

quantum fluctuations occur on all length scales leading to a divergent correlation

length. The ground state energy and related quantities become non-analytic as the

tuning parameter g tends to the critical point gc. The influence of a QPT extends

into the finite temperature part of the phase diagram so that experimental detection

of the QPT is possible.

We now quote some major results on the signatures of QPTs provided by quan-

tum correlation measures like entanglement and the QD in the cases of spin models

like the TIM in 1d, transverse-fieldXY and XXZ spin chains. For more detailed in-

formation, the reader is referred to the original papers and reviews 2,3,17,18,50,46. In

the case of the TIM in 1d, the n.n. concurrence, a measure of pairwise entanglement,

reaches its maximum value close to the QCP λc = 1. The next-nearest-neighbour

(n.n.n.) concurrence, on the other hand, has its maximum value at λc = 1. The

first derivative of the n.n. concurrence w.r.t. the tuning parameter λ exhibits a

logarithmic divergence as λ → λc. The pairwise entanglement as measured by the

concurrence does not become long-ranged as λ → λc, in fact it falls to zero beyond

the n.n.n. distance. Both the n.n. and the n.n.n. QD attain their maximal values

close to the critical point λc. The first derivative of the n.n. (n.n.n.) QD with respect

to λ becomes discontinuous (singular) at the critical point λc = 1. The magnitude of

the classical correlations has a monotonic dependence on λ starting with low values

for small λ. The transverse-field XY chain belongs to the universality class of the

TIM in 1d away from the isotropic limit γ = 0. In the case of the zero-field XXZ
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chain, the n.n. concurrence is maximal at the infinite-order critical point ∆c = −1.

The n.n. QD is found to be maximal (with a discontinuity) and the classical cor-

relations become minimal (with a kink) at ∆c = −1. At the first-order transition

point ∆ = 1, the n.n. classical and quantum correlations are discontinuous 9,19. For

the transverse-field XY chain, Maziero et. al. 22 derived analytic expressions for

classical and quantum correlations for spin-pairs separated by an arbitrary distance

for both temperatures T = 0 and T 6= 0. The T = 0 QD for spin pairs beyond the

n.n.n. distance is able to signal a QPT whereas pairwise entanglement for the same

spin pairs is unable to do so. Pairwise entanglement is typically short-ranged even

close to criticality. Spin chains like the transverse-field XY chain and the XXZ

chain in the presence of domain walls are characterized by a long-range decay of the

QD as a function of the spin-spin distance close to the quantum critical point 24.

The decay rate of the QD has a noticeable change as the critical point is crossed. In

a recent study 23, the thermal QD is shown to be maximal and its first derivative

with respect to the tuning parameter discontinuous at the quantum critical point

∆ = −1 of the XXZ chain for both T = 0 and T > 0. The entanglement of for-

mation is maximal at the critical point only for T = 0, the maximum shifts from

∆ = −1 for T > 0. The thermal QD also signals the QPT at ∆ = 1. Thus, the QD

has the important property of being able to detect the critical points of QPTs at

finite temperatures. In contrast, both entanglement and thermodynamic quantities

fail to signal QPTs for T > 0. The special property of the QD could be useful in

the experimental detection of critical points.

3. Dynamics of Correlations

We next consider the interaction of the chain of qubits (spins) with an environment.

The initial state of the whole system at time t = 0 is assumed to be of the product

form, i.e.,

ρ(0) = ρs(0)⊗ ρe(0) (15)

with the density matrices ρs and ρe corresponding to the system (spin chain) and

the environment respectively. We assume that the environment is described in terms

of L independent reservoirs each of which interacts locally with a qubit constituting

the spin chain. The two-qubit reduced density matrices, ρrs and ρre, are obtained by

taking partial traces on ρs and ρe respectively over the states of all the qubits other

than the two chosen qubits. The two-qubit reduced density matrix ρr(0) obtained

from Eq. (15) can be written as

ρr(0) = ρrs(0)⊗ ρre(0) (16)

The quantum channel describing the interaction between a qubit and its local envi-

ronment can be of various types: AD, phase damping, BF, PF, BPF etc. 8,51. With

the initial reduced density matrix given in Eq. (16), the objective is to determine

the dynamics of the two-qubit classical and quantum correlations (in the form of
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the QD) under the influence of various quantum channels. The time evolution of

the closed quantum system consisting of both the system and the environment is

given by

ρse(t) = U(t)ρse(0)U
†(t) (17)

where U(t) is the unitary evolution operator generated by the total Hamiltonian H
(

