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A random fiber bundle with many discontinuities in the threshold distribution
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We study the breakdown of a random fiber bundle model (RFBM) with n-discontinuities in the
threshold distribution using the global load sharing scheme. In other words, n + 1 different classes
of fibers identified on the basis of their threshold strengths are mixed such that the strengths of
the fibers in the ¢ — th class are uniformly distributed between the values o2;—2 and o2;—1 where
1 <i <n+1. Moreover, there is a gap in the threshold distribution between ¢ — th and i + 1 — th
class. We show that although the critical stress depends on the parameter values of the system,
the critical exponents are identical to that obtained in the recursive dynamics of a RFBM with a
uniform distribution and global load sharing. The avalanche size distribution (ASD), on the other
hand, shows a non-universal, non-power law behavior for smaller values of avalanche sizes which
becomes prominent only when a critical distribution is approached. We establish that the behavior
of the avalanche size distribution for an arbitrary n is qualitatively similar to a RFBM with a single
discontinuity in the threshold distribution (n = 1), especially when the density and the range of
threshold values of fibers belonging to strongest (n + 1)-th class is kept identical in all the cases.

PACS numbers: 46.50. +a, 62.20.Mk, 64.60.Ht, 81.05.Ni

I. INTRODUCTION

What causes fracture of materials in nature? Are
there any precursor that signals the imminence of a com-
plete breakdown so that we can avoid them taking place?
These are few of the many questions that physicists and
engineers are looking at now a days to explore the frac-
ture dynamics of heterogeneous materials@, E] A prior
knowledge of failure properties of such materials are of
extreme importance for problems related to physics of
breakdown, material science as well as architectural, me-
chanical and textile engineering. The simplest of all the
attempts is a model of fibers with randomly distributed
threshold strengths known as the random fiber bundle
model.

In a random fiber bundle model (RFBM) B, 4, 5,
7 Ba 7 7 @7 ﬂu @7 @7 @7 @7 ) ﬂ]a fibers with
stochastically distributed values of threshold strengths
(i.e., the maximum external stress a fiber can withstand)
are clamped at both the ends. Since the threshold of a
fiber depends crucially upon the presence of defects in
that particular fiber, it is indeed useful to assign ran-
dom threshold strength to each fiber of the bundle. The
threshold strengths however are chosen from a given dis-
tribution, usually approximated by a Weibull or uniform
distribution. Under the application of a weak external
load, the fibers with threshold lying below the applied
stress, break and the resulting additional load is dis-
tributed among the intact fibers using a load sharing
rule. This redistribution of stress causes further failures
and the dynamics stops when the system reaches a fixed
point at which no further failure takes place. To resume
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the recursive dynamics, the external load is further in-
creased to break the next weakest intact fiber. The pro-
cess continues until the complete breakdown of the entire
bundle.

In this work, we shall use the global load sharing
(GLS) rule where the additional load generated due to
the breaking of a fiber is shared equally by all the intact
fibers of the bundle. In the GLS scheme, the breakdown
of the fiber bundle can be interpreted as a continuous
phase transition with well defined critical stress and crit-
ical exponents ﬂj, IR, g, @] For a RFBM with GLS, it
has also been established that the distribution D(A) of
an avalanche of size A, defined as the number of fibers
broken between two successive loadings, satisfies a uni-
versal power-law D(A) ~ A~%/2 in the limit of A — oo
4, B] In a recent work, Pradhan, Hansen and Hemmer
11] showed that in the vicinity of the critical distribution
where the average external load on the bundle is maxi-
mum, the avalanche size distribution shows a crossover
to a new power-law behavior given by D(A) ~ A=3/2 for
small values of A << A, while for A >> A, the A—%/2
behavior is recovered. The characteristic size A, around
which the crossover occurs diverges in a power-law fash-
ion as the critical distribution is approached and at the
critical distribution the A=3/2 behavior is observed for
the entire range of A.

