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Bilayer graphene subjected to perpendicular magnetic and electric fields displays a subtle compe-
tition between different symmetry broken phases, resulting from an interplay between the internal
spin and valley degrees of freedom. The transition between different phases is often identified by an
enhancement of the conductance. Here, we propose that the enhanced conductance at the transition
is due to the appearance of robust conducting edge states at domain walls between the two phases.
We formulate a criterion for the existence of such conducting edge states at the domain walls. For
example, for a spontaneously layer polarized state at filling factor ν = 2, domains walls between
regions of opposite polarization carry conducting edge modes. A microscopic analysis shows that
lattice-scale interactions can favor such a layer polarized state.

PACS numbers: 73.21.–b, 73.22.Gk, 73.43.–f, 73.22.Pr

I. INTRODUCTION

Bilayer graphene (BLG) is a rich playground to ex-
plore many-body physics1. At zero magnetic field, the
energy bands exhibits a quadratic touching that can lead
to a variety of many-body instabilities2–10. Signatures
of a symmetry-broken ground state at B = 0 have been
observed experimentally11–15, although the precise na-
ture of this state is still debated. When a magnetic
field is applied perpendicular to the system, the Lan-
dau levels are highly degenerate, including spin, valley,
and (for the zeroth Landau level) also an orbital degree
of freedom16. This degeneracy can be lifted by exchange
interactions12,15,17–19, leading to different kinds of broken
symmetry states20–22. Which state is favored depends on
the nature of the lattice-scale interactions between elec-
trons, which break the approximate SU(4) symmetry in
spin and valley space.
In BLG, an electric field perpendicular to the plane

couples to the valley degree of freedom of the Landau
levels. Upon tuning the strength of the magnetic and
electric perpendicular fields (B and E, respectively) at
a fixed filling fraction, transitions between different or-
dered states can be induced12,19,23,24. These transitions
are identified by peaks in the conductance along lines in
the (E,B) plane. The mechanism for this enhanced con-
ductance at the transitions remains unexplained. These
transitions are expected to be of first order in the clean
limit; they are described as a level crossing of different
ground states, without closing of the energy gap above
these two states, and hence there is no obvious reason for
an enhancement of the conductance.
In this paper, we propose that the enhanced conduc-

tance at the transitions can result from the appearance
of robust one-dimensional conducting modes at domain
walls between different phases. The possibility of the ap-
pearance of such (non-chiral) modes, either at the edge
of the sample or at domain walls, has been proposed in
Refs.8,25–36. These edge states are partially protected

against backscattering by the approximate conservation
of either the spin or pseudospin (valley) quantum num-
bers, and are robust in the presence of electron-electron
interactions. Evidence for such edge state have been ob-
served under a high in-plane magnetic field37. We formu-
late a simple criterion for robust edge states at domain
walls between two quantum Hall ferromagnetic phases
with the same filling fraction, based on their symmetry
properties and their quantum numbers.

As an example, we analyze the case of ν = 2 at E = 0.
In this case, to leading approximation, the partially filled
Landau levels have an SU(2) valley (pseudospin) degree
of freedom38,39. This symmetry is broken either by an
applied electric field or by lattice scale interactions. We
argue that the experimental findings of Wietz et. al.12

are consistent with a spontaneously layer polarized phase
[an easy axis ferromagnet, in terms of the SU(2) pseu-
dospin]. The domain walls between regions of opposite
polarization support conducting edge modes26,30. At
E = 0, the domain walls percolate, leading to an en-
hanced conductance. We present a Hartree-Fock analy-
sis of a microscopic model, and demonstrate how such a
layer polarized phase can be favored over other possible
broken-symmetry states in the physically relevant regime
of parameters. Interestingly, to obtain such a phase, it is
essential to treat all the Landau levels explicitly, rather
than projecting to the partially filled zero-energy Landau
levels.