U = e−iHt/~
)

. H is written as H = Hs +He +Hse where Hs and He are the bare

system and the environment Hamiltonians respectively and Hse the Hamiltonian

describing the interactions between the system and the environment. The time

evolution of the system s under the influence of the environment e is obtained by

carrying out a partial trace on ρse(t) (Eq. (17)) over the environment states, i.e.,

ρs(t) = Tre
[

U(t)ρse(0)U
†(t)

]

(18)

In Eq. (18), ρse(0) = ρ(0) from Eq. (15). Let |ek〉 be an orthogonal basis spanning

the finite-dimensional state space of the environment. With the initial state of the

whole system given by Eq. (15),

ρs(t) =
∑

k

〈ek|U [ρs(0)⊗ ρe(0)]U
†|ek〉 (19)

 0
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Fig. 2. BPF and BF channel: Decay of mutual information I (ρAB) (solid line), classical cor-
relations C (ρAB) (dashed line), and the QD Q (ρAB) (dot-dashed line) as a function of the
parametrized time p = 1 − e−θt for λ = 0.7, γ = 0.7 (BPF channel) and λ = 0.7, γ = −0.7
(BF channel). Also, psc = 0.114. (inset) Decay of mutual information I (ρAB) (solid line), classical
correlations C (ρAB) (dashed line) and quantum discord Q (ρAB) (dot-dashed line) as a function
of the parametrized time p = 1 − e−θt for λ = 0.7, γ = −0.7 (BPF channel) and λ = 0.7, γ = 0.7
(BF channel).

Let ρe(0) = |e0〉〈e0| be the initial state of the environment. Then

ρs(t) =
∑

k

Ekρs(0)E
†
k (20)



August 16, 2018 1:21 WSPC/INSTRUCTION FILE rev˙ijmpb

10 Indrani Bose and Amit Kumar Pal

where Ek ≡ 〈ek|U |e0〉 is the Kraus operator which acts on the state space of the

system only 8,35. Let {φi}, i = 1, 2, ..., d, define the basis in the state space of the

system s. There are then at most d2 independent Kraus operatorsEk, k = 0, ..., d2−1
8,53. The unitary evolution of s+ e is given by the map:

|φ1〉|e0〉 → E0|φ1〉|e0〉+ ...+ Ed2−1|φ1〉|ed2−1〉
|φ2〉|e0〉 → E0|φ2〉|e0〉+ ...+ Ed2−1|φ2〉|ed2−1〉

...

|φd〉|e0〉 → E0|φd〉|e0〉+ ...+ Ed2−1|φd〉|ed2−1〉 (21)

In compact notation, the map is given by

U |φi〉|e0〉 ≡
∑

k

Ek|φi〉|ek〉, i = 1, 2, ..., d (22)

In the case of N system parts with each part interacting with a local independent

environment, Eq. (20) becomes

ρs(t) =
∑

k1,..,kN

E
(1)
k1

⊗ ..⊗ E
(N)
kN

ρs(0)E
(1)†
k1

⊗ ..⊗ E
(N)†
kN

(23)

where E
(α)
kα

is the kαth Kraus operator with the environment acting on the system

part α. The specific form for ρs(t) arises as the total evolution operator can be

written as U(t) = U1(t) ⊗ U2(t) ⊗ ... ⊗ UN(t). Following the general formalism of

the Kraus operator representation, an initial state, ρrs(0), of the two-qubit reduced

density matrix evolves as 8,37

ρrs(t) =
∑

µ,ν

Eµ,νρrs(0)E
†
µ,ν (24)

where the Kraus operators Eµ,ν = Eµ ⊗ Eν satisfy the completeness relation
∑

µ,ν Eµ,νE
†
µ,ν = I for all t. We now briefly describe the various quantum chan-

nels and write down the corresponding Kraus operators. A fuller description can be

obtained from Refs. [8, 37].

