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Abstract

We study the distribution of persistent sites (sites unvisited by particles A)

in one dimensional A+A → ∅ reaction-diffusion model. We define the empty

intervals as the separations between adjacent persistent sites, and study their

size distribution n(k, t) as a function of interval length k and time t. The decay

of persistence is the process of irreversible coalescence of these empty intervals,

which we study analytically under the Independent Interval Approximation

(IIA). Physical considerations suggest that the asymptotic solution is given

by the dynamic scaling form n(k, t) = s−2f(k/s) with the average interval

size s ∼ t1/2. We show under the IIA that the scaling function f(x) ∼ x−τ as

x → 0 and decays exponentially at large x. The exponent τ is related to the

persistence exponent θ through the scaling relation τ = 2(1−θ). We compare

these predictions with the results of numerical simulations. We determine the

two-point correlation function C(r, t) under the IIA. We find that for r ≪ s,

C(r, t) ∼ r−α where α = 2−τ , in agreement with our earlier numerical results.
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I. INTRODUCTION

The persistence of fluctuations in stochastic processes has been an important topic of
study in recent times [1]. Of primary interest in this context is the persistence probability
P (t), which is the probability that a given stochastic variable φ(t) with zero mean retains its
sign during the time interval [0, t]. A power-law decay P (t) ∼ t−θ is found in many systems
of physical interest. Consequently, much effort has gone into the calculation of the new
exponent θ and studying its properties. There have also been several experimental studies
of the persistence exponent θ in real life systems [2].

A particulary important class of systems whose persistence behaviour has been inves-
tigated are spatially extended systems with a stochastic field φ(x, t) at each lattice site x.
The time evolution of φ(x, t) is coupled to that of its neighbouring sites. φ(x, t) could be,
for instance, an Ising spin [3,4], a phase ordering field [5], a diffusing field [6] or the height
of a fluctuating interface [7]. The persistence probability P (t) is then the fraction of sites x
where φ(x, t) has not flipped sign till time t. Recently it was observed that the set of per-
sistent sites form a fractal and the time evolution of their spatial correlations obey dynamic
scaling [8]. The purpose of this paper is the investigation of these spatial correlations.

For concreteness, we study the one-dimensional A+A → ∅ model. Our primary motiva-
tion for this choice is the simplicity of the dynamics of the model which makes an analytic
approach possible. In addition, this model is closely related to the d = 1 Glauber-Ising
model, which is perhaps the only non-trivial model where θ is known exactly. We study
the distribution of the separations between nearest neigbour pairs of persistent sites. We
call this the Empty Interval Distribution n(k, t), defined as the number of occurences where
consecutive persistent sites are separated by distance k at time t. This quantity is a direct
probe of spatial correlations in the distribution of particles. If the particles are distributed
at random with some average density p, then n(k) = p2(1− p)k ∼ e−λk at all k. Any slower
mode of decay is indicative of spatial correlations.

In this paper, we study the time evolution of the size distribution n(k, t) of these Empty
Intervals. Persistence decay is identified with the irreversible coalescence of these intervals.
The paper is organised as follows. In the next section we write a rate equation for the coa-
lesence of these intervals under the approximation that the lengths of adjacent intervals are
uncorrelated (IIA). We give phenomenological arguments about the asymptotically relevant
dynamical length scale as well as the coalescence probability. These arguments, combined
with the rate equation gives the dynamic scaling behaviour of n(k, t) at late times t. We
compare our predictions with numerical results. In section III, we use the IIA to predict the
two-point correlations in the distribution of persistent sites. The predictions are found to
be in agreement with recent numerical results, showing that IIA is valid.