II. SETUP

We consider a BLG sheet in the Bernal stacking. The
low-energy single particle effective Hamiltonian is written
as16

H0 = − 1

2m

(

0 (πx − iτzπy)
2

(πx + iτzπy)
2

0

)

. (1)
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FIG. 1: (A) The staggered flux (STF) phase. In this phase,
translational symmetry is spontaneously broken, and there
is a spontaneous staggered flux between the two graphene
sheets. The order parameter can be described as a complex
hopping amplitude between the A sublattice of the bottom
layer and the B sublattice of the top layer. (B) The fully
layer polarized (FLP) phase, which breaks inversion symme-
try spontaneously. The electrons in the n = 0, 1 Landau levels
with spin antiparallel to the external magnetic field occupy a
single valley (and a single layer). (C) Energies of the Landau
levels at filling factor ν = 2. Ignoring the Zeeman splitting
and electron-electron interactions, there are eight degenerate
zero-energy Landau levels, corresponding to spin, valley, and
orbital (n = 0, 1) indices. The exchange interactions favour a
ferromagnet in spin and valley manifold with equal occupancy
of n = 0, 1 orbitals. The Zeeman coupling picks a direction
for spin and splits the spin degeneracy. Finally, exchange in-
teractions spontaneously split the remaining valley degener-
acy, favoring a spinor |χ̄〉 in valley space over the orthogonal
spinor |χ〉. (D) Ground state mean-field phase diagram for
ν = 2 as a function of JH and ∆V (see Eq. 3). The other
coupling constant were fixed as follows: U = V1 = V0 and
V2 = V3. The phase boundaries between the FLP and the
STF phases are shown for different dimensionless coupling
strengths: mV0/~

2 = 0.025, 0.07, 0.125.

Here, m is the effective mass of the bands near zero en-

ergy, and πi = −i∂i−eAi (i = x, y) where ~A is the vector
potential. ~τ are Pauli matrices acting on the valley in-
dex, such that τz = ±1 corresponds to the ±K point
in momentum space, where K = (−4π/3

√
3a0, 0), and

a0 is the inter-atomic spacing within each layer. We set
the units such that ~ = c = 1. The 2 × 2 Hamiltonian
acts on the spinor (ψA, ψB), where ψA(B) annihilates an
electron on sublattice A (B) in the bottom (top) layer,
respectively. We define the 8-component spinor Ψ, that

contains annihilation operators in layer µz = ±1, valley
τz = ±1, and spin sz = ±1.
In the presence of a uniform orbital magnetic field, the

single particle spectrum consists of a series of Landau
levels whose energies are En = ±ωc

√

n(n− 1), where
ωc ≡ eB/m and n = 0, 1, . . . 16. Each Landau level is
four-fold degenerate, with two possible valley labels, τz =
±1, and two spin labels, sz = ±1 (neglecting the Zeeman
splitting). In addition, the n = 0, 1 Landau levels are
degenerate.
We write the full Hamiltonian as

Ĥ = Ĥ0 + ĤZ + ĤC . (2)

Here, Ĥ0 =
´

d2rΨ†(r)H0Ψ(r), ĤZ =

−gµBB
´

d2rΨ†szΨ is the Zeeman coupling, and

ĤC is the Coulomb interaction (to be discussed below).
When some of the zero-energy Landau levels are empty,

the system tends to form a quantum Hall ferromagnetic
state which breaks the symmetry in spin and valley space,
in order to gain Coulomb exchange energy. At the lowest
Landau level, where there is an additional orbital (n =
0, 1) degeneracy, maximum exchange is gained by filling
the n = 0, 1 orbitals together with the same state in τ ,
s space38,39. We will assume that this form of “Hund’s
rule” is obeyed below, although it is not essential for
the general criterion for conducting edge states between
different phases.
The filling fraction ν is defined as the number of elec-

trons per flux quantum, with respect to the charge neu-
tral state. The ν = 0 quantum Hall state is determined
by two orthogonal spinors in spin/valley space, χ1 and
χ2, such that of the eight degenerate zero-energy Lan-
dau levels, four are occupied: |χi, n〉 with i = 1, 2 and
n = 0, 121. Similarly, the ν = 2 state is determined by
a single spin/valley spinor χ, such that of the E = 0
Landau level states, only the states |χ, n〉 (n = 0, 1) are
empty (see Fig. 1C). At a given filling fraction, there is
a manifold of possible states; this degeneracy is lifted by
the Zeeman field, and applied electric field perpendicular
to the sheet (which breaks the degeneracy between the
layers), and by the short-range exchange interactions.