(i) AD Channel. The channel describes the dissipative interaction between a system

and its environment resulting in an exchange of energy between s and e so that s is

ultimately in thermal equilibrium with e. The s+ e time evolution is given by the

unitary transformation

|0〉s|0〉e → |0〉s|0〉e (25)

|1〉s|0〉e → √
q|1〉s|0〉e +

√
p|0〉s|1〉e (26)

where |0〉s and |1〉s are the ground and excited qubit states and |0〉e, |1〉e denote

states of the environment with no excitation (vacuum state) and one excitation

respectively. Eq. (25) stipulates that there is no dynamic evolution if the system

and the environment are in their ground states. Eq. (26) states that if the system
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qubit is in the excited state, the probability to remain in the same state is q and

the probability of decaying to the ground state is p (p + q = 1). The decay of

the qubit state is accompanied by a transition of the environment to a state with

one excitation. The qubit states may be two atomic states with the excited state

decaying to the ground state by emitting a photon. The environment on acquiring

the photon is no longer in the vacuum state. With a knowledge of the map equations

(Eqs. (25) and (26)), the Kraus operators for the AD channel can be written as

E0 =

(

1 0

0
√
q

)

; E1 =

(

0
√
p

0 0

)

(27)

where q = 1 − p. The Kraus operators for the two distinct environments (one for

each qubit) have identical forms. In the case of Markovian time evolution, p is given

by p = 1− e−θt with θ denoting the decay rate.

(ii) Phase Damping (dephasing) Channel. The channel describes the loss of quantum

coherence without loss of energy. The Kraus operators are:

E0 =

(

1 0

0
√
q

)

; E1 =

(

0 0

0
√
p

)

(28)

with q = 1− p and p = 1− e−θt.

 0
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 0.3
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 0.2  0.4  0.6  0.8  1

p s
c

λ

γ = 0.5

 0
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 2

 3

 4

 5

 0.2  0.4  0.6  0.8  1

dp
sc

/d
λ

λ

Fig. 3. Variation of psc as a function of λ with γ = 0.5 for the BPF channel. (inset) The first
derivative of psc w.r.t. λ diverges as the QCP λc = 1 is approached.

(iii) BF, PF and BPF channels. The channels destroy the information contained in

the phase relations without involving an exchange of energy. The Kraus operators

are

E0 =
√

q′
(

1 0

0 1

)

; E1 =
√

p/2σi (29)

where i = x for the BF, i = y for the BPF and i = z for the PF channel with

q′ = 1− p/2 and p = 1− e−θt. The expanded forms of the Kraus operators are:
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BF:

E0 =

(
√

1− p/2 0

0
√

1− p/2

)

E1 =

(

0
√

p/2
√

p/2 0

)

(30)

PF:

E0 =

(
√

1− p/2 0

0
√

1− p/2

)

E1 =

(
√

p/2 0

0 −
√

p/2

)

(31)

BPF:

E0 =

(
√

1− p/2 0

0
√

1− p/2

)

E1 =

(

0 −i
√

p/2

i
√

p/2 0

)

(32)

As shown in Ref. [8], the phase damping quantum operation is identical to that of

the PF channel so that we will consider only one of these, the PF channel, in the

following.

In the case of the transverse-field XY chain, including the TIM, the reduced

density matrix ρAB has the form of X-states with

ρAB =









a 0 0 f

0 b z 0

0 z b 0

f 0 0 d









(33)

For the XXZ spin chain, the element f = 0. In Eq. (33), A, B represent the two

individual qubits and z, f are real numbers. The eigenvalues of ρAB are 9

λ0 =
1

4

{

(1 + c3) +

√

4c24 + (c1 − c2)
2

}

λ1 =
1

4

{

(1 + c3)−
√

4c24 + (c1 − c2)
2

}

λ2 =
1

4
(1− c3 + c1 + c2)

λ3 =
1

4
(1− c3 − c1 − c2) (34)

with

c1 = 2z + 2f

c2 = 2z − 2f

c3 = a+ d− 2b

c4 = a− d (35)
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The mutual information I (ρAB) can be written as 9

I (ρAB) = S (ρA) + S (ρB) +

3
∑

α=0

λα log2 λα (36)

where

S (ρA) = S (ρB) = −1 + c4
2

log2
1 + c4

2
− 1− c4

2
log2

1− c4
2

(37)

With expressions for I (ρAB) and C (ρAB) given in Eqs. (36), (37) and (9), the QD,

Q (ρAB), (Eq. (10)) can in principle be computed. The difficulty lies in carrying out

the maximization procedure needed for the computation of C (ρAB). It is possible

to do so analytically when ρAB is of the form given in Eq. (33) resulting in the

following expressions for the QD 54:

