
Microenvironment and Immunology

Rapalogs Efficacy Relies on the Modulation of

Antitumor T-cell Immunity

Laurent Beziaud1,2, Laura Mansi1,2,3, Patrice Ravel4, Elodie Lauret Marie-Joseph1,2,

Caroline Laheurte1,5, Laurie Rangan1,2, Francis Bonnefoy1, Jean-Ren�e Pallandre1,

Laura Boullerot1, Cl�ementine Gamonet1,2, Sindy Vrecko1,2, Lise Queiroz1, Tristan Maurina3,

Guillaume Mouillet3, Thierry Nguyen Tan Hon3, Elsa Curtit1,2,3, Bernard Royer1,6,

B�eatrice Gaugler
1
, Jagadeesh Bayry

7
, Eric Tartour

8,9,10
, Antoine Thiery-Vuillemin

1,2,3
,

Xavier Pivot1,2,3, Christophe Borg1,2,3, Yann Godet1,2, and Olivier Adot�evi1,2,3

Abstract

The rapalogs everolimus and temsirolimus that inhibit

mTOR signaling are used as antiproliferative drugs in several

cancers. Here we investigated the influence of rapalogs-medi-

ated immune modulation on their antitumor efficacy. Studies

in metastatic renal cell carcinoma patients showed that ever-

olimus promoted high expansion of FoxP3
þHeliosþKi67þ

regulatory CD4 T cells (Tregs). In these patients, rapalogs

strongly enhanced the suppressive functions of Tregs, mainly

in a contact-dependent manner. Paradoxically, a concurrent

activation of spontaneous tumor-specific Th1 immunity also

occurred. Furthermore, a high rate of EomesþCD8þ T cells was

detected in patients after a long-term mTOR inhibition. We

found that early changes in the Tregs/antitumor Th1 balance

can differentially shape the treatment efficacy. Patients pre-

senting a shift toward decreased Tregs levels and high expan-

sion of antitumor Th1 cells showed better clinical responses.

Studies conducted in tumor-bearing mice confirmed the del-

eterious effect of rapalogs-induced Tregs via a mechanism

involving the inhibition of antitumor T-cell immunity. Con-

sequently, the combination of temsirolimus plus CCR4 antag-

onist, a receptor highly expressed on rapalogs-exposed Tregs,

was more effective than monotherapy. Altogether, our results

describe for the first time a dual impact of host adaptive

antitumor T-cell immunity on the clinical effectiveness of

rapalogs and prompt their association with immunotherapies.

Cancer Res; 76(14); 4100–12. �2016 AACR.

Introduction

mTOR protein is a conserved serine/threonine kinase involved

in the regulation of cell growth,metabolism, and apoptosis (1). It

exerts its physiologic functions through two distinct complexes

named mTOR complex 1 (mTORC1) and 2 (mTORC2) down-

stream of the PI3K/AKT pathway (1). Oncogenic activation of

mTOR signaling induces several processes required for the

growth, survival, andproliferation of cancer cells (2). Thus,mTOR

inhibition has gained great interest in cancer therapy and many

rapamycin analogs (rapalogs) are now being used in clinical

settings (3). Everolimus and temsirolimus are two rapalogs

approved for breast cancer, neuroendocrine carcinoma treat-

ments, and relapsing metastatic renal cell carcinoma (mRCC)

patients (4–7).

mTOR also represents a key regulator of immune responses.

Notably, this pathway is determinant for the differentiation,

homeostasis, and functional regulation of both CD4 and CD8

T-cell subsets (8). The lack ofmTOR in na€�ve CD4 T cells has been

shown to promote preferentially forkhead box transcription fac-

tor (FoxP3
þ) regulatory T cells (Tregs) to the detriment of Th1, Th2,

or Th17 differentiation (9, 10). In solid organ transplantation,

rapalogs promote Tregs induction and create an immunosuppres-

sive environment required toprevent fromgraft rejection (11, 12).

Interestingly, it has been recently reported that organ transplant

recipients treated with rapalogs have a lower risk of developing

cancer, suggesting an impact of mTOR inhibition on antitumor

immune responses (13). Indeed, recent immunologic studies

showed that blockingmTOR signaling can also promotememory

T-cell functions and tumor immunity in animal models (14–16).

However, the rapalogs-mediated modulation of antitumor T-cell

immunity and its impact on treatment efficacy have not been

investigated in patients with cancer.

On the basis of the critical role played by adaptive T-cell

immunity in cancer (17, 18), we hypothesized that anticancer

rapalogs could promote suppressive Tregs, which in turn could
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be detrimental for host antitumor T-cell immunity. In this

regard, we recently described a striking modulation of T-cell

responses in a mRCC patient treated with everolimus (19).

