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ABSTRACT. Let 4 be a real B*-algebra containing a *-subalgebra that is *-
isomorphic to the real quaternion algebra H. Suppose the spectrum of every
self-adjoint element in A is contained in the real line. Then it is proved that
there exists a quaternionic Hilbert space X and an isometric *-isomorphism 7
of A onto a closed =*-subalgebra of BL(X), the algebra of all bounded linear
operators on X . If, in addition to the above hypotheses, every element in A is
normal, then A is also proved to be isometrically *-isomorphic to C(Y, H),
the algebra of all continuous H-valued functions on a compact Hausdorff space
Y.

INTRODUCTION

Let 4 be a real B*-algebra containing a *-subalgebra that is *-isomorphic
to the real quaternion algebra. Soffer and Horwitz [7] have shown that the
Gelfand-Naimark-Segal (GNS) construction can be generalized to such an alge-
bra by making use of quaternion linear states. This construction was then used
to obtain a representation of A4 as an algebra of operators on a quaternionic
Hilbert space (module). However, they seem to have overlooked the possibil-
ity that there may not be sufficiently many quaternion linear states on 4. We
give an example of an algebra A satisfying the above properties which does not
have a separating family of quaternion linear states. Thus the claim of Soffer
and Horwitz that it is possible to construct a separating family of quaternion
linear states and hence the weakest topology for which all these functionals are
continuous is Hausdorff, is incorrect. (See Corollary 4.1 of [7].) It is necessary
to have a separating family of states to obtain a faithful representation.

We show that this situation can be remedied by making an additional hypoth-
esis, namely that the spectrum of every selfadjoint element of A4 is contained
in the real line. The necessity of this hypothesis was recognized by Palmer and
others while developing analogues of the classical Gelfand-Naimark theorem to
a real B*-algebra [2, 4, 5, 6]. A x-algebra satisfying this condition is called
hermitian. Every complex B*-algebra is hermitian. A real B*-algebraisa C*-
algebra if and only if it is hermitian. Proofs of all these facts can be found
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in [2, 5, 6]. Reference [10] contains some equivalent conditions guaranteeing
hermitianness.

We further show that, once this hypothesis is made, the conclusions of Sof-
fer and Horwitz can be derived more directly from the above analogue of the
Gelfand-Naimark theorem. This is achieved by showing that the real Hilbert
space obtained by this theorem can be converted into (regarded as) a quater-
nionic Hilbert space by defining a suitable quaternionic inner product on it.

We refer the reader to the paper of Soffer and Horwitz [7] for an excellent
introduction highlighting the relevance of quaternionic Hilbert spaces (and rep-
resentation on such spaces) to quantum mechanics and in particular to quantum
field theories with nonabelian gauge fields. The paper also contains a selected
list of references on this topic.

PRELIMINARIES

R, C, and H stand for the set of all real numbers, the set of all complex
numbers, and the set of all real quaternions respectively. Let 4 be a real algebra
with a unit element 1 and a € 4. The spectrum of a in A is defined by

Sp(a, A) == {s+ it € C: (s — a)? + 2 is singular in 4}.

An involution x on areal algebra A is a map a — a* such thatforall a, b €
A and seR, (i) (a+b)* =a*+b*, (i) (sa)* =sa*, (iii) (ab)* = b*a*, and
(iv) (@*)* =a. A x-algebra is an algebra A with an involution . A subalgebra
(of a x-algebra) that is closed under the involution = is called a *-subalgebra.
A homomorphism ¢ (respectively, isomorphism) of 4 to a *-algebra B is
called a x»-homomorphism (respectively *-isomorphism) if ¢(a*) = (¢#(a))* for
all a € A. A B*-algebra is a Banach algebra 4 with an involution * satisfying
la*a|| = ||a)|* forevery a€ A.

For g =qo+ qii + ¢2j + g3k € H, g* is defined as

" =qo—qii—q2j — sk and |g|* = (g} + g7 + 43 + q3)"/%.
Note that |g|> = ¢*q = gq* . Thus H is a real B*-algebra.

