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We show that bipartite entanglement in a one-dimensional quantum spin model undergoing time-evolution

under local Markovian environments can be frozen over time. We demonstrate this by using a number of

paradigmatic quantum spin models in one dimension, including the anisotropic XY model in the presence of a

uniform and an alternating transverse magnetic field (ATXY), the XXZ model, the XYZ model, and the J1−J2

model involving the next-nearest-neighbor interactions. We show that the length of the freezing interval, for

a chosen pair of nearest-neighbor spins, may remain independent of the length of the spin-chain, for example,

in paramagnetic phases of the ATXY model, indicating a scale-invariance. Such freezing of entanglement is

found to be robust against a change in the environment temperature, presence of disorder in the system, and

whether the noise is dissipative, or not dissipative. Moreover, we connect the freezing of entanglement with the

propagation of information through a quantum many-body system, as considered in the Lieb-Robinson theorem.

We demonstrate that the variation of the freezing duration exhibits a quadratic behavior against the distance of

the nearest-neighbor spin-pair from the noise-source, obtained from exact numerical simulations, in contrast to

the linear one as predicted by the Lieb-Robinson theorem.

I. INTRODUCTION

Rapid development of quantum information technology has

been possible due to the path-breaking inventions of commu-

nication and computational schemes, including classical infor-

mation transmission via quantum states with or without secu-

rity [1–3], quantum state transfer [4, 5], quantum metrology

[6], and one-way quantum computation [7]. An almost univer-

sal feature in all these quantum information tasks is the use of

quantum correlations in the form of entanglement [8] between

the constituents of composite quantum systems as resource.

Over last few years, highly entangled bipartite and multipar-

tite states have been created in the laboratory using different

substrates like photons [9], trapped ions [10], superconducting

materials [11], nuclear magnetic resonances (NMR) [12], and

optical lattices [13], making the implementation of quantum

information processing protocols using few qubits possible.

A main obstacle in this enterprise is the fragility of entan-

glement to decoherence [14], which is exhibited by the rapid

decay of entanglement with time in multiparty quantum sys-

tems exposed to noisy environments [15, 16]. This restrains the

success of realizing quantum information schemes like trans-

mission of information through quantum channels and imple-

mentation of quantum gates with high fidelities. One of the

extensively studied scenarios of noisy environments is the con-

sideration of local perturbation in the system due to the Marko-

vian environmental interactions [15, 16]. Here, the perturba-

tion lasts for a small time interval, δt, which is infinitesimally

small compared to our observational time scale, and as per the

Markovian approximation, at the beginning of the next time

interval, the state is again set to be a product state between

the system and the environment, so that the memory effect in

the system is not taken into consideration. It has been shown,

both theoretically and experimentally, that entanglement in a

multiparty system decays fast, and can even completely dis-

appear after a finite period of time, when subjected to such

local environments [14]. In contrast, under carefully specified

initial conditions, quantum correlations [17] such as quantum

discord [18], which are independent of entanglement, may ex-

hibit robustness against similar environmental effects [19], and

can even be preserved for some time [20]. However, despite

a few attempts [21], realizable situations for preserving entan-

glement, as yet, remains elusive.

With this motivation, we present scenarios involving realiz-

able physical systems and environmental models in which en-

tanglement of the system, even when exposed to the environ-

ment, remains constant for a finite interval of time at the begin-

ning of the dynamics. We call this phenomena as freezing of

entanglement. In recent times, a wide spectrum of substrates is

probed in the laboratories all over the world, thereby providing

a large set of physical systems to search for the frozen entan-

glement. Apriori, it is not at all clear which of these systems

are more preferable for exhibiting such phenomena in compar-

ison to the others. In this respect, we find that low-dimensional

quantum spin models (QSMs), which can be realized and con-

trolled in different physical systems, including ion traps [22],

optical lattices[23], solid-state materials [24], NMR [25], and

superconducting qubits [26], stand out as excellent candidates.

In this paper, we consider a local dissipative Markovian

noise model in the form of a local repetitive quantum inter-

action (LRQI) [27, 28] (cf. [29]). Such a scenario can be

observed in two physical situations. One of them is repeated

applications of quantum measurements [27, 30], where iden-

tical measurement devices are operated repeatedly, one after

another, on the system or parts of the system, while the second

one can be seen in quantum optical devices, where a sequence

of independent atoms arrives and interacts, one atom after the

other, with a quantized radiation field in a cavity for a short pe-

riod of time due to the finite life-time of atoms [31, 32]. Apart

from these two scenarios, LRQI is also relevant in electronic

transport [33], thermalization [34], etc. We also consider a

non-dissipative noise model, represented by the local dephas-

ing noise [16, 35, 36], which can arise due to a fluctuation in

the external electromagnetic field [37].

More specifically, we consider a number of paradigmatic

one-dimensional (1D) QSMs defined on spin-1/2 particles as
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systems, namely, the anisotropic XY model in external uniform

as well as alternating transverse fields [38–42] (cf. [43]), the

XYZ model [44–47] including the XXZ model with and with-

out an external magnetic field [48–50], and the J1 − J2 model

[51]. We focus on a situation where the local environments in-

teract with one, or more than one selected spins in the system

via local repetitive quantum interaction, or by local dephasing.

Such a situation may arise in a quantum computer architecture

in which only some parts of the system are exposed to the envi-

ronment and moreover, those exposed parts are such that they

cannot be deleted from the system. The inability of deleting

parts of a system can, for example, occur in nuclear magnetic

resonance (NMR) molecules and solid state systems.