Q (ρAB) = min {Q1, Q2} (38)

where

Q1 = S (ρB)− S (ρAB)− a log2
a

a+ b
− b log2

b

a+ b
− d log2

d

d+ b
− b log2

b

d+ b
(39)

and

Q2 = S (ρB)− S (ρAB)−∆+ log2 ∆+ −∆− log2 ∆− (40)

with ∆± = 1
2 (1± Γ) and Γ2 = (a− d)

2
+ 4 (|z|+ |f |)2

Let ρij be the reduced density matrix for two spins located at the site i and

j respectively. ρij has the form shown in Eq. (33). The matrix elements of ρij
can be expressed in terms of single-site magnetization and two-site spin correlation

functions. In the case of the transverse-field XY spin chain, the matrix elements

are 46,48,19

a =
1

4
+

〈σz〉
2

+
〈σz

i σ
z
j 〉

4

d =
1

4
− 〈σz〉

2
+

〈σz
i σ

z
j 〉

4

b =
1

4

(

1− 〈σz
i σ

z
j 〉
)

z =
1

4

(

〈σx
i σ

x
j 〉+ 〈σy

i σ
y
j 〉
)

f =
1

4

(

〈σx
i σ

x
j 〉 − 〈σy

i σ
y
j 〉
)

(41)

The single-site magnetization 〈σz〉 in the case of the transverse-field XY model is

given by 46,19

〈σz〉 = − 1

π

∫ π

0

dφ
(1 + λ cosφ)

ωφ
(42)
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where

ωφ =

√

(γλ sinφ)
2
+ (1 + λ cosφ)

2
(43)

describes the energy spectrum. The spin-spin correlation functions are obtained

from the determinants of Toeplitz matrices 19,43,44 as

〈

σx
i σ

x
i+r

〉

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

G−1 G−2 · · · G−r

G0 G−1 · · · G−r+1

...
...

. . .
...

Gr−2 Gr−3 · · · G−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈

σy
i σ

y
i+r

〉

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

G1 G0 · · · G−r+2

G2 G1 · · · G−r+3

...
...

. . .
...

Gr Gr−1 · · · G1

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈

σz
i σ

z
i+r

〉

= 〈σz〉2 −GrG−r (44)

where

Gr =
1

π

∫ π

0

dφ cos(rφ)
(1 + λ cosφ)

ωφ
− γλ

π

∫ π

0

dφ sin(rφ)
sin φ

ωφ
(45)

with r = |i − j| being the distance between the two spins at the sites i and j (for

the nearest-neighbour case, r = 1).
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Fig. 4. PF channel: Decay of mutual information I (ρAB) (solid line), classical correlations
C (ρAB) (dashed line), and the QD Q (ρAB) (dot-dashed line) as a function of the parametrized
time p = 1 − e−θt for λ = 0.5 and γ = 1. Q (ρAB) is greater than C (ρAB) in the parametrized
time interval ∆p.
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4. Results

Three general types of dynamics under the effect of decoherence have been observed

in an earlier study 38: (i) C (ρAB) is constant as a function of time and Q (ρAB) de-

cays monotonically, (ii) C (ρAB) decays monotonically over time till a parametrized

time psc is reached and remains constant thereafter. At psc, Q (ρAB) has an abrupt

change in the decay rate which has been demonstrated in actual experiments 55,56.

Also, a parametrized time interval exists in which Q (ρAB) has a magnitude greater

than that of C (ρAB) and (iii) both C (ρAB) and Q (ρAB) decay monotonically.

Mazzola et al. 39 have obtained the significant result that under Markovian dy-

namics and for a class of initial states the QD remains constant in a finite time

interval 0 < t < t̃. In this time interval, the classical correlations C (ρAB) decay

monotonically. Beyond t = t̃, C (ρAB) becomes constant whereas the QD decreases

monotonically as a function of time. In the case of the spin models under consid-

eration, the rules of evolution for the coefficients are obtained from Eqs. (33), (41)

and (24) with the choice of the Kraus operators dictated by the specific type of

quantum channel (see Eqs. (30), (31) and (32)). The evolution rules are given by

BPF Channel:

c1(p) = c1(0)(1− p)2

c2(p) = c2(0)

c3(p) = c3(0)(1− p)2

c4(p) = c4(0)(1− p) (46)

