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In soft amorphous materials, shear cessation after large shear deformation leads to structures

having residual shear stress. The origin of these states and the distribution of the local shear

stresses within the material is not well understood, despite its importance for the change in mate-

rial properties and consequent applications. In this work, we use molecular dynamics simulations

of a model dense non-Brownian soft amorphous material to probe the non-trivial relaxation pro-

cess towards a residual stress state. We find that, similar to thermal glasses, an increase in

shear rate prior to the shear cessation leads to lower residual stress states. We rationalise our

findings using a mesoscopic elasto-plastic description that explicitly includes a long range elastic

response to local shear transformations. We find that after flow cessation the initial stress re-

laxation indeed depends on the pre-sheared stress state, but the final residual stress is majorly

determined by newly activated plastic events occurring during the relaxation process. Our simpli-

fied coarse grained description not only allows to capture the phenomenology of residual stress

states but also to rationalise the altered material properties that are probed using small and large

deformation protocols applied to the relaxed material.

1 Introduction

Soft glassy materials are ubiquitous in our everyday life and find

their application in various domains, such as food science, phar-

maceutical engineering or medical applications1,2. Being easier

to handle and visualise in experimental setups, these materials

have become a playground for analysing diverse mechanical re-

sponse of amorphous solids in general, since many features are

common to both hard and soft materials.

Despite a large body of empirical knowledge, the fundamental

understanding of the mechanical behaviour of dense disordered

materials is still a work in progress1–5. Besides many interesting

properties in the deformation process, like complex yielding phe-

nomena and non-trivial rheology with possible flow localization,

these materials also display fascinating behaviour once they are

let to relax. The most striking observation is that they can hold

internal stresses even long after the cessation of their mechani-

cal stimulus6. Such locked-in stresses, known as residual stress,

can occur from diverse procedures, e.g. at the end of thermal

quenches (e.g., Rupert’s drop7,8), due to chemical processes (e.g.,
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Tempered glass9) or by the cessation of some external mechanical

drive10. Understanding how such residual stresses are created is

of fundamental interest, within the broader framework of identi-

fying specific microscopic processes responsible for the observed

mechanical properties of amorphous systems. Further, knowing

how such stresses build up during the formation of the material,

is also of practical importance, since there can be both detrimen-

tal or beneficial aspects depending upon the specific functional

aspects of the material under consideration6. For example, in

many cases, residual stresses can lead to materials being more

prone to fracture11. On the other hand, such stresses also allow

some materials to be resistant or control the extent of failure12,13.

Therefore, the ability to control the extent of residual stresses is

significant for the design of new material properties, and thus

there is a need for better understanding of the processes involved.

In the context of soft amorphous materials, various studies have

recently extensively explored the occurrence of residual stresses,

via switching off the flow driven by an external shear-rate1,14–21.

For the case of non-Brownian systems (e.g. emulsions), upon

switch off, the shear stress, accumulated hitherto during flow,

decays rapidly followed by a slower relaxation to an eventual

plateau, i.e. a stuck state with a well-defined residual stress is

obtained19,20. Further, a scaling relation between initial stress,

at the point of shear switch off, and the corresponding locked-in
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stresses was revealed. For the case of Brownian systems (e.g. col-

loidal glasses, gels), the eventual plateau is not observed. Rather,

a power-law decay in stress continues to occur, due to aging pro-

cesses characteristic to glasses18. Mode coupling calculations for

model glassy systems also report similar behaviour22.

In this work, we probe the origin of residual stresses in model

athermal amorphous systems, via a combination of microscopic

and mesoscale simulations. First, using molecular dynamics sim-

ulations of a model dense non-Brownian soft amorphous mate-

rial, we demonstrate that dynamically arrested states having fi-

nite residual stresses are obtained upon the cessation of an ap-

plied shear, consistent with experimental observations. As is also

demonstrated via experiments, the final residual stress depends

upon the strain-rate at which the system was being driven, prior

to the switch-off of shear; larger shear-rate for the initially flow-

ing states lead to eventual arrested states having lower residual

stress. We rationalise our findings using a mesoscopic elasto-

plastic description that explicitly includes a long range elastic re-

sponse to local shear transformations.

In a serious of works, it has been shown that these type of

elasto-plastic descriptions account for various phenomena in the

deformation process of dense disordered media. Since their in-

troduction for the description of local plasticity23–25, they have

been used in a variety of contexts. Notably they have extensively

used to study critical fluctuations in the yielding transition26–30

as well as in the vicinity of a finite shear rate critical point31,32.