III. CONDITION FOR CONDUCTING MODES

AT DOMAIN WALLS

As external parameters are varied at a fixed filling frac-
tion, the system can undergo phase transitions between
different ordered states in spin/valley space. If disorder
effects are ignored, these transitions are generically of
first order. At the transition point, we expect a phase
mixture of two phases.
Consider a domain wall between two such phases.

Here, we discuss a sufficient condition for the appear-
ance of conducting edge states at the domain wall. Our
condition is formulated as follows: suppose that the two
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phases on either side of the domain wall are invariant
under a common U(1) symmetry generated by an op-

erator Ĝ in spin and/or valley space. (The symmetry
could be generated by sz, τz , or some combination of the
two.) Define the weighted filling fraction ν̃ =

∑

j∈filled qj,
where j runs over the filled states, and qj is the charge of

the state j under Ĝ. If ν̃ of the two phases is different,

there is necessarily a gapless edge state at the domain wall

between them. This edge state is robust in the presence
of arbitrary interactions and disorder, as long as they
preserve Ĝ. For instance, if Ĝ = τz , the edge states will
be protected as long as we neglect lattice-scale disorder
that causes inter-valley scattering, and the domain wall
itself is sufficiently smooth. The conductance of the edge
state is given by ∆ν̃e2/2h, where ∆ν̃ is the difference of
ν̃ between the two phases.
A simple way to understand the existence of a gapless

edge state is to define the Hall conductance related to
the conserved U(1) charge under Ĝ. We introduce a vec-

tor potential ~AG that couples to the charge under Ĝ, by

substituting −i~∂ → −i~∂ − Ĝ ~AG in Ĥ0. The response of

the current ~jG = ∂Ĥ/∂ ~AG to an applied electric field in

the plane, described by the “Ĝ Hall conductance” σH
G , is

quantized (this is analogous to the spin Hall conductance
in a quantum spin Hall state with conserved spin40,41).
Phases with different ν̃ correspond to different σH

G , and
must have gapless edge states between them. This ar-
gument is expected to hold in the presence of arbitrary
interactions and disorder, as long as the symmetry Ĝ is
preserved and the gap in the bulk of both phases is main-
tained.
For example, consider the state with filling factor

ν = 2, specified by the four-component spinor χ defined
above. The Zeeman coupling favors a particular spin
component, say sz = 1. To specify the state, the spinor

χ in valley space remains to be determined. Lattice scale
exchange interactions will select either a spontaneously
layer-polarized state with 〈~τ 〉 ‖ ẑ, or an in-plane polar-
ized phase with 〈~τ 〉 ⊥ ẑ. If the layer-polarized state is
favored, then domain walls between the τz = ±1 phases
carry non-chiral edge states. These edge states are ro-
bust as long as we can neglect inter-valley scattering
(which requires the domain wall to be smooth on the
lattice scale; see next section for a discussion of the char-
acteristic length scale of the domain walls), and remain
so for arbitrary interactions. The edge states have con-
ductance of 2e2/h (where the factor of 2 is due to the
orbital degeneracy). The in-plane state breaks a contin-
uous symmetry; in this phase, there are no sharp domain
walls. If weak inter-valley scattering disorder is present,
the valley polarization is locally pinned by the disorder,
and twists gradually in space.
Physically, the in-plane polarized state breaks trans-

lational symmetry spontaneously, while the valley po-
larized state breaks inversion symmetry. On the lattice
scale, the former is described as a “staggered flux” (STF)
state, and the latter is a “fully layer polarized” (FLP)
state (see Fig. 1A,B).