BF Channel:

c1(p) = c1(0)

c2(p) = c2(0)(1− p)2

c3(p) = c3(0)(1− p)2

c4(p) = c4(0)(1− p) (47)

PF Channel:

c1(p) = c1(0)(1− p)2

c2(p) = c2(0)(1− p)2

c3(p) = c3(0)

c4(p) = c4(0) (48)

For the transverse-fieldXY model, the dynamical evolution of the mutual infor-

mation I (ρAB), the classical correlationsC (ρAB) and the QDQ (ρAB) in the case of

the BPF channel are shown as a function of the parametrized time p
(

p = 1− e−θt
)

in figure 2 for λ = γ = 0.7. The dynamics are similar to type (ii) where sudden

changes in the decay rates of the classical correlations and the QD occur at a

parametrized time instant psc. The inset of the figure 2 shows the time evolution

of I (ρAB), C (ρAB) and Q (ρAB) for λ = 0.7, γ = −0.7 which are described by the
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Fig. 5. Variation of psc as a function of λ with γ = 1 for the PF channel. (inset) The first
derivative of psc w.r.t. λ diverges as the QCP λc = 1 is approached.

type (iii) dynamics, i.e. both C (ρAB) and Q (ρAB) decay monotonically. Q (ρAB)

tends to zero in the asymptotic limit p → 1 whereas C (ρAB) and I (ρAB) have finite

values in the same limit. The dynamics in the case of the BF channel have an inter-

esting correspondence with the dynamics of the BPF channel. Type (ii) and Type

(iii) dynamics are obtained in the case of the BPF (BF) channel for +ve (-ve) and

-ve (+ve) values of γ respectively 40. An analytical expression of the parametrized

time psc at which the sudden changes in the decay rate of C (ρAB) and Q (ρAB)

take place can be obtained for the BPF/BF channels from Eqs. (46) and (47) re-

spectively 40. The dynamics of I (ρAB), C (ρAB) and Q (ρAB) in the case of the PF

channel belong to type (ii) with Q (ρAB) > C (ρAB) during a parametrized time

interval 40. The classical correlations remain constant at a value I (ρAB)p=1, the

mutual information of the fully decohered state, in the parametrized time interval

psc < p < 1. In the interval 0 < p < psc, the classical correlations decay with time.

On the other hand, the quantum correlation, as measured by the QD, undergoes a

sudden change in its decay rate at p = psc and goes to zero in the asymptotic limit

p → 1. The type of dynamics in the case of the PF channel remains the same under

a change in sign of the anisotropy parameter γ.

Figure 3 shows the plots of psc and the first derivative of psc w.r.t. λ (inset)

as functions of λ for the BPF channel (γ > 0). The first derivative of psc w.r.t. λ

diverges as the QCP λc = 1 is approached indicating a QPT. In the case of the

PF channel, the dynamics are of type (ii) and Q (ρAB) is greater than C (ρAB) in

a parametrized time interval. Also, the first derivative of psc w.r.t. λ for a fixed

value of the anisotropy parameter γ (both +ve and −ve) diverges at the QPT point

λc = 1 40. On the other hand, the first derivative of psc w.r.t. γ for a fixed value of

λ shows a discontinuity at the anisotropy transition point γ = 0 indicating a QPT

for all the three channels BPF, BF and PF 40. In the case of the PF channel, psc
has a symmetric variation across the anisotropy transition point γ = 0 whereas a
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parametric time psc exists only for γ > 0 (γ < 0) in the case of the BPF (BF)

channel. A fuller description and discussion of the results on the dynamics of the

classical and quantum correlations are given in Ref. [40]. In the case of the AD

channel, the dynamics are of type (iii) with all the three correlations, I (ρAB),

C (ρAB) and Q (ρAB) decaying asymptotically (p → 1) to zero. In the case of the

TIM in 1d, the signature of quantum criticality at λc = 1 is obtained only in the

cases of the BPF and PF channels. In the case of the PF channel, the dynamics are

of type (ii) (figure 4). Figure 5 shows the variation of psc as a function of the tuning

parameter λ. The inset of the figure shows that the first derivative of psc w.r.t. λ

exhibits a divergence as the quantum critical point λc = 1 is approached.
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Fig. 6. Variation of psc as a function of ∆ for the BPF/BF (∆ < −1) (line with solid squares)
and the PF (−1 < ∆ < 1) (line with solid circles) channel. (inset) In the case of the PF channel,
the first derivative of psc w.r.t. ∆ diverges as the ferromagnetic point ∆ = 1 is approached.