II. THE EMPTY INTERVAL DISTRIBUTION

In the A+A → ∅ model, a set of particles are distributed at random on the lattice with
average density n0. Over one time step, all the particles make an attempted jump to either
of the neighbouring sites with some probability D. If two particles meet each other, both
disappear from the lattice. In one dimension, the density of particles decay with time as
n(t) ∼ (8πDt)−

1

2 as t → ∞ [9]. Persistent sites in A+A → ∅ model at any time t are defined
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as the sites which remained unvisited by any diffusing particle throughout the time interval
[0 : t]. Empty Intervals (which we will call ‘Interval’ for simplicity henceforth) are defined as
the separations between two consecutive persistent sites. By definition, an Interval cannot
contain a persistent site, although it may contain one or more diffusing particles A. The
total number (per site) of Intervals of length k at time t is denoted by n(k, t) and is called
the Empty Interval Distribution.

To start with, the the particles are put randomly on the lattice so that n(k, t = 0) =
n2
0(1 − n0)

k ∼ e−λk where λ = −log(1 − n0). With time, the particles diffuse on the
lattice, making the sites non-persistent. n(k, t) evolves satisfying the following normalisation
conditions. If Im(t) =

∑

k k
mn(k, t) ≈ ∫

∞

1 n(s, t)smds is them-th moment of the distribution,
then

I0(t) = P (t) ∼ t−θ ; I1(t) = 1 I2(t) ≡ s(t) (1)

The first condition follows from the definition of n(k, t), the second one implies length
conservation and the third condition gives the mean interval size s(t). The probability

distribution of interval lengths is p(k, t) = n(k,t)
∑

k
n(k,t)

= P (t)−1n(k, t) so that
∑

k p(k, t) = 1.

Two neighbouring Intervals can coalesce when the persistent site between them is de-
stroyed by a diffusing particle at the boundary of either of the Intervals. Note that this
coalescence process is irreversible. For simplicity, we consider only binary coalescence in a
single time step where two adjacent Intervals of lengths k1 and k2, separated by a persistent
site, coalesce and form a new Interval of length k1+ k2 when the persistent site is ‘killed’ by
a particle (Fig. I). To study this process analytically, we invoke a mean-field approximation
– the lengths of adjacent Intervals are treated as uncorrelated random variables with proba-
bility distribution p(k, t). This is the Independent Interval Approximation (IIA), which has
been used to study a variety of problems in one dimension [10,11].

A. Rate Equation for Interval coalescence

Assuming that IIA is valid, the time evolution of n(k, t) is given by the rate equation

∂n(k, t)

∂t
=

1

2

k−1
∑

m=1

n(m, t)p(k −m, t)K(m, k −m, t)−

n(k, t)
∞
∑

m=1

p(m, t)K(m, k, t) (2)

where K(m1, m2, t) is the probability that two adjacent Intervals of lengths m1 and m2

coalesce at time t. The first term in Eq.2 represents the increase in number of Intervals
of size k through coalescence of smaller intervals, while the second term is the loss term
representing the decrease in number when Intervals of size k merge with other Intervals.

To solve the above equation for n(k, t), one need to know the form of the reaction
kernel K(m1, m2, t). The process of coalescence of Intervals involves the destruction of the
persistent site in between them by a particle, which can come from either of the Intervals.
So, quite generally,

K(m1, m2, t) = Q(m1, t) +Q(m2, t) (3)
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where Q(m, t) is the fraction of intervals of size m which is destroyed at time t. Q(m, t)
satisfies the following condition by definition.

∑

m

n(m, t)Q(m, t) = −∂P (t)

∂t
=

θ

t
P (t) (4)

where we have made use of the fact that P (t) ∼ t−θ.
The form of Q(m, t) can be argued for in the following way. An Interval of length m at

time t can contain a particle anywhere inside it only if the interval length is at least of the
order of the diffusive scale

√
Dt. That is, Q(m, t) ≃ 0 for m ≪

√
Dt. It is also known that

the particle distribution is correlated over length scales r ≪
√
Dt, wheras it is completely

random over r ≫
√
Dt [11]. So we expect that for m ≫

√
Dt, Q(m, t) → α(t), independent

of m. These physical considerations leads us to suggest the following dynamic scaling form
for Q(m, t).

