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Abstract. For a compact Hausdorff space X , let C{X, H) denote the set of
all quaternion-valued functions on X . It is proved that if a real B* -algebra A
satisfies the following conditions: (i) the spectrum of every selfadjoint element
is contained in the real line and (ii) every element in A is normal, then A
is isometrically *-isomorphic to a closed *-subalgebra of C(X, H) for some
compact Hausdorff X . In particular, a real C*-algebra in which every element
is normal is isometrically *-isomorphic to a closed »-subalgebra of C{X, H).

Introduction
Let A be a real or complex normed algebra with an involution * . Obviously,

if A is commutative then every element in A is normal. The converse is also
true for complex algebras, because the normality of a — h + ik with h, k
selfadjoint implies that h and k commute. Since every element in A can be
expressed uniquely in the form h + ik, with h and k selfadjoint, the algebra A
is commutative. However, this is not true for real algebras. The algebra H of
all real quaternions with the usual involution is noncommutative, though every
element in H is normal. The aim of this paper is to show that, under certain
assumptions, the algebras of H-valued functions are essentially the only real
algebras in which every element is normal. Viswanath [9] has shown that such
algebras arise naturally in the study of normal operators on real Hubert spaces.

Preliminaries
We denote the set of all real numbers by R, the set of all complex numbers

by C, and the set of all real quaternions by H. Let A be a real algebra with
a unit element 1 and a an element of A . We adopt Kaplansky's definition of
the spectrum of a in A denoted by Sp(a, A) (or simply by Sp(a) when no
confusion is likely).

Sp(a, A) := {s + it e C: (s - a)2 + t2 is singular in A} .
If A is a Banach algebra, then the spectral radius of an element a in A is
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given by the spectral radius formula

r(a):= lim \\an\\x/n = supUs2 + t2)x/2: s + it e Sp{a, A)}.
n—»oo

(See [2, 4] for a proof.)
Our proof of the main result in this note depends on the following theorem

proved in [6].

Theorem 1 [6, Theorem 11]. Let A be a real Banach algebra with a unit 1 and
suppose \\a\\ < ar(a) for every a in A and some constant a > 0. Let c e A
be such that Sp(c) ç R and b any element of A. Then cb = be, that is, the
set of all elements with the real spectra lies in the centre of A.

As usual, an involution on a real algebra A is a map a —> a* such that for
all a,b in A and 5 in R: (i) (a + b)* = a* + b*, (ii) (sa)* = sa*, (iii)
(ab)* = b*a*, and (iv) (a*)* - a . An algebra A with an involution * is called
a *-algebra. It is called an auto ^-algebra if condition (iii) is replaced by (iii)'
(ab)* — a*b*. A is called a generalized *-algebra if it is a *-algebra or an auto
*-algebra (cf. [4, 7, 8]). In the sequel, we shall use many results of [4]. These
results were claimed to have been proved for a generalized *-algebra. Magyar
[7] has pointed out that the proof of Theorem 2.3 in [4] does not work for an
auto *-algebra and has supplied a proof that works. This does not affect the
results in the present paper, as we shall deal only with a *-algebra. Some related
topics are also discussed in [7] and [8].

Let A be a real *-algebra. A subalgebra that is closed under the involution
* is called a *-subalgebra. An element a is called selfadjoint if a* = a, skew
if a* — -a, and normal if a*a — aa*.

Let Sym(^) := {a e A: a* = a} and Skew(^4) := {a £ A: a* = -a}. A B*-
algebra is a Banach algebra A with an involution * satisfying ||<z*a|| = ||fl||2
for every a in A .

