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scaling for anisotropic Quantum-Critical systems
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We propose that Kibble-Zurek scaling can be studied in optical lattices by creating geometries that
support, Dirac, Semi-Dirac and Quadratic Band Crossings. On a Honeycomb lattice with fermions,
as a staggered on-site potential is varied through zero, the system crosses the gapless Dirac points,
and we show that the density of defects created scales as 1/τ , where τ is the inverse rate of change
of the potential, in agreement with the Kibble-Zurek relation. We generalize the result for a passage
through a semi-Dirac point in d dimensions, in which spectrum is linear in m parallel directions and
quadratic in rest of the perpendicular (d −m) directions. We find that the defect density is given

by 1/τmν||z||+(d−m)ν⊥z⊥ where ν||, z|| and ν⊥, z⊥ are the dynamical exponents and the correlation
length exponents along the parallel and perpendicular directions, respectively. The scaling relations
are also generalized to the case of non-linear quenching.
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The Kibble-Zurek (KZ) scaling [1, 2, 3, 4, 5, 6] of de-
fect density in the final state of a quantum many-body
system following a slow passage across a quantum crit-
ical point, has been an exciting area of recent research.
The KZ argument predicts that the scaling of the defect
density is universal and is given as n ∼ 1/τνd/(nuz+1)

where τ is the inverse rate of change of a parameter,
d is the spatial dimension and ν and z are the correla-
tion length and dynamical exponents, respectively, asso-
ciated with the quantum critical point [7, 8] across which
the system is swept. Following the initial predictions,
a plethora of theoretical studies have been carried out
[10, 11, 12, 13, 14, 15, 16, 17, 18] to explore the de-
fect generation and the entropy production using differ-
ent quenching schemes across critical points [10], quan-
tum multicritical points [18], gapless phases [13], along
gapless lines [16], etc. The possibility of experimental
observations in a spin-1 Bose condensate [19] and also on
ions trapped in optical lattices [20, 21] has provided a
tremendous boost to the related theoretical studies.

Here, we propose that Kibble-Zurek scaling can be
studied in optical lattices with fermionic atoms by cre-
ating geometries that support Dirac, semi-Dirac and
Quadratic Band Crossings. For example, a Honeycomb
lattice consists of two interpenetrating triangular lat-
tices. If the two sublattices are controlled separately,
one can create a staggered on-site potential, which cre-
ates a gap in the spectrum [22, 23]. We will call the
Honeycomb lattice with a staggered potential a gapped
Graphene Hamiltonian in analogy with Graphene [22].
The system can be loaded with atoms when one of the
sublattices has a much lower energy than the other. As
the staggered potential is varied through zero, the sys-
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tem will cross through gapless Dirac point, and the cre-
ation of defect density can be studied as a function of the
rate of change of potential. Similarly, two interpenetrat-
ing square-lattices can lead to Quadratic Band Crossing
[24] and either a deformed Honeycomb system [25, 26],
or a 3-band system can lead to semi-Dirac points[27],
where the spectrum is linear along one axis and quadratic
along another. Anisotropic quantum critical points as-
sociated with spectra that are linear in some directions
and quadratic in others arise in systems as diverse as
semiconductor hetero-structures [28] and He3 [29]. We
will calculate a generalized Kibble-Zurek scaling for such
anisotropic Quantum critical systems.
Many previous theoretical studies are on one-

dimensional quantum spin systems some of which can
be exactly solved via Jordan-Wigner transformation [30].
On the other hand, the quenching dynamics of non-
integrable spin chains have been studied using adia-
batic perturbation theory [4] or exact diagonalization
and time-dependent density matrix renormalization tech-
niques [16, 17]. Both the methods have been very suc-
cessful in yielding exciting results for the scaling of defect
density following a slow quantum quench in pure as well
as random systems [17]. There are also a few results for
the quenching dynamics of higher dimensional systems,
e.g., in ref. [13] the exact solvability of a two-dimensional
Kitaev model [31] was utilized.
In this paper, we propose a kind of time-dependent