IV. HARTREE-FOCK ANALYSIS FOR ν = 2

The long-range part of the Coulomb interactions is
symmetric in spin and valley space, and therefore it does
not lift the degeneracy between the layer-polarized and
the in-plane polarized states. The degeneracy is lifted
by short-range (lattice scale) exchange interactions. In
order to analyze the competition between these phases,
we use the following form for the short-range exchange
Hamiltonian:

Ĥex =

ˆ

d2r

{

V0n
2 +

∑

µ

[

∑

τ

Unµτ↑nµτ↓ + V1nµ,Knµ,K′ − JH ~Sµ,K · ~Sµ,K′

]

+
∑

τ

V2n1,τn−1,τ + V3
∑

µ

nµ,Kn−µ,K′

}

.

(3)

Here, nµτs = ψ†
µτsψµτs (µ = ±1, τ = K,K ′, s =↑, ↓ are

layer, valley, and spin indices, respectively, and we have
suppressed the spatial argument ~r for brevity), nµτ =
∑

s nµτs, n =
∑

τ,µ nτµ, and [~Sµτ ]s,s′ = ψ†
µτs~σss′ψµτs′

where ~σ are Pauli matrices. V0 is the part of the
Coulomb interactions which are isotropic in layer, val-
ley, and spin space; U is the strength of the interaction
between two electrons in the same layer and valley; V1
is an inter-valley, same-layer coupling constant; JH is
an inter-valley Hund’s rule coupling constant; and the
V2 (V3) terms describe inter-layer, intra- (inter-) valley

interactions, respectively. For simplicity, we have as-
sumed that the spatial overlap between wavefunctions
of electrons in different layers is small, so we can neglect
inter-layer exchange interactions. On general grounds,
we expect the following relations between the interac-
tions: V0 & U ≥ V1 > JH > 0, U > V2 ≥ V3 > 0.
(For more discussion of the microscopics of the exchange
interactions, see Appendix A.)

We now proceed to perform a mean-field analysis on
the Hamiltonian Ĥ = Ĥ0 + ĤZ + Ĥex. Interestingly,
upon projection to the partially filled Landau level, the
exchange Hamiltonian (3) does not lift the degeneracy
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between the layer-polarized and the in-plane polarized
states at ν = 2. This is because the partially filled Lan-
dau level is fully polarized in spin and valley space; there-
fore, 〈Ĥex〉 = 0 independent of the direction of polariza-
tion. In the following, we avoid projecting to the lowest
Landau level, and treat the entire Landau spectrum. The
contribution of the n > 1 Landau levels to the suscepti-
bility in the particle-hole channel is divergent in the limit
B → 0, due to the quadratic band touching in the un-
derlying dispersion. This implies that the contribution
of the higher (occupied and unoccupied) states to the
energetics is significant.

To estimate the ground state energies of the different
states, we use a variational Hamiltonian of the form

ĤMF = Ĥ0+ĤZ−
ˆ

d2r
∑

α,β,ζ

λ
(ζ)
αβΨ

†µατβ
1 + ζsz

2
Ψ, (4)

where α, β = 0, x, y, z and ζ = ±1. The parameters λ
(ζ)
αβ

are chosen to minimize 〈Ĥ〉MF (see aApendixes B and C
for details).

Symmetry can be used to reduce the number of varia-
tional parameters. We assume that none of the candidate
states break spin rotational symmetry around the z axis.
The fully layer polarized (FLP) state breaks lattice in-

version symmetry, represented by Î = µxτx × (~r → −~r),
but preserves translational symmetry and three-fold ro-
tational symmetry, R̂2π/3 = exp(2πiµzτz/3)× (~r → R~r),
where R is a 2 × 2 rotation matrix (Appendix B1).
The only mean- field terms that are consistent with
these symmetries are: {µz, τz , µzτz}FLP. The stag-
gered flux (STF) phase breaks translational symmetry,

but preserves R̂2π/3 around a certain three-fold axis

and Î. The allowed mean-field terms in this phase are
{µxτx, µyτy, µzτz}STF. Interestingly, the set of mean-
field terms in the FLP phase are mapped onto those of
the STF phase under a unitary transformation given by
Û = exp(iπ4µ

xτy), which also leaves Ĥ0 invariant. There-

fore, interactions that are invariant under Û [e.g. the V0
term in (3), or long-range Coulomb interactions] do not
lift the degeneracy between the FLP and STF phases.