For q = qo + qxi + q2j + q¡k in H , q* is defined as q* = qo - qx i - q2j - q^k
and |<?| is defined as

\q\:=tq$ + qf + qi + qi)l/2.
Note that \q\2 = q*q = qq*. qo = (q + q*)/2 is called the real part of q
denoted by Re(<?). H is a real 5*-algebra. For a compact Hausdorff space
X and a normed linear space E, CiX, E) denotes the set of all continuous
F-valued functions on X . For / in C(X, E), let

11/11 :=sup{||/(x)||:xe*}.
For / in C(X, H), let /*(*) := (fi(x)f for all x in X. Then * is an
involution on C(X, H), and || || is a norm on C(X, H) making it a real B*
algebra.

In the remaining part of this note A is a real 5*-algebra with a unit 1,
satisfying the following conditions:

(I)   Sp(a) ç R for every a in Sym(/1),
(II)  Every element in A is normal.

5* condition implies that Sp(a) contains no nonzero real number if a* = —a
[4, Theorem 2.4]. This along with (I) yields that Sp(a*tf) ç [0, oo) for every
a in A by Theorem 2.3 of [4]. (See also [5].)
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Note that H and C{X, H) satisfy (I) and (II). So does any *-subalgebra of
C{X, H). It will be proved that A is isometrically * isomorphic to a closed
*-subalgebra of C(X,H) for some compact Hausdorff space X.

Lemma 2. (i) ||<z|| = r(a) for all a in A and Sym(A) is a commutative real
Banach algebra.

(ii) For every nonzero homomorphism tp of Sym(A) to R, there exists a
nonzero homomorphism n of A into H such that n(a) = tp(a) for every a in
Sym(A).
Proof, (i) First 5* condition implies that \\h2\\ = \\h\\2 for every h in Sym(A).
Since a*a e Sym^) for each a in A , we can use (II) to obtain

(||a||2)2 = ||a*a||2 = ||(a*a)2|| = ||a*(aa*)a|| = \\a*a*aa\\
= ||(a2)V|| = ||a2||2,

so that ||a||2 = ||a2|| for each a in A . Next, by induction,

||íz||2" = ||a2"||   for «=.1,2,3,....

By taking the 2"th root and applying the Spectral radius formula, we get, ||£z|| =
r(a) for every a in A .

Now (I) and Theorem 1 imply that every selfadjoint element lies in the centre
of A . In particular, Sym(/i) is a real commutative Banach algebra with 1.

(ii) In view of (i), there exists a nonzero homomorphism tp of Sym(A)
into R. (In fact, Sym(/4) is isometrically isomorphic to C(7,R) for some
compact Hausdorff space y by a theorem of Arens [2-4].) Let tp be such a
homomorphism. We have tp(l) — 1 and

\\tp\\ := sup{\tp(a)\: a £ Sym(A), ||a|| < 1}= 1.
Also since Sp(a*a) ç [0, oo), we have, for every a in A , s + a*a is invertible
in A for every e > 0. Clearly (e+a*a)~x e Sym(^). Thus tp(a*a+ß) j= 0; that
is, tp(a*a) / -e for every e > 0. Hence <p(a*a) > 0. We define ip: A —> R as
\p(a) := tp((a + a*)/2) for all a in A . It is easy to see that ip is a continuous
hear functional on A, \p(l) = 1 = ||^||, y/(a*) = ip(a) for every a in A and
ip(a*a) = tp(a*a) > 0 for every a in A. In other words ip is a normalised
real state on A. Hence by Proposition 14.3 of [2], tp(b*a)2 < y/(a*a)ip(b*b)
for every a , b in A . Hence

y/(ab)2 = <p((a*)*b)2 < y(aa*)W(b*b)
= y(a*a)y(b*b)   by (II).

Now let Nv = {a £ A: y/(a*a) - tp(a*a) = 0}. The inequality (1) above
implies that Nv is a two-sided ideal in A . It is closed as tp is continuous.
Hence My, := A/Nv is a Banach algebra (with the quotient norm) with the unit
1    +   Ny,..