perturbation that would be very difficult to achieve in
solid state systems but should be possible in optical lat-
tices. Because the underlying geometry in optical lattices
is controlled by lasers, one should be able to change them
in such a way that the system passes through special band
crossings. The salient feature of our proposal on Honey-
comb and other lattices is that the time-dependent per-
turbation preserves crystal momentum. Thus, as long as
the interactions between particles are weak, the system
factorizes into independent momentum sectors. For each
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FIG. 1: A schematic picture of a honeycomb lattice consisting
of two interpenetrating triangular lattices shown in different
colors. In cold-atoms, this system can be controlled by two
sets of lasers.

value of the momentum, there is a probability that the
system can undergo transition from the lower to the up-
per eigenstate. This can be analyzed using the Landau-
Zener transition formula [32] to provide an exact result
for the defect creation in the quenching process. In-
tegration over all momentum leads to the desired KZ
scaling relations. Furthermore, quenching through the
semi-Dirac point yields a more general form of the KZ
scaling for spatially anisotropic quantum critical points.
In principle, Dirac-like band crossings are of tremendous
interest in themselves, in contexts such as topological
insulators.[33, 34] But, whether one can find a perturba-
tion that drives the system through such a crossing will
have to be examined in individual cases.

We focus primarily on a tight-binding model of
fermions moving on a Honeycomb lattice. This lattice
has two inequivalent sites per unit cell (see Fig. 1) and
hence the system is described in the momentum space
in terms of de-coupled 2 × 2 matrices [22]. Assuming
the system to be half-filled, the honeycomb lattice of the
tight-binding Hamiltonian is critical at two inequivalent
points of the Brillouin zone and there is Dirac cone of
excitations with linear dispersion around this point. If a
staggered on-site potential (called the mass term) which
differentiates between two inequivalent sites is added to
the tight binding Hamiltonian, a gap is created in the
spectrum [23]. We assume that the magnitude of the
mass term (denoted by µ) is quenched linearly from −∞
to −∞ at a linear rate µ = t/τ so that the system crosses
the gapless point µ = 0 at a time t = 0. When µ = −∞,
only one sublattice of the HC lattice will be occupied
which amounts to saying that for every Fourier mode k,
one of the basis states is occupied. If the mass term is
slowly changed, the state would follow adiabatically until
the Dirac point at t = 0 where the spectrum is gapless
and thereafter system no longer follows the ground state
adiabatically. We here show that the density of defect
thus generated is in complete agreement with the KZ
prediction. We then generalize to the case of quench-
ing through a (d,m) semi-Dirac point [27] at which the
spectrum is linear in m-directions and quadratic in rest
of the (d − m)-directions. Exploiting again the 2 × 2

form of the resulting Hamiltonian and the Landau-Zener
transition formula we arrive at a generalized KZ scal-
ing form 1/τmν||z||+(d−m)ν⊥z⊥ where ν||, z|| and ν⊥, z⊥
are the dynamical exponent and the correlation length
exponents along the parallel directions and perpendicu-
lar directions, respectively. The same scaling relation is
also expected to be valid for quenching through a (d,m)
quantum Lifhshitz point [35].
Let us start from the general Hamiltonian of fermions

moving on a honeycomb lattice

H =

π
∑

k=0

ψ†
kHkψk (1)

where Hk is the reduced 2 × 2 matrix (Hk)11 =
(Hk)22 = 0 and (Hk)12 = (Hk)

∗
12 = −t[eikxa +

2e−ikxa/2 cos(ky
√
3a/2), where t is the hopping term and

a is the lattice spacing. In the presence of a mass term
that arises due to a staggered on-site potential µ [23], the
reduced Hamiltonian takes the form

H̃k =

[

µ ∆
∆∗ −µ

]

(2)

where ∆(k) = (Hk)12 as defined before. The
off-diagonal term can be simplified by expand-
ing around the Dirac point (0, 4π