This patient presented at the time of disease control a strong

antitumor Th1 response, which was completely lost upon

disease progression when high Tregs expansion occurred.

Here, we studied the modulation of both Tregs and antitumor

T-cell responses in a cohort of mRCC patients treated with ever-

olimus. The influence of immune modulation on treatment

efficacy was investigated in our cohort and confirmed in mouse

tumor models.

Patients and Methods

Patients and sample collections

mRCC patients treated with everolimus were enrolled after

the signature of informed consent at the University Hospital

Minjoz (Besançon, France) between November 2011 and Jan-

uary 2015. Everolimus was administrated 10 mg daily, or 5 mg

daily when occurrence of adverse events. Blood samples were

collected at baseline and every 2 months. Peripheral blood

mononuclear cells (PBMC) were isolated by density centrifu-

gation on Ficoll-Hyperpaque gradient (Sigma-Aldrich) and

frozen until use. Disease was classified as defined by Heng and

colleagues (20) and evaluation of response was performed

according to RECIST.

Monitoring of Tregs and telomerase-specific Th1 responses in

mRCC patients

Tregs staining protocol is detailed in Supplementary Materials

section. Samples were acquired on a FACSCanto II (BD Bio-

sciences) and analyzed with the Diva or FlowJo softwares.

Antitumor Th1 responses were assessed after in vitro stimulation

of PBMC with a mixture of HLA-DR–restricted peptides derived

from telomerase (TERT; 5 mg/mL) during 7 days (21, 22). The

presence of specific T cells was measured by IFNg-ELISPOT

Assay (Diaclone; ref. 21). Spot-forming cells were counted using

the C.T.L. Immunospot System (Cellular Technology Ltd). The

number of specific T cells expressed as spot-forming cells per

105 cells was calculated after subtracting negative control values

(background). Responses were positive when IFNg spots num-

ber was higher than 10 and more than twice the background.

Tregs suppressive assay

Tregs functions were evaluated in a CellTrace 5-(and 6-) carbox-

yfluorescein diacetate succinimidyl ester (CFSE)-labeled T-cell

Proliferation Assay (Invitrogen). Briefly, 5 � 105 fresh allogenic

T cells fromhealthy donors labeled with CFSEwere cocultured for

3 days at 1:2 ratio with freshly sorted Tregs from healthy donors or

patients, or at 1:1 ratio with sorted Tregs from in vitro culture in the

presence of coated anti-CD3 (2.5 mg/mL) and soluble anti-CD28

(5 mg/mL) antibodies (BD Biosciences). Cytokines production

was measured by ELISA (Diaclone). Proliferation suppression

assays were also performed using transwell columns (Merck

Millipore) to separate 3 � 105 Tregs (top chambers) from 3 �

105 allogenic T cells (bottom chambers) in the presence of soluble

anti-CD3 (5 mg/mL) and anti-CD28 (5 mg/mL) antibodies (BD

Biosciences).

Tumor cell lines

The murine RCC RENCA and the melanoma-B16F10 cells

transfected with ovalbumin (B16-OVA) were kindly provided by

E. Tartour (INSERMU970). Themurinemammary carcinoma cell

line 4T1 was kindly provided by Dr. Apetoh (INSERM U866,

Dijon, France). All cells were periodically authenticated by mor-

phologic and histologic inspection, and animal grafting for asses-

sing their ability to grow. Cells were regularly tested for myco-

plasma using Myco Alert Kit (Lonza).

Mice

Female C57BL/6NCrl and BALB/cAnCrl mice, 6 to 8 weeks

old, were purchased from Charles River Laboratories and

housed under pathogen-free conditions. FoxP3-eGFP and

DEREG transgenic mice (23) were kindly provided by Dr.

Perruche (INSERM UMR1098, Besançon, France). All experi-

mental studies were approved by the local ethics committee

(#58) and the French Ministry of Higher Education and

Research and were conducted in accordance with the European

Union's Directive 2010/63.

Tumor challenge and treatment

BALB/cAnCrl mice were subcutaneously injected with 5 �

105 RENCA or 105 4T1 cells in 100 mL of saline buffer in the

abdominal flank or in the mammary zone, respectively. C57BL/

6NCrl, FoxP3-eGFP, or DEREG mice were subcutaneously

injected with 2 � 105 B16-OVA cells in 100 mL of saline buffer

in the abdominal flank. Tumor growth was monitored every 2

to 3 days and mice were euthanized when tumor mass reached

300 mm2. When tumors reach 20 mm2, mice were treated

either with 2 mg/kg of temsirolimus intraperitoneally every

3 days or with everolimus administrated orally everyday by

gavage at 0.65 mg/kg. The rapalogs were used at concentrations

based on the study of their pharmacokinetics in patients (24).