Claim. My, is a division algebra. Suppose for some b in A, b + Ny, f
Ny,. This means ip(b*b) ^ 0. Let c := b*/y/(b*b) and h := cb - 1 . Then
h £ Sym(A) and >p(h) = 0 = tp(h). Hence ip(h*h) = <p(h2) = <p(h2) = 0 as tp
is a homomorphism on Sym(/4). Hence h e N¥ . Then (c + Nv)(b + N¥) =
1 + Ny,. Similarly, using normality of b , we can prove (be - 1) € Nw ; that is,
(b + Ny,)(c + Ny,) = I + Ny,. This proves the claim.
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Now by a theorem of Mazur and Arens [2, Theorem 9.7; 1, Theorem 14.7],
there is an isomorphism 0 of My, onto R, C, or H. Then n : A —► H defined
as n(a) := d(a + N¥)  is a homomorphism.   It is nonzero because zr(l) =
6(l+Ny,)=    1.

Now suppose a e Sym(^4) and tp(a) = 0. Then

>p(a*a) = tp(a*a) = tp{a2) = {tp{a))2 = 0.

Hence a £ Ny, and n(a) = 0. Further, if b e Sym(^4) with tp{b) ̂  0, then
we consider a — I - b/tpib). Clearly, tp{a) = 0. Hence, by what we have
proved just now, n{a) = 0; that is, tpib) = n(b). Thus for all c in Sym(A),
tp(c) = n(c).   O

Throughout this paper, by a "homomorphism," we mean a morphism of real
algebras. It is worth mentioning here that if tp is a nonzero morphism of rings
from R into itself then tp is the identity map on R. Hence if n is a nonzero
morphism of rings from A into H suchthat n takes the (real) scalar multiples
of 1 to reals, then n is a morphism of real algebras, that is, a homomorphism
in our sense. Now let X be the set of all such nonzero homomorphisms of A
into H. X is nonempty by Lemma 2. For a in A , we define a map â : X —> H
by â(n) = n(a) for all n in X. Let A :— {â: a £ A}. We give X the weak A
topology (that is, the weakest topology on X making â continuous for each a
in A). Now we are in a position to prove the main theorem.

Theorem 3. (i) For each it in X,

||7t|| := sup{|7r(a)|: a £ A, \\a\\ < 1} = 1.

(ii)   X is a compact Hausdorff space iwith respect to the weak A topology).
(iii) For each n in X and a in Sym(A), n(a) is real.
(iv) For each n in X and a in Skew(^), Re(n(a)) = 0.
(v) For each n in X and a in A, n(a*) = (n(a))*.

(vi)   A  is a closed *-subalgebra of C(X, H)  and the map a —> â  is an
isometric ^-isomorphism of A onto A.

Proof, (i) We have already noted in Lemma 2 that r(a) — \\a\\ for all a in A .
Since H also satisfies the conditions assumed of A, r(q) = \q\ for all q in
H. Further, if (a - s)2 + t2 is invertible for a in A and s + it in C, then
for a homomorphism n in X , n((a - s)2 + t2) = (n(a) - s)2 + t2 is invertible.
Hence Sp(zr(a)) ç Sp(a). This shows that \n(a)\ = r(n(a)) < r(a) = \\a\\. Thus
||7r|| < 1. Since n(l) — 1, we have ||7t|| = 1 .

(ii) Let nx, n2 be distinct homomorphisms in X. Then nx(a) / n2(a) for
some a in A. Hence we can find disjoint open sets Gx and G2 containing
nx(a) and n2(a), respectively. Then the inverse images of Gx and G2 under
à are disjoint open sets (in the weak A topology) in X containing nx and
n2, respectively. This shows that X is Hausdorff. Next, we define Ka :—
{q £ H: |û| < ||a||}. Then Ka is compact in the topology of H. Let K be
the topological product of Ka for all a in A. Then K is compact by the
Tychonoff theorem. Now let n e X. Then, from (i), n(a) £ Ka for each a
in A . Thus n e K . Hence X is a subset of K. Now it is straightforward to
show that the relative topology on X is the same as the weak A topology and
that X is a closed subset of K. Hence X is compact.
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(iii) Let a £ Sym(^), n e X, and n(a) = s + t, where 5 is real and
t = txi + t2j + t3k. If r^O.let b:={a-s)/{2\\a-s\\) ¿0. Then b£Sym(A)
and ||è|| < 1. By Ford's square-root lemma [1, Proposition 12.11], there exists
c in Sym(/4) such that 1 - b2 = c2. Thus,

|l-7r(è2)| = |7r(c2)|<||c||2    by (i).