3
√
3a
) as ∆(k) =

−t
[

eiqxa + 2e−iqxa/2 cos(( 4π
3
√
3a

+ qy)
√
3a
2 )

]

where kx =

qx and ky = 4π
3
√
3a

+ qy. In the limit of qx, qy → 0, we

arrive at a simpler form of Eq. 2

H̃k =

[

µ vf (qy − iqx)
vf (qy + iqx) −µ

]

(3)

where vf = 3ta/2.
During the quenching µ = t/τ , the general state vector

at an instant t can be written as |ψk(t)〉 = C1k(t)|1k〉 +
C2k(t)|2k〉 where the basis vectors are |1k〉 and |2k〉.
With the initial condition |C1k(t → −∞)|2 = 1, the
non-adiabatic transition probability due to the passage
through the Dirac point is given as pk = |C1k(t → +∞)|2.
Using the Hamiltonian (2), the time evolution of the sys-
tem is described in terms of the Schrödinger equations

i
∂

∂t
C1k(t) =

t

τ
C1k(t) + ∆(k)C2k(t)

i
∂

∂t
C2k(t) = − t

τ
C2,k(t) + ∆∗(k)C1k(t). (4)

The above equations describes two-time dependent levels
±
√

(t/τ)2 +∆2 approaching each other and there is an
avoided level crossing at t = 0. The non-adiabatic tran-
sition probability can be calculated using the Landau-
Zener transition formula [32] for each Fourier mode k
given by pk = exp(−π|∆|2τ). We therefore obtain
the density of defects integrating over the modes n =
∫

pkd
2k. The non-adiabatic transition becomes promi-

nent only in the vicinity of the Dirac point where the
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FIG. 2: The density of defect generated due to quenching
through a two-dimensional Dirac point, as in Graphene, ob-
tained through the numerical integration of the Schrödinger
equations 4. The data clearly shows a 1/τ -decay of the defect
density which is indicated with a straight line of slope -1.

gap closes, we therefore use the form of ∆ valid close
to the Dirac point given in Eq. (6) and extend the lim-
its of integration from −∞ to +∞. The defect density
therefore scales as

n =

∫ +∞

−∞
dqxdqy exp(−πτv2f (q2x + q2y)) ∼

1

τ
(5)

Noting that the spectrum close to the Dirac point is

of the form ±
√

(µ2 + v2f |q|2), we find that the mini-

mum gap vanishes as µ yielding the critical exponents
νz = 1. On the other hand, the linear dispersion at
the Dirac point (µ = 0) yield the dynamical exponent
z = 1. The 1/τ -scaling of the defect density therefore
is in complete agreement with the Kibble-Zurek predic-
tion n ∼ 1/τνd/νz+1. The defect density obtained via
numerical integration is shown in Fig. 2.

In the optical lattices, the defect density can be mea-
sured through the total occupation of the upper band, or
in more detail, by the momentum distribution function,
n(k). In our two-band Graphene system, n(k) in the
lower-band would develop a hole near the Dirac points,
whose size would grow with the rate of quenching. Con-
versely, in the upper-band the particles will be concen-
trated close to the Dirac points. The resulting momen-
tum distribution would be highly unlike a thermal broad-
ening. A picture of the momentum distribution function
in the upper band is shown in an extended Brillouin zone
in Fig. 3.

We shall now concentrate on the quenching through
the semi-Dirac point which provides a more general situ-
ation of the quenching dynamics. The Hamiltonian close
to the semi-Dirac point with a mass term can be put in
the form [27]

H̃k =

[

µ ivf |qy|+ q2x/2m
−ivf |qy|+ q2x/2m −µ

]

(6)

If the mass term µ is quenched as t/τ and the system
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FIG. 3: Momentum distribution of particles created in the up-
per band is shown in an extended Brillouin zone. The centers
of the six bright regions form the corners of the first Brillouin
Zone and house the two inequivalent Dirac points.

crosses the semi-Dirac point, the defect density scales as

n =

∫ ∞

−∞
dqxdqy exp(−πτ(v2f q2y +

q4x
(2m)2

)) ∼ 1

τ3/4
(7)