Q(m, t) = α(t)β(
m√
Dt

) (5)

where the function β(x) is expected to have a sigmoidal form, ie., β(x) = 0 for x ≪ 1
and β(x) → 1 for x ≫ 1. The function α(t) will be determined later.

B. Dynamic scaling

We assume that at asymptotic times, the distribution n(k, t) is characterised by a single
dynamic length scale s(t). We note that there are two relevant length scales in the problem.
The first is the diffusive scale LD(t) ∼

√
Dt entering the scaling form Eq.5 for the coalescence

probability. On the other hand, the inverse of the persistent fraction P (t) is also a length
scale, which we shall call the persistence scale, denoted by Lp(t) ∼ tθ. The asymptotic
behaviour is expected to be dominated by the larger of the two, ie., the diffusive scale LD(t)
in the present case (since θ < 1/2).

We now invoke the dynamic scaling ansatz, ie., n(k, t) ∝ f(k
s
) with

s ∼ t1/z , z = 2 (6)

From the length conservation condition given by the second part of Eq. 1 it follows that
the prefactor is ∼ s−2. Thus, the scaling solution for n(k, t) is written in the form

n(k, t) = s(t)−2f

(

k

s(t)

)

(7)

Substituting Eq. 7 and Eq. 5 in Eq. 4, we find α(t).

α(t) =
θ

t

s(t)P (t)

B
(8)

where B =
∫

∞

0 β(x)f(x)dx. Substituting Eq.7 in the normalisation conditions Eq.1, we
find the following conditions on the scaling function.
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∫

∞

s−1

f(x)dx = sP (t) ;
∫

∞

0
f(x)xdx = 1 (9)

In the first integral, the lower limit is set as s(t)−1 to take care of any possible small
argument divergence.

Substituting Eq.5, 7, 8 and 6 in Eq. 2, we find the following equation for the scaling
function f(x).

η

z

∂f

∂η
= − θ

B

∫
η

2

s(t)−1

f(x)f(η − x)[β(x) + β(η − x)]dx−
[

2

z
− θ − θ

B
s(t)P (t)β(η)

]

f(η) (10)

where the scaling variable η = k
s(t)

.
Case I: η ≪ 1.
For η ≪ 1, all β(x) ≃ 0 for x ≤ η. This case corresponds to small Intervals, ie., those

which are not large enough to contain a diffusing particle till time t. In this case, the
equation reduces to η ∂f

∂η
= −(2− zθ)f(η) which has the solution f(η) ∼ η−τ where the new

exponent τ is related to θ through the scaling relation

τ = 2− zθ (11)

From Eq. 7 this implies that for k ≪ s, n(k, t) ∼ t−θk−τ . For the model under consid-
eration here, θ is known exactly to be 3/8 [4] which gives τ = 5/4.

Case II: η ≫ 1.
For general values of η, β(η) is non-zero, and because τ > 1, the first integral diverges

near x = 0 as x−(τ−1). There is another divergence in the last term, of the form t1/z−θ.
It can be shown that this term can be exactly cancelled by the divergent part of the first
integral. After carrying out this ‘regularisation’ (details to be found in Appendix A) and
putting z = 2 in Eq.10 the equation for the scaling function f(η) stands as

η

2

∂f

∂η
= − θ

B

∫
η

2

0
f(x)f(η − x)[β(x) + β(η − x)− β(η)]dx−

θ

B
β(η)

∫
η

2

0
f(x)[f(η − x)− f(η)]dx−

[

1− θ − θ

B
β(η)

∫

∞

η

2

f(x)dx

]

f(η) (12)