Further, they have been useful for the understanding of strain lo-

calization33,34 and permanent shear banding35,36, and also creep

phenomena37,38. And more recent developments have been suc-

cessful to establish a more quantitative link between these coarse

grained elasto-plastic descriptions and the microscopic dynamics

measured in particle-based simulations39–43.

Our elastoplastic model, used in this study, exhibits all the phe-

nomenological observations related to residual stress measure-

ments, observed in experiments and our microscopic simulations.

Using the ability to track local plastic events in such elastoplastic

models, we provide a semi-analytical analysis of the formation of

residual stresses after the flow cessation. Our significant finding

is that the final residual stress is majorly determined by newly

activated plastic events occurring during the relaxation process,

after the shear switch-off. Finally, using both the microscopic and

mesoscale model, we illustrate that states having less residual

stresses are more rigid, which becomes evident via the observed

transient response to applied external shear.

The paper is organised as follows. After the introductory dis-

cussion in Section 1, we elaborate the microscopic and mesoscale

models that we have studied in Section 2, along with the the

methods involved in the numerical simulations. In Sections 3 and

4, we report and discuss the measurement of residual stresses

in the microscopic and mesoscale models. In Section 5, we pro-

vide the semi-analytical analysis rationalising the observations re-

garding the residual stress measurements. In Section 6, we illus-

trate some of the mechanical characteristics of the residual stress

states. Finally, in Section 7, we provide a concluding discussion.

2 Model and protocol

2.1 Molecular dynamics simulations

In our study, the dense amorphous solid is modelled as a non-

Brownian suspension of soft repulsive spheres, at a volume frac-

tion φ ≈ 70%, consisting of 97556 particles, with repulsive effec-

tive interactions mimicked via a truncated and shifted Lennard-

Jones potential44 given by U(r) = 4ε
[

(ai j/ri j)
12 − (ai j/ri j)

6
]

+ ε,

for ri j ≤ 21/6ai j, else U(ri j) = 0. Here ε is the unit energy in the

simulations, ri j being the center to center distance between the

particle i and j and ai j = 0.5(ai +a j), with ai and a j being the di-

ameter of particles i and j respectively. The diameters of the parti-

cles are drawn from a Gaussian distribution with variance of 10%,

whose mean is used as unit length a. We prepare the initial sam-

ples by quenching high temperature liquid states (T = 5ε/kB) to

low temperature (T = 0.01ε/kB) using a NVT Molecular Dynam-

ics protocol at a fixed cooling rate Γ (10−4ε/kBτ0). Each sample

is subsequently brought to the closest energy minimum and to

kBT/ε ≈ 0 via energy minimization. Under athermal conditions,

these samples are subjected to a shear rate γ̇ using Lees-Edwards

boundary conditions (LEBC) and solving the following dissipative

particle dynamics (DPD) based equations of motion.

m
d2

ri

dt2
=−ζDPD ∑

j( 6=i)

ω(ri j)(r̂i j.vi j)r̂i j −▽ri
U (1)

where m is the mass of the particle, the first term in the right hand

side (RHS) is the damping force which depends on the damping

coefficient ζDPD. We have taken ζDPD = 1.0 that guarantees min-

imum inertial effects45. The relative velocity vi j = v j −vi is com-

puted over a cut-off distance ri j ≤ 2.5ai j, with the weight factor

ω(ri j) = 1. The second term in the RHS is the force due to interac-

tions between particles. In all our simulations [x,y,z] dimensions

refers to flow, gradient and vorticity directions respectively. The

shear stress is computed from the complete virial stress tensor as

σxy ≡ σ = 1
V ∑i ∑ j>i xi j f

y
i j, where V(= lx ∗ ly ∗ lz) is the volume of

the system, xi j represents x-component of the distance between

particle i and j and f
y
i j is the y-component of force on the particle

i due to j.

Also, for the residual stress states, we compute the storage

modulus by performing small strain oscillatory shear simulations

via the application of a shear strain γ(t) = γ0sin(ωt), with a strain

amplitude of γ0 = 1%. Computing the stress response for frequen-

cies ω, from the steady state regime we extract visco-elastic coef-

ficient using

G′(ω,γ0) =
ω

γ0π

∫ t0+2π/ω

t0

σxy(t)sin(ωt)dt (2)

The storage modulus is obtained using G′ = G′(ω → 0,γ0).