Mice from control groups were injected with the solvent used to

dissolve drugs. Rapamycin (Sigma-Aldrich) was administrated

intraperitoneally at 75 mg/kg/day. The CCR4 antagonist

(AF399/420/18 025) provided by Dr. Bayry (INSERM U872)

was injected intraperitoneally at 1.5 mg/3 days.

In vivo T-cell depletion experiments

To study the implication of immune cells on the antitumor

effect of rapalogs, mice were injected intraperitoneally before

tumor graft then every 2 weeks with 200 mg of monoclonal-

depleting antibodies (mAb). Anti-CD4 (clone GK1.5), CD8

(2.43), and CD25 (PC61.5) antibodies or isotype controls were

purchased from BioXcell. To deplete Tregs, mice were injected

intraperitoneally twice (day�4 andday0)before tumor graftwith

250 mg of PC61.5 mAb (BioXcell). DEREG mice were injected

intraperitoneally with 80 mg/kg of diphtheria toxin (Sigma-

Aldrich) to deplete Tregs. Depletion efficiency was checked in the

blood.

Assessment of OVA-specific T-cell responses

The ovalbumin-specific T cells were analyzed ex vivo in sple-

nocytes and in tumor-infiltrating lymphocytes (TIL). TILs were

recovered after tumor treatment with DNAse, hyaluronidase, and

collagenase (Sigma-Aldrich). The OVA257–264 (SIINFEKL, SL8)

Kb-Dextramer (Immudex) staining was used to quantify OVA-

specific CD8 T cells. Functionality of OVA257–264-specific CD8 T

cells was analyzed by IFNg-ELISPOT on spleen-isolated CD8þ T

cells (Miltenyi Biotec; ref. 25). For anti-OVACD4T-cell responses,

spleen-isolated CD4þ T cells were cocultured in presence of
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dendritic cells loaded with the OVA protein (10 mg/mL; Sigma-

Aldrich) and T-cell reactivity was analyzed by IFNg-ELISPOT.

Functional analysis of CD4þ TILs was performed by cocultured

TILs in presence of the OVA protein or of a nonantigen-specific

stimulation with PMA/ionomycin. CD4þ TILs reactivity was

evaluated by using intracytoplasmic IFNg staining.

Statistical analysis

Data are presented as means � SEM. Statistical comparison

between groups was based on Student t test using Prism 6

GraphPad Software. P values lower than 0.05 (�) were considered

significant. Data cutoff for survival analysis was January 7, 2015.

To determine the impact of the everolimus-mediated immune

modulation on survival, we used a model based on the normal-

ized variation after 2 months of both immune variables Treg
(DTreg) and anti-TERT Th1 (Danti-TERT Th1; Supplementary

Materials section).Mice andpatients' survivalwas estimatedusing

the Kaplan–Meier method. The log-rank tests were used to com-

pare survival distribution. The exponential regression model was

used to fit the experimental data of the tumor growth (Supple-

mentary Materials section).

Results

Everolimus treatment promotes expansion of highly

suppressive FoxP3
þ Tregs in mRCC patients

A prospective immunomonitoring study was conducted in 23

mRCC patients treated with everolimus. The patients' main char-

acteristics are depicted in Supplementary Table S1. The monitor-

ing of FoxP3
þ Tregs was performed within blood at baseline and

every 2 months (Supplementary Fig. S1). We observed that both

percentage and absolute number of Tregs gradually increased (at

least >20%) after treatment in 21 of 23 patients (91.3%) com-

paredwith baseline (Fig. 1A and B; 3.5% vs. 6.5%, P¼ 0.0002 and

46 vs. 75� 106 Tregs/L, P¼ 0.0006, respectively, between baseline

and 6 months). In 7 patients, a first drop of Tregs levels was

observed before a subsequent increase. Tregs presented the phe-

notype of natural Tregs (nTregs): CD25hiCD127loFoxP3
þHeliosþ

(26) and expressed CTLA-4 and ICOS (Fig. 1C). Furthermore, a

higher expression of Ki67 in Tregs was detected after everolimus

treatment, suggesting a proliferation of this population in vivo

(Fig. 1D). The analysis of total blood lymphocytes showed a

relative stability of these cells during treatment; however, an

increase of total CD4þ T cells was observed, which could be

associated to Tregs expansion (Supplementary Fig. S2).