The explicit evaluation of 〈Ĥ〉MF and the minimization

over λ
(ζ)
αβ is tedious but straightforward, and will be de-

ferred to the appendixes B,C, and D. We will quote some
of the result here. The instability towards either an FLP
or STF phase occurs for any non-zero strength of the in-
teractions, as a result of the flatness of the Landau levels.
The difference in ground state energy between the FLP
and STF states can be found analytically in the limit of
weak interactions. In this limit, the energy difference per
unit area ∆E ≡ ESTF − EFLP is given by

∆E =
χ0

ℓ4B

[(

V0
2

+
U

4

)

JH −
(

V0
2

+
2V3 − U

4

)

∆V

+
1

8
[2J2

H + (U − V3)
2 + 2(∆V )2]

]

, (5)

where ∆V = V1 − V2, ℓB =
√

~/eB, and χ0 =
m
π

∑N
n=2

ωc

En
(N = Ec/ωc, where Ec is a high energy cut-

off of the theory). The ground state is the FLP state
when ∆E > 0, which occurs when JH is larger than a
critical value of the order of ∆V .
Figure 1D shows the phase diagram as a function of

JH and ∆V . We have fixed the ratios between all the
other coupling constants, and present results for different
values of the dimensionless interaction parameter mV0.
For weak interactions [where Eq. (5) applies], the FLP
phase is favored for large JH , whereas the STF phase
is the ground state for small JH and an intermediate
range of ∆V . As the interaction strength increases, the
region of the FLP phase expands (a naive estimate of
the realistic interaction strength gives mV0 ∼ 1). These
findings do not depend sensitively on the precise values
of the other coupling constants.
In the above analysis, we have disregarded the long-

range part of the Coulomb interaction, and treated only
contact (exchange) interactions (whose range is of the
order of the short distance cutoff, a ≡ 1/

√
mEc). As

already noted, the 1/r part of the Coulomb interac-
tion is symmetric in spin and valley space, and does
not distinguish the FLP and STF phases. The dipole-
dipole term, which falls as 1/r3, favours the STF phase
(since it opposes layer polarization). However, a sim-
ple estimate shows that the dipolar energy per unit area,
Ed ∼ e2d2/ℓ5B (where d is the inter-layer spacing), is sup-
pressed by a factor of ∼ d2/aℓB ≪ 1 compared to the ex-
change energy difference between the two phases, Eq. (5)
(taking e2a as the typical magnitude of the exchange cou-
plings). Therefore, the long-range dipolar interaction is
typically negligible.
Finally, we comment on the structure of the domain

walls between two oppositely polarized regions in the
FLP phase. The “easy axis” anisotropy energy is of the
order of e2a per unit area, whereas the stiffness of the val-
ley pseudospin ~τ is ∼ e2/ℓB. Dimensional analysis gives
that the domain wall has a characteristic thickness of
ℓDW ∼ ℓB

√

ℓB/a ≫ a. Therefore, we expect that inter-
valley scattering induced by the domain wall is small.

V. DISCUSSION AND RELATION TO

EXPERIMENTS

Experimentally, an enhanced conductance was found
along a line in the (E,B) plane for filling factor ν = 012,
and at E = 0 for filling factor ν = 212,19. We interpret
this enhancement of the conductance as arising from gap-
less edge modes at domain walls between two phases at
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the transition point. If these phases satisfy the crite-
rion described above, then they are topologically distinct
as long as the common U(1) symmetry G is preserved;
therefore, there is a sharp phase transition between the
two phases, even in the presence of interactions and disor-
der. The transport near the transition is then described
in terms of percolation of the domain walls between the
two phases42–45.
For ν = 2, as we have shown here, the enhanced con-

ductance is readily explained if the E = 0 ground state is
spontaneously layer polarized. Our microscopic analysis
shows how such a state can arise from short-range ex-
change interactions. Such spontaneous layer polarization
can be detected directly by capacitance measurements46.
At ν = 0, the existence of an enhanced conductance