Definiton 1 [7]. Let 4 be a real B*-algebra containing a x-subalgebra B that
is *-isomorphic to the real quaternion algebra H. We shall not distinguish
between the elements of B and H. A linear mapping p: A — H is called
a two-sided quaternion linear functional (relative to B) if p(qaq’) = qp(a)q’
forall a € 4, q,q" € H. (Note that H is identified with B.) A two-sided
quaternion linear functional p is called positive if p(a*a) >0 forallae 4. A
state is a positive two-sided quaternion linear functional p satisfying p(1)=1.

Example 2. Let 4 = H x C. Define the algebraic operations componentwise,
and for (¢, z) € 4 define (q, z)* = (¢*, z) and ||(¢, z)|| = max{|q|, |z|}.
Then A is a real B*-algebra and it contains a *-subalgebra H x {0} that is
x-i1somorphic to H. Now let p be a state on 4. Then

p(0, 1) =p((0, 1)(0, 1)) = p((0, 1)*(0, 1)) > 0
and
—p(0, 1) = p(0, —1) = p((0, ©)*(0, i)) > 0.
Thus p(0, 1) = 0. This shows that the elements (0, 1) and (0, 0) are not
separated by any state on 4. Thus there is no separating family of states on
A. Note that A4 is not hermitian.
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We now show that with the additional hypothesis that A is hermitian, it is
possible to obtain a representation of 4 on a quaternionic Hilbert space. We
include a definition of a quaternionic Hilbert space, for the sake of complete-
ness.

Definition 3. A real vector space X is said to be a (left) quaternionic vector
space if it is a left H module, that is, there is a mapping (¢, x) — gx of
H x X into X satisfying

. (g1 +@)x=qx+qgx foreach q;, e H, xe€ X.
2, gx1+x2)=¢gx;1+gx; forall geH, x;,x€ X.
3. qi(q2x) = (q1q2)x forall ¢;, g €H, x€X.

A quaternionic inner product on a quaternionic vector space X is a mapping
(, ): X xX — H, satisfying

4. (x,x)>0 forall xe€ X and (x, x) =0 if and only if x =0.
5. (¥, x)=(x,y) forall x, yeX

6 (x1+xz,) (x1,¥)+{xz,y) forall x;,x,,yeX.

7. (gx,y)=gq{x,y) forall geH, x,ye X.

A quaternionic inner product space is a quaternionic vector space X with a
quaternionic inner product { , ) defined on it. For such a space X, ||x| :=
(x, x)!/2 isanorm on X that makes X a real normed linear space and ||gx| =
|g|||x|| for all ¢ € H, x € X. In particular, X is a normed left H-module.
If X is complete with respect to this norm, it is called a guaternionic Hilbert
space.

The theory of a quaternionic Hilbert space has been developed in a similar
fashion to that of a real or a complex Hilbert space. (See [7, 9] and the refer-
ences listed therein.) In [7] a quaternionic Hilbert space is called a quaternionic
Hilbert module. We have avoided this nomenclature, as the term “Hilbert mod-
ule” has been used elsewhere with a different meaning. (See, for example, [1].)

We are now in a position to present our main theorem.

Theorem 4. Let A be a real B*-algebra containing a x-subalgebra that is x-
isomorphic to H and suppose Sp(a, A) CR forall a € A with a* =a. Then
there exist a quaternionic Hilbert space X and an isometric x-isomorphism n
of A onto a closed x-subalgebra of BL(X), the algebra of all bounded (real)
linear operators on X .

Proof. Since A is a real B*-algebra and Sp(a, A) C R whenever a = a*, it
follows by a theorem of Palmer that there exist a real Hilbert space X and an
isometric *-isomorphism 7 of A onto a closed *-subalgebra of BL(X). (See
[2, 5, 6] for a proof of this.) We shall show that X is, in fact, a quaternionic
Hilbert space when A4 contains a *-subalgebra that is x-isomorphic to H. It
is easy to see that this x-isomorphism between H and the subalgebra of A4
is also an isometry. (See Lemma 2.1 of [7].) Hence, identifying H with this
x-subalgebra, we may regard H as a subset of 4. Thus for g €¢ H C A4,
n(q) € BL(X). For g € H and x € X, define

(1) gx = n(q)x.
Since 7n(q) € BL(X), we have, for x;, x, € X
n(q)(x1 + x2) = n(q)x1 + n(q)x>.
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Also, since 7 is an isomorphism,

(g + @) = n(q1) + n(q2) and 7=(q192) = 7(q1)7(q2).