In the case of the XXZ spin chain, the critical point analysis in the presence

of decoherence is carried out utilizing the results obtained in Refs. [9, 38]. Figure 6

exhibits the variation of psc as a function of the anisotropy constant ∆ (Eq. (14))

in the cases of the BPF/BF (solid squares) and the PF (solid circles) channels. In

the case of the PF channel, the first derivative dpsc

d∆ diverges as the ferromagnetic

point ∆ = 1 is approached. One also notes that psc has a finite value when ∆ is

< −1 (−1 < ∆ < 1) in the case of the BF/BPF (PF) channel.

5. Concluding Remarks

In this review, we have considered three spin models, namely, the TIM in 1d, the

transverse-field XY and the XXZ spin chains. The two-spin reduced density ma-

trix obtained from the ground state in each case has the general form of X-states

(further simplified in the case of the XXZ chain). The matrix elements of the re-

duced density matrix can be expressed in terms of single-spin expectation values
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and two-spin correlation functions which are mostly known. Analytical formulae

are available to compute the mutual information I (ρAB), the classical correlations

C (ρAB) and the QD Q (ρAB) in the two-spin state described by the reduced density

matrix 9,10,11,12. In the presence of system-environment interactions resulting in

decoherence, the time evolution of the reduced density matrix can be determined

in the Kraus operator formalism 8,56. The spin models under consideration ex-

hibit QPTs at specific values of a tuning parameter, e.g., magnetic field strength

or an anisotropy parameter. While there is a large number of studies on how quan-

tum correlation measures provide signatures of QPTs 2,3,17,18,50, there is little

investigation so far on appropriate indicators of QPTs in the presence of decoher-

ence 29,40. In the case of Markovian time evolution, quantities like dpsc

dλ and dpsc

dγ

(transverse-field XY model), associated with type (ii) dynamics, diverge/become

discontinuous as a quantum critical point is approached. Dynamics similar to type

(ii) are associated with specific quantum channels, e.g., in the case of the AD

channel the dynamics are of type (iii) which do not provide any indication of the

occurrence of a QPT. There are several directions in which the investigations re-

ported in Refs. [29, 40] can be extended. The analysis has so far been carried out

for the X-states but since an analytic computational scheme for a general two-qubit

state is now available 11, one could probe the dynamics of classical and quantum

correlations in general two-spin states and look for signatures of QPTs. In Ref. [29],

the reduced density matrix describes n.n. spin pairs and the analysis is carried out

at T = 0. Extension to further-neighbours and finite temperature cases has been

carried out in Ref. [40]. The more general case of non-Markovian time evolution

vis-à-vis signatures of QPTs is yet to be addressed. The dynamics of multipartite

quantum correlations constitute another important area of study. Models of inter-

acting fermions and bosons exhibit a variety of QPTs 2,3 which could be signaled

by quantities associated with the dynamics of quantum correlations. Finally, re-

cent experiments 55,56 on the dynamics of quantum correlations set new challenges

in exploring the interconnections between quantum correlations, decoherence and

quantum phase transitions.
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24. J. Maziero, L. C. Céleri, R. M. Serra and M. S. Sarandy, Phys. Lett. A376, 1540

(2012)
25. L. Ciliberti, R. Rosignoli and N. Canosa, Phys. Rev. A82 042316 (2010)
26. A. S. M. Hassan, B. Lari and P. S. Joag, J. Phys A43 485302 (2010)
27. B. Tomasello, D. Rossini, A. Hamma and L. Amico, Europhys. Lett. 96, 27002 (2011)
28. H. S. Dhar, R. Ghosh, A. Sen (De) and U. Sen, Europhys. Lett. 98, 30013 (2012)
29. A. K. Pal and I. Bose, Eur. Phys. J. B85: 36 (2012)
30. Y. -X. Chen and Z. Yin, Comm. Theor. Phys. 54, 60 (2010)
31. L. -J. Tian, Y. -Y. Yan and L.-G. Qin, quant-ph/1104.1525v2
32. M. A. Yurischev, Phys. Rev. B84, 024418 (2011)
33. S. Sachdev, Science 288, 475 (2000)
34. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge,

1999)
35. J. Maziero, T. Werlang, F. F. Fanchini, L. C. Céleri, R. M. Serra, Phys. Rev. A81,
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