All the microscopic simulations are done using LAMMPS46,

with a modification to handle polydispersity in size.

2.2 Mesoscopic simulations

The mesoscopic simulations we perform in this study are based

on an elasto-plastic model for a yield stress material under steady

shear at an applied shear rate γ̇. The model consists of a regular
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square lattice with each lattice site representing an elasto-plastic

element holding a shear-stress variable evolve according to

∂σi

∂ t
= µγ̇ +µ ∑

j

Gi j

∂γ
pl
j

∂ t
(3)

where σi is the scalar shear stress component at a site i, µ is the

material dependent shear modulus, and hence µγ̇ is the elastic

contribution to the evolution of stress. The second term on the

right hand side (RHS) accounts for the change in stress due to

local plastic yielding. Here ∂γ
pl
j /∂ t is the rate of plastic strain

deformation and Gi j ∝ cos(4θ)/r2 is the Eshelby kernel which ac-

counts for the stress redistribution due to a plastic event. The sum

over j in the second term on the RHS represent the rate of local

elastic deformation associated with the response to a plastic de-

formation on a distant site j. At the plastically deforming site, the

relaxation dynamics is modeled as Maxwellian visco-elastic relax-

ation ∂γ
pl
j /∂ t = (1/µτ)n jσ j, where τ is the characteristic time for

stress release in a plastic phase, a system property which depends

on the volume fraction φ , n j is the local state variable which refer

to the local activity. n j = 1, if the site is in the plastic phase, oth-

erwise n j = 0. Similar to Ref.47, a stochastic dynamics is followed

for the evolution of state variable n. If at a given site i the system

has σi < σy, with site variable ni = 0, according to equation 1, the

stress changes due to elastic contribution (µγ). If the local stress

σi is greater than the local yield stress σ i
y, the ni transform from 0

to 1 within a time period of τpl . Once the system yields, the stress

relaxation has a local contribution as well in the second term in

the equation 1. Within the plastically active element the stress

relaxes as e−gt/τ during a typical time τres, where g is numerical

value of the propagator at site i, Gii, that insures mechanical equi-

librium. In two dimensions in the large system limit the value of

g tends to g ≈ 0.57.

In our model the active state (n j = 1) relaxes back to 0 with a

rate τ−1
res , where τres is the typical local restructuring time of the

material to regain its local elastic properties after a local yield

event. In our protocol the time scales τpl and τres are typically

smaller than the driving time scale τa = γ̇−1. The distribution

of local yield stress threshold values follows from an argument

wherein yielding is considered as a jump in the potential energy

landscape (PEL) with energy barrier Ey = σ2
y /4µ. The distribution

is given by P(Ey) = Θ(Ey −Emin
y )λexp(−λ (Ey−Emin

y )), where Emin
y

term considers only larger jumps ignoring the small jumps within

the metabasins of PEL, the parameters λ and Emin determine the

average yield strain γy. We choose Emin = 0.001 and λ = 2015 such

that we obtain strain overshoot in the shear start-up regime while

performing re-shear simulations, reaching a residual stress state.

We emphasise here that our objective is not develop a

mesoscale model of the microscopic model that we study. Rather,

the objective is to demonstrate that the mesoscale model qualita-

tively reproduces the phenomenology observed in the microscale

model and thereafter use the simplicity of the mesoscale model to

gain insights into the physical processes involved in the creation

of residual stresses in amorphous solids.
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Fig. 1 Microscale particulate model. (a) Relaxation of shear stress

(σ ) when the external drive (imposed shear-rate) is switched off, while

in steady state flow. The arrow shows the direction of increasing shear-

rate (γ̇). (inset) Load curve (σ vs. strain γ) showing the start-up to steady

state regime, for different shear rates, prior to switch-off. (b) The stress σI

at the shear switch-off (red square), the residual stress σR reached at the

end of stress relaxation upon switch-off (black circle) and ∆σ = σI −σR

(blue diamond), shown for two different system sizes (see labels) as a

function of the imposed shear rate.

3 Approach to residual stress states in mi-

croscopic simulations

In this section, we discuss our microscopic simulation results re-

lated residual stress states and it’s dependence on the shear rate.