A general solution of this equation requires the knowledge of the detailed form of the
scaling function β(η). However, for large values of η where β(η) ≃ 1, one can simplify this
equation. We define the point η∗ sufficiently large such that for η ≥ η∗, β(x) = 1 within the
limits of accuracy required. Without any loss of generality, one can put η∗ = 1 by rescaling
the length scale s(t) accordingly. For η ≥ 1, we define f(η) ≡ h(η), whose equation is

η

2

∂h

∂η
= − θ

B

[

2
∫

η

2

1
h(x)h(η − x)dx+

∫ 1

0
f(x)[h(η − x)− h(η)]dx

]

− (1− 2θ)h(η) (13)

This equation has a solution of the form h(η) = Ge−λη as can be shown by direct
substitution. The constants G and λ are related through the relations
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λB = 2θG (14)

and

λ+ 2θ = 1 +
θ

B
F (λ) (15)

where F (λ) =
∫ 1
0 f(x)

[

eλx(1 + β(x))− 1
]

dx and

B =
∫ 1

0
f(x)β(x)dx+

G

λ
e−λ (16)

by definition. Eq.14-16 formally gives the constants λ and G. However, the actual
evaluation of these constants requires the knowledge of the function f(x) in the entire range
[0:1] (and not just near x = 0, where f(x) ∼ x−τ ), which, in turn, is possible only if
the detailed form of β(x) is known. Hence we will restrict ourselves to showing that the
parameter λ > 0, which is required for the solution to be physically reasonable.

In Eq. 16, we note that B ≥ G
λ
e−λ, depending on how sharply β(x) rises near x = 1.

The equality holds for the step function β(x) = Θ(x − 1) where Θ(x) = 0 for x < 0 and
Θ(x) = 1 for x ≥ 1. After using this inequality in Eq.14, we find that λ ≥ −log(2θ). Since
θ < 1/2, it follows that λ > 0.

C. Numerical Results

We determine the distribution n(k, t) numerically by simulating A+A → ∅ model on one
dimensional lattice of size N = 105 with periodic boundary condition. Particles are initially
distributed at random on the lattice with some average density n0, and their positions
are sequentially updated— each particle is made to move one step in either direction with
probability D = 1/2. When two particles meet each other, both are removed from the
lattice. The time evolution is observed up to 105 Monte-Carlo steps (1 MC step is counted
after all the particles in the lattice were touched once). The simulation is repeated for
several random starting configurations of the particles for any particular initial density and
we repeat the entire simulation for four different initial density n0. For any n0, we determine
the number of intervals of length k (per site) at time t.

To compute the mean interval size s(t), we ran the simulation upto t = 105 time steps,
and averaged the results over 100 starting distributions of particles, with the same initial
density. In Fig. II, we plot s(t) vs t for four different values of n0– 0.2, 0.5, 0.8 and 0.95. For
n0 = 1/2, we find that s(t) ∼ at1/z with z ≃ 1.97(1) and a ≃ 5.96. But for other values of
n0, we find that the observed value of z is different from 2. In Fig. III, the running exponent
d(logs)/d(logt) is plotted with 1/(logt) and the results show the systematic deviation away
from the value 1/2 expected from the scaling picture presented in the previous section. We
will discuss about the possible origin of this deviation later.

In Fig. IV, we plot the scaling function f(x) = s(t)2n(k, t) against the scaling variable
x = k/s(t) for t = 104 and 3.104. To get the nature of the scaling function one needs to
average over lots of configurations. This has restricted us to smaller time steps and data
for three values of initial density, n0 = 0.2, 0.5 and 0.8 averaged over 500, 1000 and 1500
different initial distribution of particles respectively. For all n0, we find that the scaling
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function f(x) ∼ x−τ for x << 1 and decays exponentially for higher values of x. For
n0 = 0.5, we find τ = 1.25(1) in accordance with the scaling relation Eq 11. For n0 = 0.2,
we find τ ≃ 1.32(2) while for n0 = 0.8, the observed value of τ is 1.13(2). For all n0, τ
satisfies the scaling relation Eq. 11 if z is replaced by its effective value.