We show that bipartite entanglement, as quantified by the

logarithmic negativity [52–54] over the nearest-neighbor spin

pairs in one-dimendional quantum spin systems, freezes for

both the dissipative and the non-dissipative noises. This is

observed for all nearest-neighbor spin-pairs in the system ex-

cept for the spin-pair(s) that is (are) adjacent to the environ-

ment(s). Freezing of entanglement exists in all the phases of

the model, while the length of the freezing duration, corre-

sponding to a chosen nearest-neighbor spin-pair, depends on

the choice of the system parameters. We also show that the du-

ration of freezing corresponding to a specific spin-pair in the

spin-chain may remain unaffected by a variation of the sys-

tem size, thereby exhibiting a scale invariance. We test the

effect of an increase in the temperature of the environment,

and introduction of disorder [57, 58] in the system, and find

that the freezing of entanglement is qualitatively robust against

such disturbances. We demonstrate how the freezing of en-

tanglement disappears when the number of system-spins af-

fected by the external environments are increased. We also

discuss the relation between the freezing phenomena with the

Lieb-Robinson theorem [59] on the propagation of information

through quantum many-body systems, and point out that the

actual values of freezing-duration are considerably higher than

the same predicted by the Lieb-Robinson theorem, thereby in-

dicating a much slower propagation of noise through the sys-

tem particularly when the system size increases.

The paper is organized as follows. In Sec. II, we discuss the

quantum spin models, and provide a brief description of the

different noise models considered in this paper. Sec. III con-

tains the results on the freezing phenomena of entanglement,

including its scale-invariance (Sec. III A), robustness against

thermal noise and disorder in the system (Sec. III B), and its

connection to Lieb-Robinson theorem (Sec. III D). Sec. IV

contains concluding remarks.

II. MODELS AND METHODOLOGY

In this section, we discuss the important features of the rele-

vant quantum spin models used in this paper. We also provide

a brief description of the dissipative local repetitive quantum

interaction model and local dephasing noise considered in this

paper.

A. The system

To exhibit the freezing phenomena, we consider a class of

generic 1D QSMs constituted of L spin- 1
2

spins with open

boundary conditions (OBC) as system. It is described by the

Hamiltonian, HS , given by

HS =

L−1
∑

i=1

J

4

[

(1 + γ)σi
xσ

i+1
x + (1− γ)σi

yσ
i+1
y

]

+

L−1
∑

i=1

J∆

4
σi
zσ

i+1
z +

L
∑

i=1

1

2

[

h1 + (−1)ih2

]

σi
z. (1)

Here, σα, α = x, y, z, are the Pauli matrices, J > 0 is the

strength of the exchange interaction between nearest-neighbor

(NN) spins, while γ and ∆ are the x− y and the z anisotropies

respectively. The system is in the presence of a transverse

uniform magnetic field of strength h1, and a transverse site-

dependent magnetic field, having strength h2, that changes its

direction from +z to −z depending on whether the lattice site

is even, or odd. For ∆ = 0, HS describes an 1D alternating-

field anisotropic XY model (ATXY) [38–40]. Other paradig-

matic QSMs emerging out of Eq. (1) are (i) the 1D transverse-

field XY model (TXY) (h2/J = 0,∆ = 0), (ii) the fully

isotropic 1D Heisenberg model (γ = 0,∆ = 1, h2/J = 0),

(iii) the 1D anisotropic XXZ model in an external uniform

magnetic field (TXXZ) (γ = 0, h2/J = 0) [48, 49], and

(iii) the 1D XYZ model in a uniform magnetic field (TXYZ)

(γ 6= 0, h2/J = 0).

For the purpose of demonstration, we use the ATXY and the

TXXZ models. We choose the ATXY model over the widely

studied TXY model due to the richer phase diagram of the

former, where an antiferromagnetic (AFM) and two paramag-

netic (PM-I and PM-II) phases appear [60]. In the thermody-

namic limit and with the periodic boundary condition (PBC),

the phase boundaries of the ATXY model are given by

(h1/J)
2 = (h2/J)

2 + 1 (PM-I ↔ AFM),

(h2/J)
2 = (h1/J)

2 + γ2 (PM-II ↔ AFM) (2)

on the (h1/J, h2/J)-plane [38, 40] (cf. [43, 60]). For OBC,

we observe that the phase boundaries change only slightly,

even with a moderately small system size, and the AFM region

shrinks.

On the other hand, the TXXZ model also shows three

phases, namely, an AFM, a ferromagnetic (FM), and an XY

(spin flopping) phases, among which the first two are gaped,

while the third one has a gapless spectrum. Specifically, with-

out the external magnetic field, the FM↔XY transition occurs

at ∆ = −1, while at ∆ = 1, the XY↔AFM transition takes

place. With increasing the strength of the external field, the

quantum phase transition points, ∆c = ±1, shifts to the left

(see [49] for the phase diagram of the model). Here, we point

out that in the FM phase (∆ ≤ −1), the bipartite entanglement

vanishes for all values of the external field [50].
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Figure 1. (Color online.) Schematic representation of a 1D system of L spins, of which Nd spins, labelled as di, act as the doors, and interact

with independent environments, denoted by Edi . The enlarged portion describes the local repetitive interaction between the environment and a

door in the system. The spin “d1” in the 1D QSM acts as the door, and interacts with a copy of the environment for a short interval of time δt. In

the nth interval of duration δt, the interacting copy of the environment is Ed1
n . Note here that during the same nth interval of duration δt, along

with the door d1, the door di in the system (i 6= 1) is also interacting with the copy Edi
n of the environment.

B. The environments

Let us now consider the situation where at time t = 0, Nd

number of spins, labeled as {d1, d2, · · · , dNd
} (see Fig. 1),

from the system, S, start interacting with local environments,

denoted by Edi
. We call these spins in the system to be the

“doors”, and consider the type of interaction between the door

and the environment to be Markovian. The time-evolution of

the state of the system, ρS(t), is then given by the solution of

the Lindblad quantum master equation [15, 16]

dρS
dt

= −
i

~
[HS , ρS ] +D(ρS). (3)

We assume that the environments {Edi
≡ E} are identical, and

are independent of each other. The dynamical term D(.) in Eq.

(3) depends explicitly on the physical nature of the environ-

ment(s) and the type of the interaction(s) between the door(s)

and the environment(s). We now briefly describe the different

noise models, corresponding to the different types of environ-

ments considered in this paper.

1. Local repetitive quantum interaction

We first consider a dissipative noise model, and start with

the scenario in which where there is only one door spin, denote

by d, in the system. Consider the system, S, characterized by

the canonical equilibrium state ρS , to be at absolute tempera-

ture TS . The system, via the door, is in contact with a bath in

the form of a collection of N identical and decoupled spins,

denoted by {Ed
1 , E

d
2 , . . . , E

d
N}, where N is a large number.