As discussed above, we initially impose an external shear de-

formation at a chosen shear rate γ̇ till the system reaches a steady

state regime. The corresponding variation of shear stress (σ) with
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shear strain (γ), for different imposed γ̇ is shown in the inset of

Fig.1(a). Once in steady state, we switch off the external shear

and allow the accumulated stress to relax while keeping the strain

fixed. The stress decreases with time and is observed to reach a

finite saturation value, which is referred to as the residual shear

stress σR of the system. To obtain good statistics for σR, we not

only perform three different independent runs, but also relax the

system from 5 different flow cessation points for each run. Fur-

ther, we check for finite size effects by probing the behaviour for

two different system size, viz. N=91556 and N=10976.

The relaxation of stress, for the different imposed shear-rates, is

shown in the main panel of Fig.1 (a). At a given shear rate, upon

flow cessation, the stress relaxes steadily at small times, followed

by a dramatic decrease and eventual arrest to a fixed value. Also,

the timescale for the stress relaxation is fastest for the largest γ̇

and slows down with increasing shear-rate. These features are

similar to previous reported work on emulsions19 and attractive

gels21, and unlike thermal glasses where aging continues after

the initial stress relaxation18. The dependence of σR upon the

initially imposed γ̇ is shown in the Fig. 1 (b). Consistent with

previous reports, σR decreases with increasing γ̇. Also shown in

Fig. 1 (b), are the values of the shear stress at flow cessation σI

and the difference between the stress in flow and and the residual

stress at arrest, ∆σ = σI −σR. The shear rate dependence of σI

is well described by the Herschel-Bulkley function σy + κγ̇n, as

expected, where the dynamic yield stress σy = 2.7ε/a3 and the

exponent n = 0.7. In the limit of vanishing γ̇, as the stress in the

system reaches the dynamic yield stress, ∆σ approaches to zero,

i.e. the residual stress value coincides with the dynamical yield

stress. On the other hand, with the increase in shear rate where

the σR decrease, ∆σ increases following a power-law profile (solid

lines in the Fig. 1 (b)). Finally, note that, we find that there is

very little variation observed with changing system size (as seen

from the open symbols with the opaque symbols in Fig. 1 (b)).

In the case of thermal glasses, Ballauff et al.18 associate the

residual stresses with the long-lived memory effects of the pre-

sheared glasses which introduce supra-caging lengthscale in the

system. Long time stress relaxation are associated with ageing ef-

fects. In the case of non-Brownian colloidal gel like systems, Mo-

han et al.19 find microstructural signature of the stress relaxation

which associate with different structural rearrangements. An ini-

tial rapid relaxation is associated with unjamming process where

in a ballistic motion is observed and long time slow relaxation is

associated with cage breaking process. In this work we address

the questions related to approach towards residual stress state us-

ing a elasto-plastic model based approach using mesoscopic sim-

ulations.

4 Approach to residual stress states in

mesoscale simulations

Similar to particulate simulations, in the mesoscale simulations,

upon flow cessation, the sheared state relaxes to a state having

finite residual stress (Fig. 2(a)). The start-up to steady state evo-

lution of the stress is shown in the inset of top panel of Fig.2 (a),

and the relaxation of the shear stress, after the flow cessation, is
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Fig. 2 Mesoscale model. (Top) Relaxation of shear stress (σ ) when the

external drive (imposed shear-rate) is switched off, while in steady state

flow. The arrow shows the direction of increasing shear-rate (γ̇). Overall

behaviour is similar to the response observed in microscale simulations

as shown in Fig.1. (inset) Load curve (σ vs. strain γ) showing the start-

up to steady state regime, for different shear rates, prior to switch-off.

(Bottom) The stress σI at the shear switch-off (red square), the residual

stress σR reached at the end of stress relaxation upon switch-off (black

circle) and ∆σ = σI −σR (blue diamond), shown for N = 10242 as a func-

tion of the imposed shear rate (system size dependence is shown in the

inset). Again, overall behaviour similar to what is observed in particulate

model; see Figs.2.

shown in main panel Fig.2(a). In the mesoscale model, the flow

cessation is mimicked by turning off the first term (µγ̇) in the

RHS of Equation 1. The variation of the σR with the shear-rate

during flow, γ̇, is shown in Fig.2 (b), along with the stress (σI) at

which the switch off occurs, and the corresponding stress differ-
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ence ∆σ = σI −σR. The qualitative behaviour of all these quanti-

ties is very similar to what has been observed for the particulate

system, as shown in Fig.1. The data for σI can also be fitted with

a Herschel Bulkley law, obtaining σy = 0.06 and n = 0.8. Again,

the system size dependence for ∆σ does not show much varia-

tion (Fig.2 (b) inset). Thus, overall, the mesoscale model can

successfully reproduce all the qualitative features related to the

observations on residual stress that we obtain in the microscopic

model.