Since Sym(A) is isometrically isomorphic to C(7,R) for some compact Haus-
dorff space Y and b, c e Sym(,4), we have ||c||2 < ||c2 + ¿>2|| = ||1|| = 1 . Thus,

\l-t^{^a-s\\2)\ = \l-n{b2)\<\\c\}2<l.
This shows that t2 > 0. But t2 = -(t\ + t\ + t\) < 0. Hence t = 0 and
n(a) = 5.

(iv) Let a £ Skew(,4), n e X, and n(a) = s + t, where s is real and
t = txi + t2j + t$k . We shall show that s = 0. Consider b — a + a for a in
R. Then b* = -a + a and

(s + a)2 + t2 + t2 + t2 = \7t(b)\2<\\b\\2    by(i)

= \\b*b\\ = \\a2-a2\\<a2 + \\a\\2.

Since this is true for every real a, we must have 5 = 0.
(v) Let a £ A. Then a = b + c, where b — {a + a*)/2 e Sym(^) and

c — {a - a*)/2 £ Skew(^4). Hence for every n in X , nib) is real by (iii) and
Re7i(c) = 0 from (iv). Hence {ii{b))* = nib) and {it{c))* = -nie). Thus

nia*) = n(b - c) = n(b) - n{c) = (n(b))* + (n(c))*
= {nib + c))* = {n{a))*.

(vi) It is obvious that A is a subalgebra of C{X, H) and the map a —> â
is a homomorphism. It follows from (v) that (a*)" = (â)* for each a in A .
Thus A is a *-subalgebra and the map a —► â is a *-homomorphism. Further,

||â|| := sup{|â(7r)|: n e X}
= sup{|7i(a)|: n e X} < \\a\\   by (i).

For every a in A, a*a e Sym{A). Since Sym(yl) is isometrically isomor-
phic to C{Y, R) for some compact Hausdorff space Y , there exists a nonzero
homomorphism tp of Sym(^) into R such that \<p{a*a)\ = \\a*a\\. Now by
Lemma 2, there exists n in X such that n = tp on Sym(v4). Thus,

||a||2 = ||a'a|| = \tp(a*a)\ = \n(a*a)\ = \n(a*)n{a)\
= \{nia))*n{a)\ = \n{a)\2,

that is, ||a|| = \â{n)\. Hence ||a|| = ||a|| for every a in A . This shows that the
map a —> â is an isometry from A to A. In particular, it is 1 -1, and hence
an isometric *-isomorphism. This also implies that A is complete and hence
closed in C{X, H).   □
Remark 4. The presence of a unit in A is not essential in Theorem 3. If A
does not have a unit then the spectrum of an element a in A is defined as

Sp(a, A) = {0} U {s + it £ C\{0} : {2sa - a2)/{s2 + t2)
is quasi-singular in A}.
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Suppose A is a real 5*-algebra without unit and let a —» La be the left
regular representation of A on A .

Let 5 = {La + si: a £ A, s e R}, where / denotes the identity operator.
We define an involution on 5 by

(La + si)* = La. +sl   for all a e A , s e R.

Yood has shown that 5 is a 5*-algebra with a unit / and the map a ^ La
is an isometric *-monomorphism of A into 5 (see [1, p. 67]). Further, it is
straightforward to check that if A satisfies the conditions (I) and (II), then so
does 5.
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