For general values of n0, we find that the numerical values of s(t) supports the following
form (within the time range studied)

sn0
(t) ∼ at1/z + b(n0)t

φ. (17)

The non-universal constant b is <,= or > 0 for n0 <, = or > 0.5. To compute the
prefactor b and the exponent φ, we plot the difference ∆sn0

(t) = |sn0
(t) − s1/2(t)| vs t, for

n0 = 0.2, 0.8 and 0.95 (Fig. V). The exponent φ is numerically found to be close to the
persistence exponent θ = 0.375 (Table I). We find that as n0 → 1, the constant b undergoes
a sharp rise so that the effective dynamical exponent of s(t) is numerically close to θ for an
appreciable range in time (Fig. III). At the same time, we note that only the first term in
Eq.17 is asymptotically relevant since φ < 1

2
.

The two terms in Eq.17 can have their origin from the two dynamical length scales in
the problem, the diffusive scale LD(t) ∼ t1/2 and the persistence scale Lp(t) ∼ tθ. For large
n0, the typical interval length between two consecutive persistent sites is determined by the
decay of persistence only, rather than the diffusion of the particles. So, it is understand-
able that the dynamical behavior of s(t) coincides with that of Lp(t) at least at the initial
times. However at late times, when the particle density falls down as a result of annihila-
tion, the situation becomes same as that of starting with low n0 and the decisive scale is
LD(t). However, the precise form and behavior of the prefactor b(n0) with n0 remains to be
understood.

III. TWO-POINT CORRELATIONS

A good picture of the spatial distribution of the persistent sites and the presence of any
possible correlation in their distribution is obtained from the two-point correlation C(r, t),
which is defined as the probability that site x+r is persistent, given that site x is persistent
(averaged over x).

C(r, t) = 〈ρ(x, t)〉−1〈ρ(x, t)ρ(x + r, t)〉 (18)

where the brackets denote average over the entire lattice and ρ(x, t) is the density of
persistent sites: ie., ρ(x, t) = 1 if site x is persistent at time t, and 0 otherwise. Clearly,
〈ρ(x, t)〉 = P (t) by definition.

Within the IIA, the relation between C(r, t) and n(r, t) (We consider r ≫ 1, so that the
discreteness of the underlying lattice can be ignored) can be written as the following infinite
series:

C(r, t) = P (t)−1n(r, t) + P (t)−2
∫ r

1
dx n(x, t)n(r − x, t) +

P (t)−3
∫ r

1
dx n(x, t)

∫ r−x

1
dy n(y, t)n(r − x− y, t) + .... (19)
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The first term corresponds to the case where there is no other persistent site in the range
[0 : r], ie., a single Interval of length r. The second term gives the probability that the range
is split into two Intervals of length x and r− x by the presence of a persistent site at x, the
third term gives the probability for three Intervals and so on.

The above series can be rewritten as the following self-consistent equation for C(r, t).

P (t)C(r, t) = n(r, t) +
∫ r

1
n(x, t)C(r − x, t)dx (20)

In terms of the Laplace transforms C̃(p, t) =
∫

∞

1 C(r, t)e−prdr and ñ(p, t) =
∫

∞

1 n(s, t)e−psds Eq. 20 becomes

C̃(p, t) =
ñ(p, t)

P (t)− ñ(p, t)
(21)

From Eq.7, we find

ñ(p, t) = s−1f̃(ps) (22)

where f̃(q) =
∫

∞

s−1 f(η)e−qηdη. which can be written in the following regularised form,
using Eq.9.

f̃(q) = s(t)P (t)− f1(q) (23)

where

f1(q) =
∫

∞

0
f(η)[1− e−qη]dη. (24)

Substituting Eq.22, 23 and Eq.24 into Eq.21 we find that

C̃(p, t) =
s(t)P (t)

f1(ps)
− 1 (25)