By construction, the mesoscale simulations provides easy ac-

cess to local yielding events or plastic events and its spatio-

temporal evolution and hence we utilize these simulations to

analyse the process of approaching the locked-in or residual stress

state and it’s dependence on flow rate prior to shear switchoff.

4.1 Mesoscale stress relaxation maps

To begin with we study, in the mesoscale simulations, how well

the the configurations at the flow cessation regulate the final

residual state.

In Fig. 3 (a-c) we show the local activity map of the initial con-

figurations for three different shear rates. In the maps the yielded

sites (ni = 1) (hereby termed active) is represented by black color

and the yellow depicts the elastic sites (ni = 0) (henceforth termed

inactive). As expected, with the decrease in shear rates (see Fig.

3 (a-c)), the number and also the spatial density of active sites de-

creases. Naively, one expects that when the shear is switched off,

these active mesoblocks release their stress and become inactive,

leading to the residual stress states. However spatial maps of local

stress difference between initial flowing and final arrested states,

viz. ∆σi = (σI −σR)i (see Fig. 3 (d-f)) tell a different story. We

observe that ∆σi is finite in sites beyond the initial active sites,

which is very evident even at the low shear limit, see Fig.3(f).

This clearly indicates that the stress relaxation process, upon flow

cessation, involves more sites than the ones which were active at

the time of shear switch-off, and spatial scale of this become more

and more extensive with increasing pre-sheared γ̇.

4.2 Activity statistics in mesoscale model

Following the above analysis vis-a-vis the stress difference maps,

we now proceed to quantify our observations.

We start by identifying the active sites at the time of shear

switch-off and compute the fraction of such sites in the system, a0.

During the stress relaxation, we monitor these identified sites and

check how many remain active at any time instant, and thereby

arrive at the time evolution of a0(t). At any time instant, we also

count the overall fraction of observed active sites, as(t). The dif-

ference, as(t)− a0(t), gives the fraction of sites that have been

newly activated. In the inset of Fig. 4 (a), for system size of 10242,

we show how a0, as and the difference as − a0 evolve in time,

for the case of relaxation from a state that was being sheared at

γ̇ = 10−3τ−1. We find that from very early times, as(t) > a0(t),

indicating the formation of new active sites. This is evident from

the behaviour of as(t)−a0(t), which grows with time as relaxation

proceeds, goes through a maximum and then eventually decays.

Further, we also note that a0(t), i.e. the original active sites, de-

plete very soon, whereas as(t) takes longer time to die out, imply-

ing that the late time relaxation is due to the decay of the newly

activated sites.

In the main panel of Fig. 4 (a), we show the time evolution

of as(t)−a0(t) for different values of shear-rate at which the sys-

tem was flowing prior to shear switch-off. In all cases, we observe

the non-monotonic growth and decay of the newly activated sites.

The peak in as(t)−a0(t) is highest for the case of switch-off from

the largest shear-rate and decreases with decreasing shear-rate.

The presence of larger fraction of active sites at the point of switch

off from a flow having large shear-rate, is likely to lead to gener-

ate more active sites and therefore larger peak. Next, as is the

case with residual stress, the eventual decay in the number of ac-

tive sites is fastest for the case of shear switch-off from the flowing

state having the highest shear-rate.

In Fig. 4 (b), we show the rate of production of the new active

sites, directly measured from the mesoscale simulations. As is

evident, the rate is higher for the case of the flowing state having

largest shear-rate and the decay is also fastest, as pointed out

above.

Both Fig. 4 (a) and (b) show that beyond a certain time the

system no longer creates new active sites (or no new local yielding

events are observed) and the existing active sites continue to relax

stress.

Even though identifying plastic sites in molecular simulation

is a challenging task, using the knowledge of mean square dis-

placement and the measure of non-affine displacements d2
min , we

confirm that a similar observations are made in the particulate

system.

Hence the emerging scenario is that the residual stress obtained

at the end of stress relaxation in these amorphous states, depends

not only on the state of activity in the initial sheared state but also

on the dynamics during the stress relaxation. We utilize these ob-

servations to provide a semi-analytical rational for the magnitude

of residual stresses obtained from the mesoscale simulations.