In a recent paper, the authors ﬂﬁ] investigated the ro-
bustness of the above universal power-law behavior of the
avalanche size distribution by introducing a discontinuity
in the threshold distribution p(oy) which is given by

1
plow) = ————— O<om <o
1—(0’2—0’1)
=0 o1 < opp, < 02
1
- <om<l (1)

1—(0’2—0’1)

Hence, two types of fibers (weaker and stronger) sepa-
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FIG. 1: Mixed Uniform Distribution with (n + 1) classes of
fibers and n-gaps or discontinuities.

rated by a gap in their threshold distributions coexist in
the same bundle with more than half of the fibers belong-
ing to the stronger class. It has been established that
there exists a non-universal non-power law behavior in
the avalanche size distribution for small A which crosses
over to the universal behavior A=%/2 in the asymptotic
limit of A. Most interestingly, it was pointed out that the
non-universality becomes prominent only when a critical
distribution is approached. The threshold distribution
given in Eq. 1 with o2 = 0.5 is the critical distribution
of a RFBM with single discontinuity|15], because as soon
as the redistributed stress reaches 0.5, the bundle is crit-
ical and breaks down completely with an infinitesimal
increase in the external load. At a critical distribution,
however, there is a crossover from the non-universal be-
havior to a power-law behavior with A3/ for large A. A
recent study of an infinite gap generalization of the above
model predicts a new exponent (=9/4) of the avalanche
size distribution|17].

The natural question that remains is what would
be the effect of many such discontinuities on the
avalanche size distribution? We address this issue in the
present communication where we study a RFBM with
n-discontinuities in the threshold distribution and inves-
tigate its effect on the critical behavior and the avalanche
size distribution. The paper is organized as follows: In
Section II, we introduce the model and derive the crit-
ical stress and exponents using the recursive dynamics
approach . The results on the avalanche size distribution
and comparison with the n = 1 case studied previously
are presented in section III. We make concluding com-
ments in section IV.

II. THE MODEL AND THE RECURSIVE
DYNAMICS

The threshold distribution of a RFBM with n-
discontinuities studied in this paper is shown in Fig. 1.
The threshold range of the weakest and the strongest
class of fibers is from 0 to o7 and o9, to 1, respectively.

The mathematical form of the normalized threshold dis-
tribution is given by

(o) :
[0 =
PRt 1—=>"" (02 — 02i-1)
1
= ————— for 09,0 <oy <0912
1_ Z?:l g 7 t 7 ( )
=0 otherwise

(3)

where 1 S ) S 7’L—|—1, gi = 02;—02;—1 and op = O, O2n+1 —
1. The above distribution suggests that (n + 1) different
classes of fibers with the threshold of the fibers of the i-th
class ranging from og;_o to 09;_1 are mixed. At the same
time the restriction 0 < 01 < 03... < 09;_1 < 09; < 1
ensures the existence of a gap or discontinuity given by
g in the threshold strengths between i-th and (i + 1)-th
class of fibers. We also assume that the threshold val-
ues of the i-th class of fibers are uniformly distributed
within the range o9;_o to 09;_1 for all 7, a condition that
leads to a set of (n + 1) additional relations connecting
the parameters of the system in the following way. Dis-
tributing a fraction f; of total number of fibers to the
i-th class (with Z?H fi = 1) and using the uniformity
condition mentioned above we get

02i—1 — 022
fi= = (4)
1-3019

such that g =0, 02,41 = 1 and once again1 < < n-+1
The model therefore involves (2n) values of g;’s, (n+ 1)-
values of density f;, the conditions §iven by Eq. 4 along
with the additional restrictions » " ' fi = 1. Therefore,
the total number of free variables that can be chosen
independently reduces to 2n. It should also be noted
that since 1 — Y"1 | g; is always less than unity, we must
have (0'21;1 — 0’21'72) < fz for all 1.