To keep the notations uncluttered, we shall discard the super-

script “d” in the case of the single door scenario, and denote the

spins in the bath as {E1, E2, . . . , EN}. However, in the mul-

tiple bath scenario to be considered in subsequent discussions,

the bath spins corresponding to the door spin di are denoted

by {Edi

1 , Edi

2 , . . . , Edi

N } (See Fig. 1). Each spin in the col-

lection is at absolute temperature TE , and is described by the

Hamiltonian HEi
= Bσz

i in the Hilbert space HEi
. We con-

sider the system-environment (SE) interaction to be such that

S interacts with only one chosen spin, say, Ei, at a given time

instant, and the interaction lasts for a very short time-interval,

δt. During this interval, all the other spins in the collection,

{Ej , j 6= i}, remain isolated from S as well as from Ei. The

total Hamiltonian, Hi, describing altogether the combination

of the system, S, the spin from the collection, Ei, with which

S interacts, and the interaction between S and Ei, is defined in

the Hilbert space HS ⊗HEi
.

Without any loss of generality, we assume that during the

first interval [0, δt], S interacts with E1. The duo of S and E1,

denoted by SE1, has the state ρ0SE1
= ρ0S⊗ρE1

at t = 0, where

ρ0S is the state of S at t = 0, and ρE1
is the state of the spin

E1 at temperature TE . The unitary evolution generated by H1

in the interval [0, δt] is given by ρ0SE1
7→ ρ1SE1

= U1ρ
0
SE1

U
†
1,

where U1 = exp(−iδtH1/~). In the next interval [δt, 2δt], the
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system, having an initial state ρ1S = trE1

[

ρ1SE1

]

, interacts with

E2 only, and the initial state of SE2 is given by ρ1S ⊗ ρE2
. In

this interval, the dynamics is governed by the Hamiltonian H2,

which is defined in a way similar to H1. Note here that ρE1

and ρE2
are identical to each other. Continuing this procedure

in all subsequent intervals is equivalent to a local repetitive in-

teraction between the system S and one spin, denoted by E
and defined by the Hamiltonian HE = Bσz

E , which interacts

with the system via the door. At the beginning of every time

interval, the initial state of the system-environment duo, SE, is

reset to the product of the state of the environment, ρE (which

is the Markovian approximation) and the evolved state of S,

obtained by tracing out the environment from the evolved state

of SE at the end of the previous interval.

In this paper, we consider the interaction Hamiltonian to be

of the form

Hint(δt) =
√

k/δt (σx
d ⊗ σx

E + σy
d ⊗ σy

E) , (4)

where the subscript “d” denotes the single door in the system,

and k has the dimension of (energy2× time). The total Hamil-

tonian of the system and the environment is of the form

H = HS ⊗ IE + IS ⊗HE +Hint(δt). (5)

In a single door scenario, this leads to a dynamical term of the

form (see Appendix A for a detailed derivation)

Dd(ρS) =
2k

~2

1
∑

l=0

pl[2η
l
dρSη

l+1

d − {ηl+1

d ηld, ρS}], (6)

with p0 = Z−1

E exp (−βEB), p1 = Z−1

E exp (βEB), ZE =
tr[exp(−βEHE)], and ηαdi

=
(

σx
di

+ i(−1)ασy
di

)

/2. The op-

erator Dd(.) reduces to that corresponding to the well-known

amplitude-damping noise [16] in the limit of high BβE .

2. Local dephasing noise

The second type of noise that we consider is the non-

dissipative local dephasing noise on Nd of the parties in S,

thereby leading to a collective dephasing of the chosen par-

ties. Each door, d, experiences a pure dephasing noise, be-

ing in contact with a thermal bath of harmonic oscillators

with frequencies {ωi}, defined by the Hamiltonian HE =
∑

i ωia
†
iai. Here, ai(a

†
i ) is the annihilation (creation) opera-

tor of the ith mode. The interaction Hamiltonian is given by

Hint =
∑

i σ
z
d ⊗ (giai + g∗i a

†
i ), g being the door-reservoir

coupling constant. Assuming the zero-temperature state to be

the initial state of the reservoir [35], in a single-door scenario,

the dynamical term is given by

Dd(ρS) = γ̃(t)
(

σz
dρSσ

z
d − ρS

)

, (7)

with

γ̃(t) = ωc[1 + (ωct)
2]−s/2 sin(s tan−1(ωct))

∫ ∞

0

xs−1e−xdx

(8)

being the zero-temperature time dependent dephasing rate.

Here, ωc is the cut-off spectral frequency, and s is the Ohmicity

parameter [36], determining Markovianity (s ≤ 2).
At this point, it is logical to look into the effect of the pres-

ence of multiple doors in the system, and the situation where

more than one independent environments are interacting with

the same door spin in the system. The fact that the environ-

ments interacting with different doors in the system are inde-

pendent of each other implies their effect to be additive, which

leads to the dynamical term of the multiple-door system with

Nd doors given by

D(ρs) =

Nd
∑

i=1

Ddi
(ρs), (9)

where Ddi
(ρS) are of the form given in Eq. (6) or Eq. (7),

depending whether the noise is of LRQI or the dephasing type.

One may also consider a scenario where not one, but a finite

number, rdi
, of environments interact independently on the

door di during each time interval δt. Again, these environ-

ments being independent of each other lead to a simple modi-

fication of Eq. (9) as

D(ρs) =

Nd
∑

i=1

rdi
Ddi

(ρs). (10)

III. FREEZING OF ENTANGLEMENT

In this section, we discuss the main result of this paper,

namely, the freezing of NN bipartite entanglement, as mea-

sured by logarithmic negativity (LN) [52, 53] in quantum spin

models. Note that the results obtained here remain quali-

tatively unaltered if one considers other bipartite entangle-

ment measures like entanglement of formation [55], concur-

rence [56] etc. We evaluate LN of the time-evolved state,

ρi,i+1(t) = tri,i+1(ρS(t)), of any two NN spins (i, i + 1),
i = 1, 2, . . . , L − 1, denoted by Li,i+1(t). Here ρS(t) is

obtained by solving Eq. (3) via employing the fourth order

Runge-Kutta method, for which the order of the local numer-

ical errors goes as the fifth-power of the length of increment

of time in each iteration step of the algorithm. For our pur-

pose, we set the length of increment in time as 0.01, such that

the local numerical error is ∼ 10−10. We consider a canonical

equilibrium state

ρ0S =
exp(−βSHS)