5 Semi-analytical analysis of residual

stress

We propose a simple analytical calculation which utilizes the ob-

servations we discussed in the previous section to predict the

residual stress values, with inputs from mesoscale simulations.

In the calculation, we define the residual stress σR as the stress

retained in the system after subtracting from the initial stress σI

the stress relaxed through the process of local yielding. In our

mesoscopic model, every time a site yields, the stress relaxes ex-

ponentially over a certain time window as exp(−gt/τ). Given that

the local yielding process is stochastic in nature, we will have a

distribution the duration of events P(τres). For an initial sample

(at the flow cessation), it is plausible that fraction of the active

sites might have yielded at earlier times and hence would have

already relaxed to an extent. Assuming a uniform distribution of

active sites, we can simply write residual stress as

σR = σI −
∫ 1

0
dxP1(x)

∫ ∞

0
dτresP(τres)

∫ xτres

0
dt

nini
a

N2

〈

σ ini
a

〉

exp(−gt/τ)

(4)

where (nini
a /N2) gives the average fraction of active sites in the
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a b c

d e f

Fig. 3 Mesoscale model. (Top) Maps of state of activity at the point of shear switch-off, for different driving rates (a) 10−2, (b) 10−3, (c) 10−2. Black

color correspond to active or plastic site (ni=1) and Yellow correponds to ni=0. (Bottom) Corresponding maps of local stress difference between initial

and final stress, δσi for the corresponding shear rates in top. In all cases, only half of the simulation domain is shown for clarity purposes.

system when the shear is switched off and
〈

σ ini
a

〉

is the average

stress per active site at that time. The product of the two gives

the total plastic stress which will eventually relax. We input this

quantity from the mesoscale simulations. With the simplified ex-

pression for fraction of relaxation before shear cessation of the al-

ready active sites with P1(x) = 1 being the uniform distribution on

the interval zero to one and P(τres) = (1/τres)exp(−τres) describ-

ing the stochastic elastic recovery, we obtain the residual stress

as

σR = σI −
nini

a

N2

〈

σ ini
a

〉

ττres

(

τres log(τres)

g2τ2
−

τres log(τres +gτ)−gτ

g2τ2

)

(5)

Taking τ = 1 and τres = 1 as in the simulations we would like to

compare to, this expression simplifies to

σR = σI −
nini

a

N2

〈

σ ini
a

〉

(

g− log(1+g)

g2

)

(6)

In the Fig. 5 (a) and (b) we show nini
a /N2 and 〈σ ini

a 〉 respectively

as a function of γ̇ for various system sizes. The system size effects

are visible at lower shear rate limits but are within the sample to

sample error bars. Using these values in equation 6, with g= 0.57,

we estimate the residual stress as a function of the shear-rate of

the initial flow; see Fig. 6 (using blue symbols). Clearly, the resid-

ual stress predicted solely from the decay of active site at the flow

cessation does not match with the numerically measured quantity.

As discussed before, we observe production of new plastic events;

hence, one has to take into account the occurrence and decay of

the new active sites as well. We can quite easily extend the argu-

ment presented in the form of equation 4, except that for these

newly activated sites we can drop the integral which took care

fraction of relaxed active sites. The area under the curves pre-

sented in Fig.4(a) would give the total fraction newly activated

sites Nnew
a /N2, which is shown in Fig. 5 (c). The associated stress

per active sites 〈σ rel
a 〉 (averaged over the whole relaxation time)

is shown in Fig. 5 (d). Hence the total stress associated with the

newly created active sites is given by

σnew
tot =

Nnew
a

N2
〈σnew

a 〉
ττres

gτ + τres
(7)

Taking τ = 1 and τres = 1, the residual stress, including the con-

tribution from the initially active sites and newly activated sites,

can be written as

σR = σI −
nini

a

N2

〈

σ ini
a

〉

(

g− log(1+g)

g2

)

−
Nnew

a

N2
〈σnew

a 〉

(

1

1+g

)

(8)

The residual stress computed from the above equation is shown

in the Fig. 6 (dark green triangles). We find that our simple semi-

analytical estimation of residual stresses match quite well with

the mesoscale simulation results.

6 Characterising residual stress states

After analysing the approach towards residual stress states, we

now probe the mechanical properties of these states. Understand-

ing the rheological properties of these states with frozen-in stress

is quite relevant to applications and designing materials .