Tregs function of the patients was then evaluated by analyzing

their ability to inhibit allogenic T-cell proliferation in vitro. As

compared with Tregs of healthy donors, sorted Tregs of patients

exerted a higher inhibition of T-cell proliferation. Interestingly,

inhibition of T-cell proliferation was greatly increased in presence

of Tregs isolated after everolimus as compared with the baseline

(Fig. 1E and F). These results showed that everolimus promotes

expansion of highly suppressive Tregs in mRCC patients.

Rapalogs-exposed Tregs mediate contact-dependent T-cell

suppression in vitro

To confirm the ability of rapalogs to promote highly func-

tional Tregs, we isolated Tregs from PBMCs of healthy donors

cultured 10 days in presence or absence of everolimus or

temsirolimus (Fig 2A). We showed that rapalogs effectively

blocked the phosphorylation of S6 ribosomal protein (ser235)

but not Akt (ser473), the downstream targets of mTORC1 and

mTORC2, respectively (Fig. 2B and C).

As compared with nonexposed Tregs, rapalogs-exposed Tregs
strongly inhibited allogenic T-cell proliferation (Fig. 2D and E)

and decreased the effector cell production of IL2 and IFNg (Fig.

2F). To further dissect how rapalogs-exposed Tregs exerted their

suppressive activity, we first measured the inhibitory cytokines

IL10 and TGFb1 in the supernatants from T-cell suppressive

assays. No significant production of these cytokines was observed

(not shown). Although these Tregshighly expressedCTLA-4, ICOS,

GITR, CD39, and CCR4 (Fig. 2G), the addition of blocking

antibodies against these membrane receptors during T-cell stim-

ulation did not affect the suppressive functions of these Tregs (not

shown). Finally, we performed the same suppressive assays as

before but using a transwell between rapalogs-exposed Tregs and

effector T cells. As shown in Fig. 2H and I, the inhibition of T-cell

proliferation was radically impaired when Tregs were separated

from stimulated allogenic T cells. Similarly, the production of IL2

and IFNg was totally recovered in absence of Tregs–T-cell contact

(Fig. 2J). Thus, rapalogs-exposed Tregs preferentially exert inhib-

itory activity in a cell contact–dependent manner.

Increase of spontaneous TERT-specific Th1 response and

Eomesþ CD8 T cells after everolimus treatment

Concurrent to Tregs monitoring, the spontaneous tumor-spe-

cific Th1 response was evaluated in this cohort. To this end, we

performed an IFNg-ELISPOT to measure the lymphocytes reac-

tivity of patients to TERT, a shared tumor antigen overexpressed in

RCC (19, 27). At baseline, 11 of 23 patients' PBMCs (47.8%)

demonstrated a spontaneous anti-TERT Th1 response and this

frequency was increased to 17 of 23 patients (73.9%) 2 months

after the beginning of treatment, suggesting the de novo activation

of anti-TERT Th1 cells in 6 patients (Fig. 3A). Furthermore, we

showed that the magnitude of this response was generally higher

after treatment (42 vs. 105 anti-TERT IFNg spots/105 cells, P ¼

0.01; Fig. 3B). Thus, everolimus treatment favored ahigher tumor-

specific Th1 immunity.

We further assessed whether the respective subpopulations

of na€�ve (TNAIVE: CD8þCD45RO�CD62LþCD127þ), central

(TCM: CD8þCD45ROþCD62LþCD127þ) or effector memory

(TEM: CD8þCD45ROþCD62L�CD127þ) CD8 T cells were also

impacted by everolimus treatment (Supplementary Fig. S1). No

significant modulation was observed prior and after treatment

(Fig. 3C). Furthermore, we analyzed the expression of the tran-

scription factor Eomesodermin (Eomes), a key driver of memory

T-cell differentiation (28), inCD8T cells prior and after treatment.

As depicted in Fig. 3D, after a long-term everolimus exposure

(> 6 months), a higher percentage of EomesþCD8þ T cells was

detected in patients. Although no modulation of CD8þ

CD45ROþ/CD8þCD45RO� ratio was observed (Fig 3E), the

CD8þCD45ROþ/Tregs ratio significantly decreased after treatment

(Fig. 3F), suggesting a negative impact of Tregs induced following

everolimus treatment on memory CD8 T cells.

Influence of immune modulation on everolimus efficacy in

mRCC patients

We next addressed the effect of this immune modulation on

everolimus clinical efficacy. At the time of this analysis, treatment

was ongoing for 3 patients, 1 stopped for toxicity reasons and

19 patients had disease progression. At the time of disease
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progression, the majority of patients (17/19) had a marked

increase of circulating Tregs (Fig. 4A). This was associated with a

loss of the anti-TERT Th1 responses (10/13; Fig. 4B). Accordingly,

the anti-TERT Th1/Tregs ratio significantly decreased when disease

progressed under everolimus treatment (Fig. 4C). The antiviral

T-cell responses measured at the same time were slightly reduced

but remained present in most patients (Supplementary Fig. S3).