The corresponding numerical result is shown in Fig. 2.
Generalizing to three-dimesnions [29], where the off-
diagonal term gets modified to ∆q = ivf |q||| + q2⊥/2m
with ~q2⊥ = q2x + q2y , the scaling of the defect density is
given by

n =

∫ ∞

−∞
dq||d~q⊥ exp(−πτ(v2f q2|| +

|q⊥|4
(2m)2

)) ∼ 1

τ
(8)

The scaling relations derived in Eqs. (7) and (8) lead to a
very interesting generic scaling relation of the defect den-
sity for quenching through a (d,m) anisotropic quantum
critical point given by the modified KZ form

n ∼ τ
−

„

mν||
ν||z||+1+

(d−m)ν⊥
ν⊥z⊥+1)

«

, (9)

where the critical exponents (ν||, z||) and (ν⊥, z⊥) are
conjugate to parallel and perpendicular directions, re-
spectively. The case with m = 0 refers to the quenching
through a band-crossing point with quadratic spectrum
in d-dimensions while m = d is the result for quenching
through a Dirac point.
We shall generalize the modified KZ scaling (9) to the

case of non-linear variation of the mass parameter µ =
|t/τ |αsgn(t). The situation is simpler as the spectrum
is gapless for µ = 0 (i.e., t = 0) [14]. Following refs.
[14, 15], it is easy to show that that the probablity of

excitation for the mode k, pk = |C̃1k(t → ∞)|2 must be
a function of |∆(k)|2τ2α/α+1 where the initial condition

|C̃1k(t→ −∞)|2 = 1. Expanding around the semi-Dirac
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FIG. 4: The density of defect generated due to quenching
through a two-dimensional semi-Dirac point obtained through
the numerical integration. The τ−3/4-decay of the defect den-
sity is indicated with a straight line of slope -3/4.

point and extending the limits of integration form −∞
to +∞, we get

n ∼ τ
−

„

mαν||
ν||z||+1+

(d−m)αν⊥
ν⊥z⊥+1)

«

, (10)

which reduces to the form (9) for the linear case α = 1.

In conclusion, we have proposed that Kibble-Zurek
scaling can be studied in optical lattices of trapped
fermions by creating geometries that have Dirac, semi-
Dirac or Quadratic Band Crossings. These systems are
typically interpenetrating lattices, which can be con-
trolled independently. Thus, one can create a staggered
on-site potential that leads to a gap in the spectra.
As this staggered potential is varied through zero, one
crosses a quantum critical point and even a slow quench-
ing would lead to the creation of a certain density of
defects. We have calculated the density of such defects
for the gapped Graphene Hamiltonian and have gener-
alized the Kibble-Zurek results to anisotropic Quantum
Critical points that arise with semi-Dirac spectra.

We thank Satyajit Banerjee, Debashish Chowdhury,
Warren Pickett and Diptiman Sen for helpful comments
and discussions.

[1] T. W. B. Kibble, J. Phys. A 9, 1387 (1976), Phys. Rep.
67, 183 (1980).

[2] W. H. Zurek, Nature (London) 317, 505 (1985), and
Phys. Rep. 276, 177 (1996).

[3] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett.
95, 105701 (2005).

[4] A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).
[5] B. Damski, Phys. Rev. Lett. 95, 035701 (2005).
[6] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[7] S. Sachdev, Quantum Phase Transitions (Cambridge

University Press, Cambridge, 1999).
[8] B. K. Chakrabarti, A. Dutta, and P. Sen, Quantum Ising

Phases and Transitions in Transverse Ising Models, m41

(Springer-Verlag, Berlin, 1996).
[9] B. Damski and W. H. Zurek, Phys. Rev. A 73, 063405

(2006); F. M. Cucchietti, B. Damski, J. Dziarmaga, and
W. H. Zurek, Phys. Rev. A 75, 023603 (2007); J. Dziar-
maga, J. Meisner, and W. H. Zurek, Phys. Rev. Lett.
101, 115701 (2008).