Tr[exp(−βSHS)]
(11)

of S at absolute temperature TS as the initial state. Let us

denote the value of Li,i+1 at t = 0 by L0
i,i+1. We con-

sider Li,i+1(t) to be frozen over a time interval [0, τ i,i+1

F ],

0 ≤ τ
i,i+1

F ≤ tl, if for all t in [0, τ i,i+1

F ],
∣

∣Li,i+1(t)− L0
i,i+1

∣

∣ ≤ δ; L0
i,i+1 > 0, (12)

where we choose δ to be 10−5. We call τF to be the freezing

terminal, which is a characteristic of the chosen NN spin-pair
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Figure 2. (Color online.) Freezing dynamics of NN entanglement. a. The NN entanglement freezes in the PM-II phase of the ATXY model

for dissipative local repetitive quantum interaction and b. for local phase-damping noise, where the time-axis is in log scale, and the system

parameters used in this figure are given in Table I. c. Similar dynamics is observed in the case of the AFM phase in the TXXZ model, where we

choose ∆ = 1.5 and h1/J = 0.1. All the axes in all the figures are dimensionless.

Phase Specimen values τ i,i+1

F vs. i SI

PM-I h1

J
= 1.2, h2

J
= 0, γ = 0.8 M All

PM-II h1

J
= 0, h2

J
= 1.2, γ = 0.8 M All

AFM h1

J
= 0.2, h2

J
= 0.2, γ = 0.8 NM Selective

Table I. Values of the system parameters chosen for demonstration

in different phases of the ATXY model. The last two columns indi-

cate the type of variation (monotonic (M) or non-monotonic (NM)) of

τ i,i+1

F with i, and whether all the spin-pairs show scale-invariant (SI)

freezing in the phase (See Fig. 4 and discussions in Sec. III A). Note,

however, that the results reported here is true even for other system-

and environment-parameters. All parameters are dimensionless.

as well as the parameters defining the system, the environment,

and the system-environment interaction. The typical value of

the quantity tl is large, and has to be chosen by a careful in-

spection of LN. A time-span, tl, is considered to be large if LN

saturates to a fixed value for t ≥ tl, due to the equilibration

of the system, or, for instance, some accidental cancellations

within the expressions representing LN, which is not neces-

sarily equivalent to the equilibration of the entire system. In

the present case, tl ∼ 103. A dimensional analysis of Eq.

(3), taking into account the form of the system Hamiltonian

given in Eq. (1), leads to defining the dimensionless quanti-

ties, k → k/(~J), t → Jt/~, βS → JβS = J(kBTS)
−1,

and βE → BβE = B(kBTE)
−1, used throughout this paper,

where we set k = 1 for all our calculations.

For demonstration, we use the LRQI model, and fix JβS =
20, and BβE = 10 for all our calculations. Note here that the

value of BβE > 5 ensures that the LRQI model effectively

represents the local Markovian amplitude-damping noise, and

our calculations, therefore, are performed in the amplitude-

damping regime of the noise model. In the single-door sce-

nario, we consider the spin “1” as the only door in the system.

The different values of the system parameters used for demon-

stration, corresponding to different phases of the ATXY model,

are tabulated in Table I. In all three phases of the ATXY model,

NN entanglement, corresponding to all the spin-pairs except

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01  0.1  1  10  100  1000

L

t

(i)
(ii)

(iii)

Figure 3. (Color online.) Time-dynamics of entanglement of the spin-

pair (1, 2) for (i) PM-II phase of the ATXY model under LRQI and (ii)

under local dephasing, where model-parameters are given in Table I,

as well as for (iii) AFM phase of the TXXZ model under LRQI, where

we choose ∆ = 1.5 and h1/J = 0.1. All the axes in the figure are

dimensionless.

those with a door, remains constant for a finite interval of time.

The preservation of entanglement, corresponding to the NN

spin-pair (i, i + 1), 2 ≤ i ≤ L − 1, occurs at the beginning

of the dynamics, thereby exhibiting a freezing of entanglement

with a finite τ i,i+1

F . For t > τ i,i+1

F , Li,i+1(t), 2 ≤ i ≤ L − 1,

decays rapidly to zero with increasing time, and eventually un-

dergoes a sudden death. See Fig. 2a. for a demonstration with

L = 8 and Nd = 1, where spin “1” is chosen as the door in all

the figures in Fig. 2.

Note here that the freezing phenomena is different than sat-

uration [21] (cf. [62]) since the latter occurs only at large time,

while the former takes place right after the system starts in-
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Figure 4. (Color online.) Scale-invariance. The behavior of τ i,i+1

F against i, for 6 ≤ L ≤ 11, in the a. PM-I, b. PM-II, and c. AFM phases of the

ATXY model, with the chosen system parameters given in Table I. Different point-types correspond to different values of L. In a.-b., the points

corresponding to L = 11 are joined by a continuous line, which clearly exhibits the monotonicity, while such monotonic behavior is not present

in case of c.. The (green) dashed curves, in all the figures, show the variation of freezing terminal, τLR
F , as predicted by the Lieb-Robinson

theorem, with i (see discussions in Sec. III D). All quantities plotted are dimensionless.

teracting with the environment. It is important to stress here

that the other noisy environments, inevitably present in experi-

ments, and usually ignored in theoretical studies, will increase

their effects on entanglement of the system at later times, which

may disturb the saturation phenomena while such possibilities

are reduced in freezing of entanglement. Note also that in con-

trast to the Markovian system-environment interaction, there

exists instances of revival of LN after a complete collapse to

zero (Fig. 2a.). This is a result of the non-zero interaction be-

tween the spins in the system at all time during the dynamics,

including at t = 0, which generates a memory effect in the

bulk of the system.