The everolimus blood concentration (EBC) was fairly similar

among patients with a median EBC of 10.3 mg/L (range, 3.90–

53.70mg/L; Fig. 4D).We showed that both Tregs andanti-TERTTh1
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cells modulation were not directly influenced by EBC (Fig. 4E).

This minimized a potential role of differential drug exposure.

To investigate the influence of the immune modulation on

survival, we used a model taking into account the early variation

(between baseline and 2months) of both Tregs and anti-TERT Th1

cells to classify patients into three immune groups (Fig. 4F). In

patients belonging to group 1 (Dpos), Tregs and anti-TERT Th1 cells

evolved toward the same direction (growth or decline; n ¼ 6).

Group 2 (Dnull) represents patients for whom the two immune

parameters are rather stable through time or that the Tregs or
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Figure 3.

Monitoring of anti-TERT Th1 cells and CD8 T cells inmRCC patients treatedwith everolimus (evero). Spontaneous anti-TERT Th1 and CD8 T cellsweremonitored (n¼

23). A, frequency of patients with spontaneous anti-TERT Th1 response. B, representative IFNg spots wells (left) and number of IFNg-producing anti-TERT Th1 cells

(right). C, percentage of na€�ve (TNA€IVE: CD8
þCD45RO�CD62LþCD127þ), central (TCM: CD8

þCD45ROþCD62LþCD127þ), and effector memory (TEM: CD8
þ

CD45ROþCD62L�CD127þ) CD8 T cells. D, representative plots of CD8þEomesþ T cells (left) and CD8þEomesþ evolution (right). CD8þCD45ROþ/CD8þCD45RO� T

(E) cells and CD8þCD45ROþ (F) T cells/Tregs ratio evolution. � , P < 0.05; �� , P < 0.01 (Student t test). ns, not significant.
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anti-TERT Th1 variation was insignificant (n ¼ 11). In the third

group (Dneg), the Tregs values of all patients (n ¼ 4) decreased,

whereas the anti-TERT Th1 values greatly increased. The patients

belonging to the group 3 showed a longer progression-free

survival (PFS; 13.2 months) than in the others groups (4.1 and

8months for group 1 and group 2, respectively, P¼ 0.02; Fig. 4G).

However, this early immune modulation had no significant

impact on overall survival (not shown). Similar results were

observed when immune parameters were calculated by taking

into account the possible fluctuations in the total lymphocytes

count into a distribution in two instead of three groups (Supple-

mentary Fig. S4). Similar observations supporting these results

were noticed in patientswith neuroendocrine tumors treatedwith

everolimus, inwhomthe survival correlatedwith aTregs/anti-TERT

Th1 modulation (Supplementary Fig. S4).

Likewise, when focusing on CD8þ T cells, an increase of

memory CD8þ T cells was observed in mRCC patients belong-

ing to the group 3 (where Tregs decreased early after treatment)

as compared with the two other groups (Supplementary

Fig. S5). Thus, a shift toward Tregs decrease and high expansion

of antitumor Th1 immunity improves the everolimus treatment

effectiveness.

T-cell subsets depletion differentially shapes the antitumor

effect of rapalogs in vivo

To analyze more extensively the role of T cells during rapa-

logs treatment, we performed in vivo T-cell depletion experi-

ments in B16-OVA–bearing mice treated with rapalogs. We

showed that CD8 T-cell depletion significantly reduced the

antitumor efficacy of temsirolimus or everolimus against

B16-OVA (P < 0.05; Fig. 5A). In contrast to CD8 depletion, a

strong inhibition of B16-OVA growth was observed in mice

lacking CD4 T cells before rapalogs administration (P <

0.001; Fig. 5B). Furthermore, a loss of rapamycin or temsir-

olimus efficacy was showed in B16-OVA–bearing mice when

both T-cell subsets were removed together (Supplementary Fig

S6). Similar experiments were also performed in renal carci-

noma RENCA and mammary carcinoma 4T1 models. However,

the depletion of T cells in these models had a low impact on

treatment efficacy (Supplementary Fig. S6). The results in B16-

OVA model supposed a deleterious effect of CD4 T cells

especially Tregs during rapalogs treatment. So we assessed

whether these drugs could promote Tregs expansion in B16-

OVA–bearing mice. An early decrease of blood Tregs levels was

observed in half rapalog-treated mice corresponding to what

was observed in patients (Fig. 5C). However, a nonsignificant

increase of Tregs in spleen and tumor was observed (Fig. 5D). As

tumor growth naturally induces Tregs, we estimated the Tregs
/tumor size ratio and showed that this ratio was highly

increased in mice after treatment, both in tumor and spleen

(Fig. 5E). Thus, like in human, rapalogs treatment promotes

Tregs induction in tumor-bearing mice.