[10] R. W. Cherng and L. S. Levitov, Phys. Rev. A 73, 043614
(2006).

[11] V. Mukherjee, U. Divakaran, A. Dutta, and D. Sen, Phys.
Rev. B 76, 174303 (2007);V. Mukherjee, A. Dutta, and
D. Sen, Phys. Rev. B 77, 214427 (2008); V. Mukherjee
and A. Dutta, J. Stat. Mech: Theory and Experiment J.
Stat. Mech. P05005 (2009).

[12] A. Fubini, G. Falci and A. Osterloh, New J. Phys 9, 134
(2007); A. Polkovnikov and V. Gritsev, Nature Physics
4, 477 (2008); D. Patane, A. Silva, L. Amico, R. Fazio,
and G. Santoro, Phys. Rev. Lett, 101, 175701 (2008);
A. Bermudez, D. Patane, L. Amico and M. A. Martin-
Delgado, Phys. Rev. Lett. 102, 135702 (2009).

[13] K. Sengupta, D. Sen, and S. Mondal, Phys. Rev. Lett.
100, 077204 (2008).

[14] D. Sen, K. Sengupta, and S. Mondal, Phys. Rev. Lett.

101, 016806 (2008).
[15] R. Barankov and A. Polkovnikov, Phys. Rev. Lett. 101,

076801 (2008); C. De Grandi, R. A. Barankov, and A.
Polkovnikov, Phys. Rev. Lett. 101, 230402 (2008).

[16] F. Pellegrini, S. Montangero, G. E. Santoro, and R. Fazio,
Phys. Rev. B 77, 140404(R) (2008); U. Divakaran, A.
Dutta, and D. Sen, Phys. Rev. B 78, 144301 (2008).

[17] Tommaso Caneva, Rosario Fazio, and Giuseppe E. San-
toro Phys. Rev. B 76 144427 (2007).

[18] U. Divakaran, V. Mukherjee, A. Dutta, and D. Sen, J.
Stat. Mech. P02007 (2009); S. Deng, G. Ortiz and L.
Viola, Europhys. Lett. 84 67008 (2008).

[19] L. E. Saddler, J. M. Higbie, S. R. Leslie, M. Vengalattore
and D. M. Stamper-Kurn, Nature (London) 443, 312
(2006).

[20] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[21] L. -M. Duan, E. Demler and M. D. Lukin, Phys. Rev.
Lett. 91, 090402 (2003); A. Micheli, G. K. Brennen and
P. Zoller, Nature Physics 2, 341 (2006).

[22] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[23] Semenoff et al, Phys. Rev. Lett. 101, 087204 (2008).
[24] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys.

Rev. Lett. 103, 046811 (2009).
[25] P. Dietl, F. Piechon and G. Montambaux, Phys. Rev.

Lett. 100, 236405 (2008).
[26] G. Montambaux, F. Piechon,J.-N. Fuchs and M. O. Go-

erbig, cond-mat arXiv:0904.2117.
[27] S. Banerjee, R. R. P. Singh, V. Pardo and W. E.Picket,

Phys. Rev. Lett. 103, 016402 (2009).
[28] V. Pardo and W. E. Pickett, Phys. Rev. Lett. 102, 166803

(2009).
[29] G. I. Volovik, JETP Lett. 73, 162 (2001).
[30] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (NY) 16,



5

407 (1961).
[31] A Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).
[32] C. Zener, Proc. Roy. Soc. London Ser A 137, 696 (1932);

L. D. Landau and E. M. Lifshitz, Quantum Mechanics:

Non-relativistic Theory, 2nd ed. (Pergamon Press, Ox-
ford, 1965).

[33] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[34] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science,

314, 1757-1761 (2006).
[35] A. Dutta, B. K. Chakrabarti and J. K. Bhattacharjee,

Phys. Rev. B (1997); A. Schroder, et al, Phys. Rev. Lett.,
80, 5623 (1998).