See Fig. 2b. for a demonstration of the freezing phenom-

ena under the Markovian dephasing noise with L = 8 and

Nd = 1. Note here that irrespective of the type of noise, the

temperature, JβS , of the system at t = 0 has to be such that

L0
i,i+1 > 0 to satisfy Eq. (12). In this context, it is worth-

while to mention that in one-dimensional quantum spin mod-

els with short-ranged interactions, pairwise entanglement dies

out rapidly as the distance between the spins forming the spin-

pair under consideration increases. In the case of the ATXY

model, entanglement for the spin-pairs (i, i +m) with m > 1
for the thermal as well as the ground state is non-zero at t = 0
only for some specific parameter ranges. We find that if en-

tanglement is present in the spin-pair (i, i + m) with m > 1,

then freezing of entanglement takes place if i > 1. In case of

PM-II phase of the ATXY model with open-boundary condi-

tion (c.f. [63] for periodic-boundary condition) with system-

parameter values given in Table I, entanglement is non-zero

only for the spin-pairs (1, 3) and (L−2, L) (i.e., when m = 2)

apart from the cases of m = 1 (nearest-neighbor pairs). Sim-

ilar to the nearest-neighbor pair (1, 2), entanglement for the

spin-pair (1, 3) does not freeze, while for the pair (L − 2, L),
freezing of entanglement takes place. Interestingly, we find

that the value of freezing terminal (τF ) for the pair (L− 2, L)
is larger than the same for the pair (L− 2, L− 1), but smaller

than that of the pair (L− 1, L).

Keeping the model for system-environment interaction un-

changed at either the LRQI or the dephasing noise, we observe

that the freezing of NN entanglement occurs in the AFM and

PM phases of the TXY model, in the AFM and the XY phases

of the TXXZ model [49] (see Fig. 2c.), and in TXYZ, fully

isotropic Heisenberg, and the 1D J1 − J2 models [51]. The

last model is represented by the Hamiltonian, having an addi-

tional next-nearest neighbor interaction term,

HS = J1

L
∑

i=1

~σi.~σi+1 + J2

L
∑

i=1

~σi.~σi+2, (13)

Jj(j = 1, 2) are coupling constants of nearest neighbor and

next-nearest neighbor interactions. Note that in the TXXZ

model with OBC, the freezing phenomena is present in all the

phases of the model as depicted in Fig. 2c., where the sys-

tem parameters are chosen from the AFM phase of the TXXZ

model (∆ = 1.5, h1/J = 0.1), except the FM phase, where

bipartite entanglement vanishes at t = 0 due to the alignment

of the spins, and and remains so when the system interacts with

the environment, thereby violating Eq. (12).These findings em-

phasize the potential of the freezing phenomena to be generic

to the phases of the 1D QSMs. However, in the rest of the

paper, we shall focus on the ATXY model to demonstrate the

different features of the freezing of entanglement.

Note. As mentioned before, freezing of entanglement is ob-

served for all the nearest-neighbor spin pairs in the system, ex-

cept the spin-pair (1, 2). In fact, L1,2(t) exhibits a fluctuating

behavior (see Fig. 3). Interestingly, depending on the choice

of the noise model and the quantum phases of the spin model

L1,2(t) either saturates to a finite value (e.g., PM-II phase of

the ATXY model under LRQI, where L1,2(t → tl) ≈ 0.017),

or goes to zero at large time.

A. Scale invariance

In both the PM phases of the ATXY model, the value of

τ i,i+1

F , for a specific choice of (i, i + 1), remains unaffected
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with a change in the system-size, indicating a scale-invariance.

Specifically, for fixed (i, i+ 1),

τ i,i+1

F = tc ∀L, (14)

where 0 ≤ tc ≤ tl, tl ∼ 103. The equality is up to our numer-

ical accuracy (∼ 10−5). As a result, the variations of τ i,i+1

F
against i, corresponding to different values of L, coincide (Fig.

4a.-b.), indicating an invariance of the variation of τ i,i+1

F with

i, against varying L. For i ≥ 5, where the values of τF are

considerably high, this variation is a parabolic one, given by

τ i,i+1

F = ai2 + bi+ c ∀L, (15)

irrespective of the value of L, where a, b, and c are deter-

mined by the system parameters. For instance, in the exam-

ple shown in Fig. 4a., a = 1.77 × 10−2 ± 1.2 × 10−3,

b = 6.6 × 10−1 ± 1.8 × 10−2, and c = −2.59 ± 6.5 × 10−2,

and in case of Fig. 4b., a = 2.41 × 10−2 ± 1.5 × 10−3,

b = 3.767×10−1±2.26×10−2, and c = −1.50±8.2×10−2.

This equation allows one to estimate τF corresponding to

Li,i+1 with increasing distance from the door. The importance

of the above result lies in the fact that if execution of a quantum

information protocol requires certain time period, say, τ ′F , Eq.

(15) provides the estimate of the minimum size of the system,

given by Lm = im + 1, required to attain this value, where im
is obtained as a solution of Eq. (15), by using τ i,i+1

F = τ ′F .

Also, in both of the PM-I and the PM-II phases, the freezing

terminal, τ i,i+1

F shows a monotonic behavior with i given by

τ i,i+1

F ≥ τ j,j+1

F ∀ 1 < j < i ≤ L− 1, (16)

and thereby imposing a hierarchy among the different NN pairs

in τF .

However, in the AFM phase, scale-invariance is observed for

selected NN spin pairs only (Fig. 4c.). Therefore, this feature

distinguishes between the paramagnetic and the AFM phases

of the ATXY model. Moreover, the variation of τ i,i+1

F with

i is non-monotonic in the AFM phase. The existence of the

scale-invariance is, however, independent of whether the trend

of τ i,i+1

F with i is monotonic, or non-monotonic (Fig. 4c.). E.g.

τ5,6F > τ6,7F , while τ5,6F as well as τ6,7F are independent of L.

These observations indicate that the freezing of entanglement

can not simply be explained by the attenuation of the deco-

hering power of the environment as one moves away from the

door. It also requires an understanding of how the disturbance

due to the bath propagates through the quantum spin-chain. We

will again address this question at the end of this section.