We shall estimate the critical stress of the above model
within the framework of a recursive dynamics and global
load sharing. The fibers belonging to all (n + 1)-classes
cooperatively participate in sharing the additional load
arising due to the breaking of the weaker fibers. The
fraction of unbroken fibers after a time step t+1, denoted
by Uiy, is related to Uy through the relation [10, [15]

) ()

g

Ut+1:1—P(0't):1—P(U
t

where P(oy) is the fraction of broken fibers with the ap-
plied stress ¢ and redistributed stress o, and is given
as

P(oy) = /OUt p(own)doy,.

Similarly, the redistributed stress after a time step (t+1)
satisfy the recursive relation

g g
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The fixed point solution for U (= U*) at which no further
failure takes place can be obtained by solving the above
recursive relations (5) and (6)[10]. Assuming that the
redistributed stress at some instant ¢, oy exceeds og, (i.e,
when the redistributed stress initiates the breaking of the
(n + 1)-th class fibers), we obtain

o
U = 1-P(—=
t+1 (Ut)
"~ 091 — 022 1 o
=1- n + n - —O02n
[; 1_21'91' 1_Zigi(Ut 2)]
so that we get the fixed point solution
1 o
U= ——7—[14+ /1 - —] (7)

21 =32 90) oc
Along the same line of arguments, we find the redis-
tributed stress at the fixed point

1 1 o
-2 1-2, 8
77373 py (8)

Using Esq. (7) and (8) we find that the critical stress is
given by
1

7T (e )
which is the applied load per fiber at which half of the
fibers break. When the external load exceeds o. even
by an infinitesimal amount, there is no real solution of
U* and o* which signals the complete break down of the
bundle.

The critical stress of the mixed model varies with the
gaps ¢; and in the limit g; — 0 for each i, we retrieve
the critical stress o, = 1/4 for a RFBM with uniform
distribution [10]. We also get back the result of single
discontinuity case i.e., n = 1 [15] if only g1 # 0. The
equation (8) also shows that the redistributed stress at-
tains the maximum value of 0.5 at the critical external
stress o..

Calling the redistributed stress as x from now on-
wards, we consider the constitutive equation, F(z) =
Nz(1 — P(x) where F(z) is the average external load
when the redistributed stress is z. The load F(z) max-
imizes when the redistributed stress z is equal to 0.5.
Since the maximum value of the redistributed stress is
equal to 0.5, o9, must be less than 0.5 so that some fibers
from (n 4 1)-th class also fail at the critical point. The
constraint equations (4) suggest that for recursive dy-
namics to hold good, more than half of the fibers must be-
long to the (n+1)-th class with thresholds lying between
o9n to 1. We therefore define the threshold distribu-
tion p(ow) (Eq. 2), along with the constraint conditions
and oo, = 0.5 as the critical distribution. It can also be
shown in a straightforward way that the order parameter
exponent (/) and the susceptibility exponents () stick
to the mean field (GLS) values with 8 = v = 1/2, even
in the presence of an arbitrary number of discontinuities
provided uniformity condition is satisfied and hence the
critical behavior remains unaltered although there is an
appreciable change in the critical stress.

III. AVALANCHE SIZE DISTRIBUTION (ASD)

We shall now turn our attention towards the ASD
of RFBM in the presence of many discontinuities in
the threshold distribution which is the key point of our
study. We show below that the discontinuities have a
non-trivial affect on the ASD when a critical distribu-
tion is approached. We also argue that a situation with
many discontinuities is qualitatively similar to the single-
discontinuity case. The scenario is established consider-
ing a special case with n = 2, where g1 = 09 — 01 and
g2 = 04 — 03 so that three classes of fibers with range of
thresholds lying between (0 to o1), (o2 to o3) and (o4 to
1), respectively, coexist in the bundle while fi, fa and f3
are the corresponding densities.

Below is shown some of the allowed distributions which
satisfy the restrictions mentioned in Eq. 4 and case 4
refers to a critical distribution.