The second term in RHS can be neglected at late times, since s(t)P (t) diverges as t1/z−θ.
It follows that in this limit, C(r, t) has the dynamic scaling form

C(r, t) = P (t)g

(

r

s(t)

)

(26)

where

g̃(q) =
1

f1(q)
(27)

is the Laplace transform of g(x): g̃(q) =
∫

∞

0 g(x)e−qxdx.
The preceding expressions can be used to deduce the limiting behaviour of the scaling

function g(η) for the cases η ≪ 1 and η ≫ 1, without needing to solve Eq.19 or 20 explicitly.
Case I: η ≫ 1.
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To find the asymptotic behaviour of g(η), we note that f1(q) vanishes near q = 0 as
f1(q) ∼ q. Thus g̃(q) ∼ 1

q
as q → 0 from Eq.27. By standard results in the theory of Laplace

transforms [12], this implies that g(η) ∼ 1 as η → ∞.
Case II: η ≪ 1.
To analyse this case, consider the real-space relation Eq.19. For η ≪ 1, or equivalently,

r ≪ s, we have shown that n(r, t) ∼ P (t)r−τ . It is clear that in this range, the RHS of
Eq.19 is time independent, so C(r, t) in the LHS should also be time independent. From
the dynamic scaling form Eq.26, we find that this is possible only if the scaling function is a
power-law near the origin: g(η) ∼ η−α as η → 0. After substituting in Eq.26 and requiring
the resulting expression to be time independent, we find

α = zθ (28)

We find C(r, t) ∼ r−α for r ≪ s and C(r, t) ≃ P (t) for r ≫ s. The power law decay at
small distances is expected, because the RHS of Eq.19 contains only scale invariant terms
in this limit, hence the LHS also should be likewise. In Appendix B, we show that this is
also consistent with Eq.20.

We see that in the IIA calculation, the length scale s(t) demarcates the correlated and
uncorrelated regions for C(r, t). In the correlated region (r ≪ s(t)), the persistent sites form
a fractal with fractal dimension df = d− α = 1

4
, with the correlation length s(t) increasing

with time as s ∼ t1/2. The IIA results agree very well with that of numerical simulations
[8], showing the validity of the approximation.

IV. CONCLUSION

Persistent sites are shown to have strong correlations in their spatial distribution. In
one dimensional A + A → ∅ reaction-diffusion system, we show that there is a length scale
s(t), diverging with time as s(t) ∼ t1/z, which demarcates the correlated region from the
uncorrelated one. We argue that z = 2 at large t limit. Persistent sites separated by
distance k ≪ s(t) are highly unlikely to have a particle A between them and so retains their
persistent character. Only persistent sites separated by distance ≫ s(t) take part in the
decay of persistence at subsequent times.

We find that if k is the distance of separation between any two consecutive persistent
sites, then for k ≪ s(t), the distribution of k is scale-free and decays algebraically as k−τ

with τ = 2− zθ. We show this using the IIA (Independent Interval Approximation), which
assumes no correlation in the lengths of any two adjacent intervals. We have verified our
results by numerical simulations which suggests the validity of the IIA. Under the IIA, our
calculation for the two-point correlation shows that over length scales r ≪ s(t), the persistent
site distribution over the lattice is a fractal with dimension df = τ − 1, in accordance to our
earlier observations [8].
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APPENDIX A:

The divergence in the first integral in Eq. 10 can be separated out as follows. We
write f(η − x) = f(η) + ∆xf(η) and β(η − x) = β(η) + ∆xβ(η). so that limx→0∆xf(η) =
limx→0∆xβ(η) = 0.

After substituting for f(η− x) and β(η− x), the divergent part of the integral separates
into the following terms.