The entire analysis in this paper is based on the system

Hamiltonian with OBC. The use of PBC, instead of the OBC,

imposes a reflection symmetry in the values of τF with respect

to i = L
2

(

or L−1

2

)

, depending on whether L is even (or odd).

Hence, it decreases the maximum achievable value of τF com-

pared to the same in a system with OBC. It is also important

to point out here that the scale-invariance of τF is found in se-

lected NN spin-pairs of all the other 1D QSMs considered in

this paper, but the monotonic increase of τ i,i+1

F with i is also

absent in those spin models.
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Figure 5. (Color online.) Variation of NN quenched entanglement

with respect to t under local repetitive interaction in the case of disor-

dered ATXY model, with hi
2/J as the disordered system parameter.

The values of hi
2/J are chosen from a Gaussian distribution of mean

〈h2/J〉 = 1.2 with standard deviation 0.3, and we set γ = 0.8 and

hi
1/J = 0. The time axis is in logarithmic scale, and all the axes are

dimensionless.

B. Robustness

In order to investigate the robustness of the freezing phe-

nomena, we consider two specific situations where the system-

environment duo with a frozen NN entanglement is subjected

to disturbance. The first situation is that of changing the

temperature of the environment from a temperature at which

freezing has occurred in the ATXY model. We find that the

qualitative results regarding the freezing of bipartite entan-

glement, and its scale-invariance, remain unchanged with a

change in the environment-temperature, BβE , although the en-

tanglement decays more rapidly for t > τF when BβE is low,

i.e., when one moves away from the amplitude-damping limit.

Similar findings are obtained when one uses a non-dissipative

noise, such as the local dephasing noise, instead of a dissipative

one.

Next, we also consider a disordered ATXY model, where

the strengths of the transverse uniform and alternating mag-

netic fields, hi
1/J and hi

2/J , corresponding to the lattice site,

i, are chosen randomly from Gaussian distributions with mean

〈h1/J〉 , and 〈h2/J〉, respectively, and with a fixed standard

deviation [57], for all the lattice sites. Such systems can now

also be engineered in the laboratory with currently available

technologies [58]. We assume that the disorder is quenched,

where the quenching is performed under the assumption that

the time scale of the dynamics is much smaller than the equili-

bration time of the disorder. A canonical equilibrium state, cor-

responding to an initial set of such random values of the system

parameter on all the sites at a finite temperature, evolves under

the noisy environment. The NN entanglement corresponding

to a specific spin-pair at every time instant during the dynam-

ics is computed, and averaged over a large number of initial

sets of the values of the chosen system parameter – we call this

average entanglement as the NN quenched entanglement.
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phase of the ATXY model with L = 11, where doors are added one-

by one in the system, starting from spin 1. All quantities plotted are

dimensionless.

Quantum correlations in these disordered systems often

show counter-intuitive behavior compared to the correspond-

ing ordered systems [64]. In the present case, we find that

freezing of NN quenched entanglement occurs with all its qual-

itative characteristics retained, thereby exhibiting a robustness

against disorder in the system. However, the value of freezing

terminal corresponding to a specific spin-pair decreases. An

example of the freezing dynamics in the quenched disordered

ATXY model is given in Fig. 5, where hi
2/J is the disordered

system parameter, chosen from a Gaussian distribution of mean

〈h2/J〉 = 1.2, and standard deviation 0.3, with γ = 0.8,

and hi
1/J = 0 for all lattice sites. Note that in the ordered

case, the chosen values of system-parameters are h2/J = 1.2,

h1/J = 0, γ = 0.8 corresponding to the PM-II phase. The

only qualitative difference between the disordered case and the

one without disorder is a longer sustenance of entanglement

over time, as clearly seen from the figure.

Note. In Figs. 2 and 5, the time axes are in logarithmic scale.

Therefore, time has been plotted from t = 0.01 instead of t =
0. However, in the interval from t = 0 to t = 0.01, NN LN

remains constant over time (i.e., frozen) for all the spin pairs

(i, i+ 1), with i > 1.

C. Multiple doors and environments

We now move to the case where instead of one door, the

environment affects the system via multiple doors. We observe

that the freezing terminal for a given NN spin-pair in a spin

chain of length L decreases when a larger portion of the system

is exposed to the environment. For example, in the PM-I phase

of the ATXY model, if more doors are added one-by one in the

system, starting from spin 1, τ10,11F exhibits a parabolic decay,

given by

τ10,11F = 0.0335714N2
d − 1.18643Nd + 7.28, (17)

with increasing number of doors, Nd, exposed to the environ-

ment (see Fig. 6). Freezing of entanglement entirely vanishes

if the entire system is exposed to noise.

One may also consider a scenario where instead of one, a

fixed and finite number of spins, say r (> 1), interact indepen-

dently as environments with the door d at spin 1 in the QSM

during the same time-interval δt. The effect of each of these

r environments is additive (see Sec. II B for details). We here

find qualitatively similar results regarding freezing of entangle-

ment. However, with increasing r, a decrease in the value of

the τF is observed. In the AFM phase of the ATXY model, the

value of τ i,i+1

F , for a fixed pair of NN spins, decreases mono-

tonically with increasing r approximately as ∼ r−1. However,

in the PM-I and the PM-II phases, and for fixed (i, i+1), both

monotonic and non-monotonic variation of τ i,i+1

F with increas-

ing r are found. The non-monotonic variation of τ i,i+1

F with r
is abundant when one moves away from the phase boundaries.

Also, counter-intuitively, with r > 1, Li,i+1(t) for i > 1 is

found to remain non-zero for a longer time after t > τ i,i+1

F ,

compared to the same in the case of r = 1, thereby indicating

a robustness of entanglement against the increase of the num-

ber of environments accessing the system via a single door.

D. Physical interpretation towards freezing of entanglement

and Lieb-Robinson velocity

One may interprete the freezing terminal, τ i,i+1

F , as the time

taken by the disturbance introduced at the door-spin d to reach

the spin-pair (i, i + 1) situated at a certain distance from the

door. Such an interpretation directly connects the freezing phe-

nomena of entanglement with the Lieb-Robinson (LR) theorem

[59] in many-body physics, which provides upper bounds on

the speed of propagation of information in many-body systems.