The presence of Tregs in vivo altered the efficacy of rapalogs via

the inhibition of antitumor T-cell immunity

To study the role exerted by Tregs during rapalogs treatment in

the B16-OVA tumor model, we used DEREG mice, which allow

to selectively deplete Tregs after injection of diphtheria toxin

(Fig. 6A). A strong tumor regression occurred in mice treated

with temsirolimus followed by diphtheria toxin injection. This

regression occurred at day 30, corresponding to Tregs elimina-

tion in vivo 5 days after toxin injection (Fig. 6B and C). This

temporary Tregs depletion significantly increased the survival of

mice treated with temsirolimus as compared with control mice

(Fig. 6D).

Furthermore, we showed that Tregs ablation during temsiroli-

mus treatment induced a higher expansion of functional anti-

OVA CD8 T cells in the spleen and the tumor (Fig. 6E and F). This

was also associated with the stimulation of potent IFNg-produc-

ing anti-OVACD4T cells inmice (Fig. 6G–I). These results suggest

that the rapalogs-induced Tregs abrogate antitumor T-cell func-

tions in vivo. Accordingly, we evaluated in vivo the combination of

rapalogs with therapeutic agents that deplete Tregs or block their

suppressive functions (29). First, we showed that the anti-CD25

mAb (clone PC61.5; ref. 30) used to deplete Tregs in B16-OVA–

bearing mice prior to everolimus treatment induced a stronger

inhibition of tumor growth than everolimus alone (Fig. 7A and

B). Because high level of CCR4 expressionwas found on rapalogs-

exposed Tregs (Fig. 2G), we next combined temsirolimus with

CCR4 antagonist, a competitive class of Treg inhibitor (25). As

depicted in Fig. 7C and D, this association efficiently delayed the

B16-OVA growth and increased mice survival. Furthermore, mice

treated with the temsirolimus plus CCR4 antagonist showed a

significant decrease of Tregs associated with a high number of anti-

OVA CD8 T cells within the TILs (Fig. 7E and F). Altogether, these

results highlighted the interest to combine Tregs inhibition with

anticancer rapalogs.

Discussion

The rapalogs everolimus and temsirolimus are two mTOR

inhibitors approved as antiproliferative drugs in several cancers

such as RCC (4, 5). On the basis of the critical role of mTOR on T-

cell activation, the same drugs are also used in organ transplan-

tation as immune suppressor agents (31). In this study, we

reported that anticancer rapalogs induce striking modulation of

host antitumor T-cell immunity, which in turn shapes the treat-

ment efficacy.

We showed that everolimus promotes an expansion of FoxP3
þ

Tregs inmRCCpatients. This Tregs increase startedmostly 2months

after the beginning of treatment and remained high in most

patients. Tregs induced after everolimus were Heliosþ, suggesting

that they arise from the nTreg pool and proliferated in vivo

according to the Ki67 expression (26, 32). Furthermore, ever-

olimus exposure strongly increases patients' Tregs suppressive

functions. Indeed, rapalogs-exposed Tregs highly suppress allo-

genic T-cell proliferation and Th1 cytokines production in vitro.

Although the precise mechanism of suppression required future

investigations, rapalogs-exposed Tregs preferentially exerted a cell-

contact immunosuppression as also described for nTregs (26).

Very few studies have investigated themodulation and function

of Tregs in cancer patients treated with rapalogs. A preliminary

study reported a significant increase of FoxP3
þ Tregs in 7 mRCC

patients treated with temsirolimus (33). One previous study did

not find any modulation of Tregs after rapalog treatment but Tregs
were monitored only once at 1 month after the beginning of

treatment (34). However, an increase of Tregswas also reported in

prostate cancer patients treatedwith everolimus (35). Thus, like in

organ transplantation, mTOR inhibition increases Tregs number

and their suppressive functions in cancer patients (12, 36).