∫
η

2

s(t)−1

f(x)f(η − x)β(η − x)dx = f(η)β(η)
∫

η

2

s(t)−1

f(x)dx+ f(η)
∫

η

2

0
f(x)∆xβ(η)dx+

β(η)
∫

η

2

0
f(x)∆xf(η)dx+

∫
η

2

0
f(x)∆xf(η)∆xβ(η)dx

The first term is divergent near the origin, while all other terms are finite by construction.
Now we rewrite the first term using the equality

∫

∞

s(t)−1 f(x)dx = s(t)P (t). After some
simplifications, the integral becomes
∫

η

2

s(t)−1

f(x)f(η − x)β(η − x)dx = f(η)β(η)s(t)P (t) +
∫

η

2

0
f(x)f(η − x) [β(η − x)− β(η)] dx+

∫
η

2

0
f(x) [f(η − x)− f(η)]− β(η)f(η)

∫

∞

η

2

f(x)dx

The first term is the divergent part of the integral, which exactly cancels the last term
in Eq. 10, to give the regularised Eq. 12.

APPENDIX B:

For r ≫ 1, it is reasonable to assume that the higher order terms in the RHS of Eq.19
will contribute more than the first term, ie., the range [0 : r] is more likely to be covered
with more than one Interval than a single one of length r. After using this approximation,
and substituting n(r, t) ≃ (τ − 1)P (t)r−τ in the continuum limit, Eq. 20 is simplified to

C(r, t) ≃ (τ − 1)
∫ r−1

1
(r − x)−τC(x, t)dx

Our purpose is to see if the equation

r−α ≃ (τ − 1)
∫ r−1

1
x−α(r − x)−τdx (B1)

is consistent for α = zθ = 2− τ (Eq.11) at r ≫ 1.
The integral I =

∫ r−1
1 x−τ (r−x)−αdx can be transformed by change of variables into the

more standard form [13]
∫ r−2

0
(1 + y)−τ [r − 1− y]−αdy ≃ r1−α

1− α
F (1, τ ; 2− α;−r) for α < 1 and r ≫ 1.

where F (a, b; c; z) is the Gauss Hypergeometric function. For b = c, F (a, b; b; z) =
(1− z)−a exactly, independent of b [14]. Thus, for α = 2− τ we find

(τ − 1)I = r−α[1 + o(
1

r
)]

which is consistent with Eq. B1, at r ≫ 1.
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TABLES

n0 b φ

0.20 −6.621 0.34372(11)

0.80 15.701 0.35495(5)

0.95 84.672 0.36572(4)

TABLE I. Results for the prefactor b and exponent φ as measured from simulations. The

numerical value of φ is found to be close to the persistence exponent θ whose exact value is 0.375.

The figures in brackets represent statistical error in the last decimal place. Note the sharp rise in

b as n0 → 1.
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FIGURES
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FIG. 1. In the picture, white circles are persistent sites (numbered 1, 2, 3..) and dark triangles

are diffusing particles. Two Empty Intervals E12 and E23 are shown to merge together to give a

new Interval E13 when the persistent site 2 at the boundary is killed by a diffusing particle.
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FIG. 2. The length scale s(t) is plotted as a function of time t. The straight line is a fit, with

slope 1/2.
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FIG. 3. The effective exponent dlogs
dlogt is plotte against 1/logt for four values of starting density.

For n0 = 0.5, the exponent value is close to 0.5, expected from the scaling arguments. For other

values of n0, systematic deviations away from 0.5 is observed.
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FIG. 4. The scaling function f(η) = s(t)2n(k, t) is plotted against the scaling variable

η = k/s(t) on a logarithmic scale. There is a power-law divergence at small η and exponen-

tial decay at large η, as predicted by the IIA calculation. The observed value of τ for n0 = 0.8 is

seen to be appreciably different from that for other n0.
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FIG. 5. The difference ∆s(t) = |s(t) − s1/2(t)| is plotted against t for n0 = 0.2, 0.8 and 0.95.

The straight line is a fit with slope 3/8.
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