Thus, Properties 1, 2, and 3 of Definition 3 are satisfied and X is a quaternionic

vector space. We now define a quaternionic inner product on X as follows.
Let ( , ) denote the original real inner product on X . Define a map

(, Ju: X xX - H by

(2) (X, v = (x, p) + i{x, n(D)y) + j{x, n(j)y) + kix, n(k)y)

for x,ye X.

We shall use the properties of the real inner product ( , ) and the *-
isomorphism n to show that (x, y)y is a quaternioinic inner product. First
note that in view of (1), (2) can be written as

(3) (x, Y= {x, y)+ilx, iy) + j(x, jy) + ki{x, ky).

For g € H and x, y € X we have

4)  (gx,y):=(n(g@)x,y)=(x,n(q)y) = (x, n(q")y) = (x, 4*y).
In particular, if ¢* = —¢, then

(5) (gx,y)=—(x,qy) forallx,yeX,
and hence

(6) (gx,x)=0 forall x € X.
Now, using (6) for g =1, j, k, we get from (3)

(N (x, x)g=(x,x) forall xe X.
Hence

(8) (x,x)g>0 forallxe X and (x,xyu=0 iffx=0.
Next using (5) for g =1, j, k,weget,for x,ye X
) (y,x)u:=<y,x)+l:<y,ix}+j<){,jX>+k(y,kX)
=y, x) = iy, x) = j{jy, x) — klky, x) = ((x, y)u)".
It is straightforward to check that
(10) (X1 +x2, Y)m = (X1, Y)u+ (x2, y)u forall x, x;,y€X.
Further, for x,ye X
(ix, y)u = (ix, y) + i{ix, iy) + jlix, jy) + k{ix, ky)
(11) = —{x, i) —i(x, 2y) = j{x, ijy) - k{x, iky) (by (5)),
= —(x, iy)+ilx, y) = jlx, ky) + k(x, jy) = i{x, y)u.
Similarly,
(12) (x,y)u=J{x,y)m and (kx,y)m=k(x,y)g foralx,yeX.
Hence for any q = qo + q1i + g2 + g3k € H, it follows from (11) and (12) that

(13) (gx, y)u=q(x,y)u forallx,yeH.
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Equations (8), (9), (10), and (13) imply that ( , )y is a quaternionic inner
product on X . Further, (7) shows that the norm induced by the quaternionic
inner product ( , )y on X coincides with the norm induced by the original
real inner product { , ). Since X is complete with respect to this norm, it is
a quaternionic Hilbert space. O

Remark 5. Note that in the course of the proof of Theorem 4, we have proved
the following: Let 4 be a real B*-algebra containing a x-subalgebra that is *-
isomorphic to H. If there exists a real Hilbert space X and a *-homomorphism
n of A4 into BL(X), then X is a quaternionic Hilbert space.

Corollary 6. If, in addition to the hypotheses in Theorem 4, every element in A
is normal, then A is isometrically x-isomorphic to C(Y , H), the algebra of all
continuous H-valued functions on a compact Hausdorff space Y .

Proof. Since every element in A4 is normal, by Theorem 3 of [4], 4 is isomet-
rically *-isomorphic to a closed x-subalgebra 4 of C(Y, H) for some compact
Hausdorff space Y. Since A contains a x-subalgebra that is x-isomorphic to
H, a straightforward application of the real Stone-Weierstrass theorem shows
that A= C(Y, H). (See [8] for details.) O

Remark 7. Just as Theorem 4 (which gives a representation of 4 on a quater-
nionic Hilbert space) is an analogue of the general (real or complex) Gelfand-
Naimark theorems (which give a representation of 4 on a real or complex
Hilbert space), Corollary 6 (which gives a representation of A as an algebra of
quaternion-valued functions on a compact Hausdorff space) is an analogue of
commutative Gelfand-Naimark Theorems (which give a representation of A as
an algebra of complex-valued functions on a compact Hausdorff space).
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