According to the LR theorem, the speed of information-flow

from a subsystem, X , to another subsystem, Y , of a many-

boby system is finite, and is bounded below by the LR velocity

v [59, 65]. Therefore, if X is subjected to a local noise, its ef-

fects will be exponentially suppressed if d(X,Y ) > vt, where

d(X,Y ) measures the distance between the subsystems X and

Y , and t is the time (see Sec. 3 in [65] for details). Thus,

let us consider the freezing of NN entanglement at a specific

NN spin-pair (i, i+ 1) at a distance i from the door (spin “1”)

to be occurring due to a finite time taken by the noise at spin

“1” to propagate along the spin-chain to the NN spin-pair. The

lower bound of the freezing terminal, according to LR bound,

should be τLR
F ≈ d(X,Y )/v. In our scenario, we apply noise

on the spin 1 which is interacting with spin “2”, implying that

the subsystem X can be considered as the spin-pair (1, 2). If

the freezing of entanglement on the spin-pair Y = (i, i+ 1) is

due to the finite velocity of the effect of noise on X along the

spin-chain, then the freezing terminal τLR
F , as estimated from

the LR theorem, is given by

τLR
F ≈ |i− 2|/v. (18)
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The examples of 1D QSMs used here being of short-range in-

teractions, the variation of τLR
F against d is predicted to be a

linear one [66], which is indeed the case (see Fig. 4).

However, a comparison between the actual value of the

freezing terminal and the one obtained by using the LR the-

orem leads to the following observations.

1. Although the LR theorem provides an estimate of the

time taken by the noise to travel the distance d through

the spin-chain, the actual value is expected to be greater

or equal to the LR estimation. Our numerical analy-

sis provides evidence that the actual propagation time of

noise is considerably longer than the LR prediction, and

is a quadratic function of d, which is in contrast to the

LR prediction. Although τLR
F and τF may posses val-

ues of similar order when d is small, with increasing d,

the LR estimation of the freezing terminal becomes very

small compared to the actual value, thereby predicting

a faster propagation of noise, which is actually not the

case. Hence in the case of large system size, where the

distance between the noise-source and the target spin-

pair is large, the LR estimation may become qualitatively

different (quadratic vs. linear). This is clearly demon-

strated in Fig. 4.

2. The LR theorem predicts scale-invariance of the propa-

gation time in any system under consideration, as is clear

from expression of τLR
F . However, the LR value provides

only a lower bound on the freezing terminal. In a specific

system, there may exist a scale-invariant freezing termi-

nal at a much higher value than that is provided by LR

prediction. But in general, this higher value of freezing

terminal is not universally scale-invariant, unlike the LR

one, for example, in the AFM phase of the ATXY model.

Our analysis provides an alternative way of investigating the

propagation of noise through quantum many-body systems, in-

dependent of the LR theorem. It also relates two seemingly

different directions of research, namely, the investigation of

frozen entanglement under noise and the propagation of infor-

mation through quantum many-body systems. Moreover, our

analysis clearly demonstrates that the exact analysis may pro-

vide results that have large deviation from the LR predictions,

and therefore emphasizes the necessity of looking into the ac-

tual results even in cases where LR calculations are possible.

Towards understanding the scale-invariance in the freezing

phenomena, we study the correlation function

Cij = 〈~σi.~σj〉 − 〈~σi〉〈~σj〉, (19)

where 1 ≤ i < j ≤ L, in the QSM at t = 0. We find that corre-

sponding to the spin pairs (i, i+1) exhibiting scale-invariance

(e.g. in the PM-I and PM-II phases of the ATXY model) with

spin “1” as the door, the value of the long-range correlation at

t = 0, given by C1i, with i > 1, is low compared to the same

in the case of spin-pairs that do not exhibit scale-invariance

(e.g. selected pairs in the AFM phase of the ATXY model).

Moreover, we point out that the correlation length diverges [41]

at the phase-boundaries of the ATXY model, where the value

of freezing terminal is low. In contrast, well inside the three

phases of the model, the value of freezing terminal increases,

thereby validating the interpretation of the freezing terminal

as the propagation time of disturbance through the spin-chain.

Note that while the interpretation seems simple in the case of

a single-door system with open boundary condition, for sys-

tems with multiple doors and periodic boundary conditions, a

chosen spin pair can experience disturbances originating from

different doors, thereby indicating an intricate mechanism for

the dependence of the freezing duration over the distance of the

spin-pair from the door(s).

IV. CONCLUSION

Entanglement is known to be an important resource in a large

class of quantum information protocols. Therefore, finding

robustness of entanglement under different decoherence mod-

els has attracted a lot of attention. In this paper, we demon-

strated that under local noise, bipartite entanglement of a quan-

tum many-body system can remain constant, or near-constant,

within numerical accuracy, over a finite interval of time, called

the freezing terminal. We call this feature as the freezing of

entanglement. We showed that the freezing of bipartite entan-

glement can take place in a collection of paradigmatic one-

dimensional quantum spin systems, like the anisotropic XY

model in a transverse uniform and an alternating magnetic field

(ATXY), the XYZ, and the J1 − J2 models under both dis-

sipative and non-dissipative environments. As the first kind

of noise, we consider a local repetitive quantum interaction,

which in the low temperature limit, effectively represents the

local amplitude damping noise. On the other hand, the non-

dissipative noise is represented by the local dephasing noise.

We showed that freezing of entanglement occurs for both kinds

of noise, as well as in all the phases of the quantum spin models

considered, except in phases where the bipartite entanglement

of the initial state vanishes, as in the case of the ferromagnetic

phase of the TXXZ model.

We found that in the paramagnetic phases of the ATXY

model, the duration of freezing of entanglement, correspond-

ing to all the nearest-neighbor pairs in the system, is indepen-

dent of the system-size, thereby exhibiting a scale-invariance.

Interestingly, such a scale-invariance was present only in the

case of selected nearest-neighbor pairs of spins in the case of

the AFM phase of the ATXY model, and in all the phases of

the rest of the quantum spin models considered in this paper.