The antitumor CD4 Th1 immunity was concurrently explored

inmRCC patients. To this end, we tested the reactivity of patients'
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T cells against MHC class II-restricted peptides derived from TERT

(21, 22). We showed that everolimus treatment stimulated and

sustained spontaneous anti-TERT Th1 response. Furthermore, an

increase in the magnitude of this response was observed after

treatment. So, dual modulations of host antitumor CD4 T-cell

responses can occur during everolimus treatment. One plausible

explanation of the stimulation of tumor-specific CD4 T cells may

be related to the ability of mTOR inhibition to promote

Bas
el

in
e D7

0

5

10

15

Bas
el

in
e D7

0

5

10

15

Untre
at

ed

Te
m

si
ro

lim
us

Eve
ro

lim
us

0.00

0.05

0.10

0.15

0.20

Untre
at

ed

Tem
si

ro
lim

us

Eve
ro

lim
us

0

10

20

30

40

50

Untre
at

ed

Tem
si

ro
lim

us

Eve
ro

lim
us

0

5

10

15

20

0

100

200

300

400

10 15 20 25 30

0

50

100

150

200

250

300

10 15 20 25 30

A

T
u

m
o

r
s
iz

e
 (

m
m

2 ) Evero
Untreated

CD8 depletion
Evero
+ CD8 depletion

T
u

m
o

r
s
iz

e
 (

m
m

2 ) Temsiro
Untreated

CD8 depletion
Temsiro
+ CD8 depletion *

*

B

0

50

100

150

200

250

10 15 20 25 30 35

T
u

m
o

r
s
iz

e
 (

m
m

2 )

Temsirolimus
Untreated

CD4 depletion

Temsiro
+ CD4 depl

***

D

E TumorSpleen

T
re

g
/T

u
m

o
r

s
iz

e
 r

a
ti

o

T
re

g
/T

u
m

o
r

s
iz

e
 r

a
ti

o

%
 F

o
x
P

3+
T

re
g
/C

D
4

+

F
o

x
P

3

CD25

Untreated Temsirolimus Everolimus

18.7 15.812.2

0

50

100

150

200

250

300

350

10 15 20 25 30 35

T
u

m
o

r
s
iz

e
 (

m
m

2 )

Everolimus
Untreated

CD4 depletion

Everolimus
+ CD4 depletion

*

Days post tumor graft Days post tumor graft

Days post tumor graftDays post tumor graft

Spleen Tumor

%
 F

o
x
P

3+
T

re
g
/C

D
4

+

C

ns ns

*

*

Untre
at

ed

Te
m

si
ro

lim
us

Eve
ro

lim
us

0.0

0.1

0.2

0.3

0.4

*

*

*

Untreated

%
 F

o
x
P

3+
T

re
g
/C

D
4

+

ns

Temsirolimus

%
 F

o
x
P

3+
T

re
g
/C

D
4

+

Figure 5.

In vivo T-cell depletion impacts on

rapalogs treatment efficacy. B16-OVA–

bearing C57BL/6 mice (n ¼ 5/group)

depleted with anti-CD8 (A) or anti-CD4

(B) mAbs injections were treated with

rapalogs. Control mice received solvent

and isotype control mAb. Tumor growth

rate are shown. The symbols represent

the evolution of mean � SEM tumor size

and the lines are the exponential

regression model fitting the mean tumor

size. C and D, FoxP3
þ Tregs percentage in

the blood of B16-OVA–bearing mice at

baseline and 7 days after the beginning

of temsirolimus treatment (n ¼ 10/

group; C) and at day 25 in the spleen and

tumor, representative dot plots (D).

E, Tregs/tumor size ratio in the spleen

(left) and in the tumor (right). Results

represent at least three independent

experiments. � , P < 0.05 (Student t test).

Evero, everolimus; temsiro,

temsirolimus. ns, not significant.
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Effects of conditional Tregs removal during rapalogs treatment. DEREG mice (n ¼ 4/group) were grafted with B16-OVA and then treated or not with temsirolimus

(temsiro). A, diphtheria toxin injections (80 mg/kg) and example of Tregs depletion at sacrifice. B and C, tumor growth (B) and comparison of tumor growth rate (C).

The regressionmodelwas not applicable for the group treated by temsirolimusþDiphtheria toxin (Diph tox) over the 30th day. D, Kaplan–Meier survival curves (log-

rank test). E, OVA257–264 Kb-dextramer staining in spleen and TILs at day 35. Representative splenocytes dot plots and percentage of OVA257–264-specific

CD8þ T cells. Functional analysis of OVA257–264-specific CD8þ (F) and CD4þ (G) T cells measured ex vivo in the spleen by IFNg-ELISPOT at day 35.
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autophagy (37). Autophagy has been shown to be critical for the

antitumor immune response elicited by dying tumor cells (38). In

addition, this process improves antigen processing by MHC class

II molecules (39, 40). These results also support our previous

observation in one mRCC patient treated with everolimus that

presented an amplification of antitumor Th1 cells followed by

Tregs induction (19). Furthermore, mTOR inhibition has been

shown to increase both the quantity and quality of memory T-cell

responses (14–16).