Case| fi f2 01 02 03 04 Oc

1 (010] .20 0.08 0.16 0.32 | 0.44 |0.31

0.15 | 0.25 | 0.135 0.15 0.375 | 0.46 |0.27

0.05 | 0.05 | 0.04 0.16 0.20 | 0.28 |0.31

0.10 | 0.20 | 0.07 0.16 0.30 | 0.50 |0.35

0.10 | 0.2 0.08 0.26 0.42 | 0.44 |0.31

S| O W N

0.20 | 0.15 | 0.16 0.2 0.32 | 0.48 |0.31

We shall now generalize the results of Hemmer and
Hansen [4] to study the avalanche behavior of the n =
2-discontinuity model. The general expression for the
avalanche size distribution with GLS is given as

D(A)  ABTL e (1 —a(x))
N Al /0 dap(x) a(x)
+ x exp({—a(x) + lna(z)}A) (10)

where z is the redistributed stress and the upper limit
of the integration (z.) is the redistributed stress at the
critical point. Also, a(x) = zp(z)/1— P(x) is the number
of fibers that break as a result of breaking a fiber with
threshold strength x by applying an external load «/{(1—
P(z))N}.

Let us first consider the breaking of fibers belonging to
class 1 with threshold values uniformly lying between 0
to o1, this contribution D;(A) is given by

_AATL . 1 (1 —a(x))
Dud) = Al /0 I l—g1—g2 a(x)

x exp({—a(z) + Ina(z)}A) (11)

where a(z) = /(1 — g1 — g2 — ). The maximum contri-
bution of this integral is at a(z) = 1lorx = (1—g1—g2)/2
which exceeds o1, i.e., lies beyond the range of integra-
tion and we can not employ the method of the saddle
point integration. However, a(z) is a monotonically in-
creasing function of x up to o1 and we therefore get the
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FIG. 2: Fig. (2a) corresponds to the ASD for casel of the
table where a crossover from nonuniversal to the universal
5/2 behavior is observed since o4 is close to 0.5. (2b) shows
case3 of the table where no non-universal behavior is observed
except for small values of A. ASD for a critical distribution
(cased) is shown in Fig. 2(c) where there is a crossover to the
73/2” behavior for large A. The dotted line in Fig 2a and 2b
has a slope -5/2 whereas that in Fig 2c has a slope -3/2. In
2(d), we show D1(A), D2(A), D3(A) and the total ASD for
the casel to compare their relative magnitudes.

maximum contribution when x reaches the upper limit of
the integration o1. The leading behavior of D1 (A) (with
Al = exp(—A)A?V/271A), is given by

1 —5/2. A
Dq(A) ~ N —gz)A 5225 exp((1—2m)A), (12)

where @, = 01/(1—g1—92—01) = f1/(1—f1). Therefore,
D1 (A) exhibits a non-universal decay with increasing A
which is more rapid if f; — 0.

Similarly, the leading contribution of the fibers belong-
ing to the class 2 with threshold values ranging from oo
to o3 and a(x) = /(1 — g2 — x) is found to be

1 _s/2. A
V2r(l — gy — QZ)A 2y exp((1=ym)A), (13)

where y,, = 03/(1 — 04). Therefore, D(A) shows a sim-
ilar non-universal behavior which survives even for rel-
atively higher values of A if o3 approaches o4 and also
o4 — 0.5. The significance of the above findings is ex-
plained below.

Let us now focus on the contribution from the fibers
belonging to class 3. Using Eq. (10) with a(z) = z/(1—x)

Dy(A) ~

and f3 = (1 —04)/(1 — g1 — g2), we get

1 fa [P gy L= 22)
VorAl—o4 /s, T

x exp({—+ fx +In( - )}A) (14)

D3(A)