We also found that irrespective of the choice of the quantum

spin model, freezing of entanglement remains qualitatively un-

affected with a change in the environment-temperature, or in a

situation where disorder is introduced in the system. We also

investigated the phenomena where multiple spins in the sys-

tem was subjected to noise, or when more than one environ-

ment interacted with the same spin in the system, and observed

the freezing of entanglement to be sustained with qualitative

changes only. However, with increasing number of parties in

the system that were subjected to noise, the freezing of entan-

glement eventually vanished. The quantum spin models as well

as the noise models considered in our work can be realized

in quantum optical devices, nuclear magnetic resonances and
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cold atoms in optical lattices, thereby making the realization of

frozen entanglement in the laboratory a possible goal. There-

fore, our results are expected to have an impact in the making

of quantum devices using quantum entanglement as resource.
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Appendix A: Lindblad master equation for local repetitive

quantum interaction

Following the description of LRQI in Sec. II B 1, let us con-

sider the nth time interval, [(n − 1)δt, nδt], during which the

system, S, interacts with the nth environment-spin, En, only,

n = 1, 2, . . . , N . The evolution of the complete state, ρ, of the

system, S, and N copies of the spin, {Ei}, in this interval is

achieved by ρ 7→ ŨnρŨ
†
n, where Ũn and ρ are defined in the

Hilbert space given by Htot = HS

⊗N
n=1

HEn
. The operation

Ũn is given by

Ũn = Un

N
⊗

m=1
m 6=n

Im, (A1)

where Un = exp (−iδtHn/~) in the space HS⊗HEn
, and Hn

is the total Hamiltonian of the system, the environment and

their interactions in the nth interval. Here, Im is the identity

operator defined in the environment Hilbert space. A collec-

tive evolution of the system-environment combination, up to a

time nδt (1 ≤ n ≤ N) is given by ρ 7→ UnρU
†

n, where the

sequence of unitaries, {Un}, satisfies

Un+1 = Ũn+1Un; U0 = I, (A2)

with I being the identity operator in Htot. We will consider the

unitary evolution given in Eq. (A2) up to a time Nδt, in the

limit N → ∞ and δt → 0, such that Nδt remains finite.

Let us now assume that at the beginning of the nth time in-

terval of duration δt, the states of S and En are ρS and ρEn

respectively. Let us also assume that {Bj
n} is the linearly in-

dependent basis on the operator space of HEn
, which are or-

thonormal with respect to the inner product 〈A1, A2〉ρEn
=

tr(ρEn
A1†A2), implying tr(ρEn

Bi
n
†
Bj

n) = δij . Therefore,

Un =
∑

j

U
j
n ⊗Bj

n, (A3)

where {Uj
n} are operators on HS .

After the nth time interval, the state of S evolves from ρS to

Dn(ρS), with

Dn(ρS) = trEn

(

UnρS ⊗ ρEn
U

†
n

)

=
∑

ij

U
i
nρSU

j
n

†
tr(Bi

nρEn
Bj

n

†
)

=
∑

j

U
j
nρSU

j
n

†
, (A4)

so that the quantum master equation corresponding to the nth

interaction can be derived from

dρS
dt

= lim
δt→0

Dn(ρS)− ρS
δt

. (A5)

Noticing that all the spins in the collection are identical with

HEi
≡ HE = Bσz

E and ρEi
≡ ρE , Eqs. (A3) and (A4) hold

true for every interval, implying that discarding the index “n”,

Eq. (A5) provides the master equation for the entire evolution.

Now, the total system-environment Hamiltonian, H , given

by Eqs. (5) and (4), can be written as

H =

(

HS +BIS 2
√

k/δtσ−

d

2
√

k/δtσ+

d HS −BIS

)

, (A6)

where σ±

d = σx
d ± iσy

d . In turn, U = exp(−iδtH/~) can be

written as

U =

(

IS − δt
~

(

iBIS + iHS + 2k
~
σ−

d σ
+

d

)

+ o(δt2) − 2i
~

√
kδtσ−

d + o(δt3/2)

− 2i
~

√
kδtσ+

d + o(δt3/2) IS + δt
~

(

iBIS − iHS − 2k
~
σ+

d σ
−

d

)

+ o(δt2)

)

. (A7)

We consider the thermal state ρE = diag{p0, p1} of the en- vironment at temperature TE to be its initial state, where

p0 = Z−1

E exp(−βEB), p1 = Z−1

E exp(βEB), (A8)

with Z−1

E = tr
[

exp(−βEBσz
E)

]

, and βE = (kBTE)
−1, kB

being the Boltzmann constant. From ρE , {Bj} matrices can

be defined as
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B0 = IE , B
1 =

1√
p0

(

0 0
1 0

)

, B2 =
1√
p1

(

0 1
0 0

)

, B3 =
1√
p0p1

(

p1 0
0 −p0

)

, (A9)

such that tr(ρβE
Bi

n
†
Bj

n) = δij . The elements of U in the basis

{Bj} are given by

U
0 = IS +

δt

~

(

− iHS + iB(p1 − p0)IS − 2k

~
p0σ

−
d σ

+

d − 2k

~
p1σ

+

d σ
−
d

)

+ o(δt2),

U
1 = −2i

~

√

p0kδtσ
+

d + o(δt3/2), U
2 = −2i

~

√

p1kδtσ
−
d + o(δt3/2), U

3 = o(δt).

Using these, straightforward algebra leads to

∑

j

U
jρSU

j† = ρS − iδt

~
[HS , ρS ] +

2kp0δt

~2
(2σ+

d ρSσ
−
d − {σ−

d σ
+

d , ρS}) +
2kp1δt

~2
(2σ−

d ρSσ
+

d − {σ+

d σ
−
d , ρS}) + o(δt2).

(A10)

We retain terms upto δt, and obtain, from Eq. (A5), the Lind-

blad master equation given by Eq. (3), corresponding to local

repetitive interaction with a single door, d. Redefining σ±
d as

ηαd = σx
d + i(−1)ασy

d , the dynamical term is given by Eq. (6)

(cf. [28]). Note here that Eq. (6) describes a dissipation pro-

cess with rate 4kp1

~2 and an absorption process with rate 4kp0

~2 .

For high values of βE , p0 ≈ 0 and p1 ≈ 1, and the result-

ing dynamics is that of a Markovian amplitude-damping noise
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