An important issue of this study is a potential correlation

between patients' survival (PFS) and immune modulation

observed after everolimus treatment. At the time of disease

progression under everolimus treatment, the majority of patients

totally lost the anti-TERT Th1 response in favor to a marked

increase of Tregs. Accordingly, we observed a high decrease of

CD8þCD45ROþ/Tregs and Th1/Tregs ratio at the same time. A

mathematical model based on the early variation of both Tregs
and anti-TERT Th1 cells was used to study the relationship

between immune modulation and patient's clinical outcome.

Our results suggested that an early establishment of a good

immune environment toward the decrease of Tregs and the

increase of antitumor Th1 immunity may enhance everolimus

clinical efficacy. However, due to the small number of patients

enrolled in this study, our hypothesis deserves further confirma-

tion in a larger cohort of mRCC patients and in other tumors.

To dissect the role of T cells during rapalogs treatment, we used

variousmouse tumormodels.Our choice ofmodels was based on

rapalogs indications in renal and breast carcinoma (4, 5, 7) and

their current evaluation inmelanoma (41). In contrastwith that in

RENCA and 4T1 tumors, we observed that T-cell subsets can

differentially shape the efficacy of rapalogs against B16-OVA

tumor growth. While CD8 T-cell depletion reduces rapalogs

efficacy on B16-OVA tumor growth, we showed that the removal

of CD4 T cells strongly increased the antitumor effect of these

drugs. The discrepancy in these tumor models may be related to

thedifference in the genetic backgroundof themice. In this regard,

RENCA and 4T1 grow in Balb/c mice, a genetic background

commonly known to develop a weaker Th1 response than

C57BL/6 (42). Furthermore, B16-OVA was previously used in

several studies to evaluate the immune responses after mTOR

inhibition (43–45).

Because CD4 T-cell depletion increases rapalogs efficacy, we

focused our attention on the role of Tregsin vivo. Like in patients,

we showed that everolimus or temsirolimus induced Tregs
expansion in mice and temporary depletion of these cells

during rapalogs treatment in DEREG mice drastically increased

treatment efficacy. Interestingly, Tregs ablation during rapalogs

treatment promotes high expansion of both anti-OVA CD8 and

CD4 T cells within the tumor supporting an inhibitory effect of

rapalogs-exposed Tregs on antitumor T cells in vivo. Similar data
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Figure 7.

Combination of rapalogs with anti-CD25

mAbor CCR4 antagonist. FoxP3-eGFPmice

(n ¼ 5/group) were depleted or not with

anti-CD25 mAb and then grafted with B16-

OVA tumor. Tumor-bearing mice were

treated or not with everolimus (0.65 mg/

kg/day). A, the symbols represent the

evolution of mean � SEM tumor size for

each group and the lines are the

exponential regression model fitting the

mean tumor size. Tumor growth rates were

compared. B, Kaplan–Meier survival curves

(log-rank test). C, B16-OVA–bearing mice

were concomitantly or individually treated

with temsirolimus (temsiro, Tems) and

CCR4 antagonist (1.5 mg/mice) and tumor

growth rates were compared. D, Kaplan–

Meier survival curves (log-rank test).

E and F, FoxP3
þ Tregs staining in spleen at

day25with representative dot plots (E) and

percentage OVA257–264-specific CD8þ TILs

detected by dextramer staining at day 25

(F). n ¼ 5 mice/group were used and

experiments were reproduced two times.
� , P < 0.05; ��, P < 0.01 (Student t test).
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have recently reported by Wang and colleagues, using a RENCA

expressing CA9 as tumor antigen in Balb/C mice (46). These

observations led us to combine rapalogs with strategies that

block Treg cells in vivo (29). Then we found that rapalogs efficacy

was highly improved by combining with an antagonist of

CCR4, a CCL17 and CCL22 chemokines receptor (47) highly

expressed on rapalog-exposed Tregs. This association also pro-

motes a high expansion of anti-OVA CD8þ TILs.

In conclusion, this study clearly indicates that anticancer rapa-

logs shape the host antitumor T-cell immunity and thereby affect

patients' clinical outcome. Because RCC is an immunogenic

tumor and is known to respond to immunotherapies (48, 49),

we believed that there is strong rational to combine rapalogs with

Tregs or immune checkpoint blockade to shift host immune

responses toward protective antitumor immunity.
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