6.1 Response to re-shearing

We probe the response of the residual stress state by imposing

a sequence of shear switch-on and switch-off, which we term as

shear & relax cycles. The observed evolution of shear stress due

to this protocol is shown in Fig. 7 (a) and (b), for microscopic

and mesoscale simulations respectively.

Firstly, we note that if we impose the shear on the residual

stress state using the same shear-rate as was done prior to the
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Fig. 4 Mesoscale model. (Top) For different imposed shear-rates dur-

ing the steady flow, the variation in the number of newly activated sites

(see text for discussion) as a function of time, during stress relaxation af-

ter shear switch-off. Arrow shows the direction of increasing shear-rate.

(inset) Variation of total number of activated sites (in black) with time,

during the relaxation, as well as the decay of pre-existing activated sites

within the configuration at switch-off (in red), apart from the newly ac-

tivated sites (in blue) (for γ̇ = 10−3). (Bottom) Rate of activation of new

plastic sites as a function of the time during the stress relaxation following

switch-off. Arrow shows the direction of increasing shear-rate.

first switch-off and then again switch-off the applied shear, and

continue with such shear & relax cycles, the intervening residual

stress states obtained are always at the same level; see Fig. 7

(a) and (b). Some minor variations, observed in the microscopic

simulations, are due to the fluctuations in the sampled states from

the steadily flowing states.

Secondly, we observe consistent stress overshoots during the

shear switch-on part of the shear & relax cycles, in both micro-

scopic as well as mesoscale simulations. This observation suggest

that there is an unique transient shear response characteristic to

a residual stress state. We note that the magnitude of the stress

overshoot can be different from the one obtained from the shear

of a amorphous state prepared from a thermal quench, where the

history of the quench is relevant. Here, as we discuss later, it

depends upon the residual stress level.

Overall, the above discussion highlights that residual stress

states can be an ideal avenue for preparing amorphous states

with reproducible response. Such states can be used to study in

greater details the start-up response of disordered systems, both

via elastoplastic as well as microscopic simulations.

6.2 Probing rigidity

Next, we analyse the rigidity aspects of the residual stress states

by computing the complex shear modulus using small amplitude

oscillatory shear protocol. The storage modulus G′ obtained at

low frequency limits are show in the Fig. 8 (a) as a function

of γ̇, the shear-rate of the flowing state prior to shear switch-

off. We find that G′ decreases with increase in residual stress

σR (marked alongside the data points) or decrease in σI − σR.

The loss modulus G′′, which is around two orders of magnitude

smaller, also show a similar dependence on the σR. For compari-

son, we also note that the G′ of the initial configuration, prepared

via the thermal quenching at a particular cooling rate, is around

75ε/a3, which is higher than that of the residual stress state hav-

ing the lowest σR in our study.

We further analyse the rigidity by computing the distribution of

local yield thresholds (X = σ
y
lcl

−σ0
lcl). In the microscopic simula-

tions we use the frozen matrix method to compute X. The distri-

bution P(X) computed (in both microscopic and mesoscale sim-

ulations) at the pre-sheared state as well as at residual state is

shown in Fig.8 (b-e) for two different γ̇. Note that we have scaled

the local yield thresholds by the macroscopic dynamic yield stress

σy. In both microscopic and mesoscale models, we observe that

the mean of P(X) is lower at higher γ̇ of pre-sheared samples.

This suggests that the residual states have higher shear rigidity

than the flowing state, which is expected. The P(X) of residual

states shows that mean is higher at higher pre-sheared γ̇, suggest-

ing that lower σR generate higher mean yield threshold. This is

a microscopic backing of what is observed in macroscopic stor-

age modulus G′. Further analysis of local yield stress distribution

both in understanding the local yielding phenomenon as well as

in the context of improving the mesoscale models has to carried

out systematically.

Having demonstrated that the low lying residual stress states

have more rigidity, we now rationalise the transient response to

the re-shear for a range of residual states. In Fig. 9 (a) and (c) we

show three different residual states (obtained from three different

pre-shear rates) subjected to re-shear at the same imposed shear

rate. The three residual states show different transient response

but eventually end up in the same steady state stress value. The

stress overshoot obtained during the transient response show an

initial residual stress state dependence. From the Fig. 9 (a) and
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Fig. 5 Mesoscale model. (Left) (top) Fraction of active sites, nini
a /N2 in the flowing state, at the point of shear switch-off, and (bottom) corresponding

average stress per active site, 〈σ ini
a 〉, as a function of shear rate, shown for different system sizes. (Right) (top) The cumulative fraction of active sites,

Nnew
a /N2, computed from the flow cessation to the eventual relaxed arrested state, and (bottom) associated stress per active site, 〈σ rel

a 〉, averaged over

the whole range of relaxation, as a function of shear rates, shown for different system sizes.