Right hand side of Eq. (14) can be integrated to obtain,

f _a
- zmAss/ia — o0 (1 —¢ AC)

where A, ~ (1/2 — 04)72, which diverges in the limit
o4 — 0.5. Our observations are depicted in Fig. 2, where
D(A), obtained by numerical integration and also by sim-
ulation using the weakest fiber approach [4], is plotted for
different threshold distributions. It is to be noted that
the contribution D3(A) depends only on ¢4 and f3, an
observation that leads to an interesting conclusion that
the contribution to the total avalanche size distribution
coming from the strongest class of fibers is identical for
any number of discontinuities if the fraction of fibers as
well as the range of the threshold strength of the final
block is kept fixed (see Fig. 3). Equation (15) provides
two limiting power-law behaviors given as

Ds3(A) (15)

D3(A) ~ A™3% for A < A,

~ A% for A > A, (16)
Comparing Eqs. (12), (13) and (16), we observe that
in the limit of small A, the non-power law contribu-
tions from D;(A) and Dy(A) dominates over the uni-
versal ”5/2” behavior only in the limit of o4 — 0.5 when
D3(A) ~ A=3/2, Otherwise, D3(A) dominates over the
non-universal contributions so that one observes a uni-
versal behavior nearly for the entire range of A though
the discontinuities in the distribution always exist. At a
critical distribution however, there is a crossover to the
universal behavior D(A) ~ A=3/2 for very large A fol-
lowing a large region of non-universality (see Fig. 2c).
This general behavior is valid for any number of discon-
tinuities including n = 1 [15].

Let us now concentrate on some interesting limiting sit-
uations to investigate the role of two discontinuities: (i)
If the fraction f; of fibers in class 1 is small, the contribu-
tion Dq(A) ~ [f1/(1— f1)]? dies off rapidly. However, if
o3 is large and o4 approaches 0.5, there is a wide region of
non-universality in (D(A) — A) behavior which is solely
due to Do(A) which scales as [03/(1 — 04)]®. (ii) In the
other limit, when fo < f1 (but fo+ f1 < 0.5, as required),
D;(A) do dominate in the small A limit, but for large
A once again it is the contribution of Da(A), rather the
larger value of o3 that leads to a prominent non-universal
behavior, e.g., case 6 in table 1. We therefore conclude
that the contribution from the weakest class of fibers is
not significant in the large A limit and it is the higher
value of y,, = 03/(1—04) that causes the non-universality
to survive up to relatively higher values of A (Fig. 4)
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FIG. 3: Comparison of total avalanche size distribution for
same value of f,+1 and o2, when n = 1 and n = 2 where n is
the number of discontinuities. Clearly, the two cases overlap
in the large A region where the final block dominates. Here,
frn+1=0.9 and 02,=0.28
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FIG. 4: The figure shows the comparison of D2(A) with
D3 (A) for case 1 (left panel) and case 6 (right panel). The
figure shows that the crossover to universal behavior occurs
at higher value of A if y,, = 03/(1 — 04) increases.

IV. CONCLUSIONS

In conclusion, we have studied a mixed fiber bundle
with many discontinuities in the threshold distribution
and GLS where threshold values of the fibers belonging
to a particular class are uniformly distributed within the
specified range. Our studies lead to the following conclu-
sions for an arbitrary number of discontinuities: (i) The
recursive dynamics studies point to the existence of a crit-
ical distribution as defined in the text. (ii) There exists a
non-universal, non- power law behavior in the avalanche
size distribution for small A which becomes prominent
only when a critical distribution is approached, otherwise
it is masked by the universal behavior except for very
small A. For asymptotically large A, however, there is
always a crossover to the universal behavior with £ = 5/2
(or £ = 3/2 at the critical distribution). The crossover
occurs around A = A, where the contribution from the
strongest class of fibers D, 1(A) switches from ¢ = 3/2
to & = 5/2 behavior. (iii) Dyp4+1(A) is found to depend
only on f,4+1 and o9, so the contribution of the fibers
belonging the strongest class (i.e., the behavior of to-
tal D(A) in the limit of large A) remains identical for
any number of discontinuities if f,11 and o9, are kept
fixed. (iv) We also show that if o9,_—1 increases and at
the same time o3, — 0.5, the non-universality survives
up to higher values of A.
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