(c) it seems like lower residual stress states show lower overshoot

and is counter intuitive since the lower σR corresponds to higher

G′ and one expects from the previous studies a higher stress over-

shoot. Once we subtract the initial residual stress (σ −σR) such

that all the curves are compared at the same initial stress values
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(see Fig. 9 (b) and (c)) we find that the overshoot stress values

increases with increase in rigidity state (or decrease in σR).
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7 Conclusion

In this work, we have investigated the origin of residual stresses in

athermally driven amorphous solids after shear cessation, using a

combination of microscopic and mesoscale elastoplastic models.

We first demonstrated that the mesoscopic model qualitatively

reproduces the phenomenology observed in microscopic simula-

tions. In both cases, we obtain arrested states exhibiting resid-

ual stresses after the forced shear flow is switched off. And,

the monotonic dependence of the residual stress on the shear

stress of the flowing state under the applied shear, is also con-

sistently observed. Thus, this provides the groundwork for using

the mesoscale model to gain further insight into the formation

of residual stresses, since these models have local plasticity as

an intrinsic variable which allows for the identification as well as

tracking of active sites, be it during shear or in the absence of it.

Thereafter, using the information provided by the mesoscale

model, we develop a semi-analytical argument to provide a rea-

sonable estimate of the eventually measured residual stress. The
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Fig. 8 Rigidity of residual of stress states. (Top) Variation of storage

modulus, G′ of the arrested states, with the imposed shear-rate of the

flowing state prior to switch-off, measured from the microscopic simu-

lations. Also marked are the values of the obtained residual stresses,

σR. (Bottom) Comparing local yield stress distribution for sheared state

and corresponding residual stress state, for two different shear rates as

marked. (a), (b) correspond to data from microscopic simulations and

(c), (d) correspond to data from mesoscale simulations.
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Fig. 9 (a) Response (stress vs strain curves) to imposed shear-rate (γ̇ =
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by the arrow. (b) The stress-strain curves, with the initial residual stress

value deducted by σ0
R , the residual stress value associated with γ̇ = 10−3

demonstrating that states having least residual stress demonstrates the

largest stress overshoot.

naive expectation is that when the applied shear is switched off,

the active sites available in the system at that instant would re-

lease their stress and thereby the system would reach the ar-

rested state. We demonstrate, via the semi-analytical calcula-

tions, that such a scenario does not explain the level of residual

stresses observed in the simulations. On the other hand, the spa-

tial mesoscale maps, constructed from the cumulative stress relax-

ation following the shear switch-off, reveal that stress relaxation

not only happens at these active sites but also in the surroundings

even long after the forcing is switched off. This implies that new

plastic events occur during the stress relaxation, which contribute

to the observation of new active sites. The number of these newly

activates sites eventually relaxes after a given time, and thereby

the system reaches the final state with a finite residual stress. The

scale of the cascade of the new events depends upon the initial

stress in the steady flow, the larger the initial stress, the more

activity is generated during the relaxation following shear switch

off which leads to a lower residual stress. When the occurrence

of the newly activated events are appropriately included within

the semi-analytical calculations, we can reasonably reproduce the

scale of residual stresses observed in the simulations.

Finally, we have studied the mechanical response of the resid-

ual stress states. We first observe, by imposing a sequence of

steady deformation and relaxation cycles, that the level of resid-

ual stress is reproducible, expectedly, for a state flowing under a

particular shear-rate prior to shear switch-off. More importantly

this sequence also enabled us to demonstrate that the transient

shear response of these residual stress states is also reproducible,

with the same level of stress overshoots in each cycle. This is very

1–11 | 9



significant for preparation of amorphous states with reproducible

rheological response. We also probed the rigidity of the residual

stress states in two ways, viz. by measuring the storage modulus

via oscillatory shear, and then by measuring local yield stress dis-

tributions. Both protocols revealed that the states having lower

residual stresses are more rigid and have a higher yield threshold.

Consequently, when we impose the same shear-rate to states hav-

ing different residual stresses, the state having the least residual

stress exhibits the largest stress overshoot. All these observations

are consistent across microscopic and mesoscale models.
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