at the finite E transition allows us to put constraints
on the nature of the states on either side of the transi-
tion. We assume that the E = 0 ground state is a canted
antiferromagnet21. Then, according to our criterion, a
domain wall with a partially layer polarized state21, in
which a coherent superposition of the two valley states is
occupied, does not carry a protected edge mode, because
the two phases do not have a common U(1) symmetry.
An edge state with a fully layer polarized state, however,
does have a conducting edge state, since the two phases
have a common valley symmetry, and valley Hall conduc-
tance jumps across the domain wall.
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Appendix A: Local Interaction Hamiltonian

To write the interaction Hamiltonian, we start from
a tight binding model with the lattice structure of bi-
layer graphene. We are interested in the local part of the
low-energy effective interactions, which are anisotropic
in valley and layer space. We will assume weak coupling
(small e2/v), for which we can simply project the micro-
scopic (Coulomb) interactions

Hint =
∑

s,s′

ˆ

d3~r d3~r′ V (~r − ~r′)ϕ†
s(~r)ϕs(~r)ϕ

†
s′ (
~r′)ϕs′ (~r′),

(A1)
onto the low-energy subspace. Here, ϕs(~r) annihilates
an electron at position ~r with spin s, and V (~r − ~r′) =

e2/|~r − ~r′|. We choose a basis of states whose support

in momentum space is in the regions
∣

∣

∣

~k − ~K
∣

∣

∣ < Λ and
∣

∣

∣

~k − ~K ′
∣

∣

∣ < Λ, where Λ is a momentum cutoff. In real

space, these wavefunctions are localized within a region
of size a ∼ 2π/Λ. We assume a to be of the order of a
few lattice constants.
Let us denote the basis functions by Φµτ (~r− ~R), where

~R is the center of mass of this orbital, ~r is a continuous
space variable, and µ, τ are the layer and valley indices.
ψµτs is an operator that annihilates an electron in orbital

Φµτ (~r − ~R) with spin s.
The low-energy part of the field operators is given by

ϕs(r) =
∑

R,µ,τ

Φµτ (~r − ~R)ψµτs(~R). (A2)

The interaction Hamiltonian takes the form

Hint =
∑

s,s′,1,2,3,4

[
ˆ

drdr′V (r − r′)Φ∗
1(~r − ~R1)Φ2(~r − ~R2)

× Φ∗
3(~r − ~R3)Φ4(~r − ~R4)

]

ψ†
1s(

~R1)ψ2s(~R2)ψ
†
3s′ (

~R3)ψ4s′ (~R4).

(A3)

Here, we have used the short hand notation 1 for
{µ1, τ1, R1}, etc. The object within the square bracket
is the coupling constant of the particular operator

ψ†
1s(

~R1)ψ2s(~R2)ψ
†
3s′(

~R3)ψ4s′ (~R4).

Calculating the values of the microscopic coupling con-
stants from first principles is very difficult, because these
coupling constants are strongly renormalized with re-
spect to their bare values47. We will mostly treat them
as phenomenological parameters. Below, we make some
physically-motivated simplifying assumptions, in order to
reduce the number of independent parameters.

1. Simplifying assumptions and explicit form of

Hint

1. We assume that ~R1 = · · · = ~R4.This assumption

is justified if the orbitals Φ(~r − ~R) are sufficiently

localized around ~R.

2. We consider two types of terms: intra-layer and
inter-layer. We assume that the overlap between
orbitals localized in the two layers is negligible;
therefore, we will not consider terms that hop a
pair from one layer to the other. Moreover, the
inter-layer interaction terms are spin independent.

Within these assumptions, we get the following form for
Hint:
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Hint = Hintra +Hinter + V0(ψ
†ψ)2 (A4)

Hintra =
∑

µ

(U(nµK↑nµK↓ + nµK′↑nµK′↓)

+V1nµKnµK′ − JH ~SµK · ~SµK′

)

(A5)

Hinter = V2(n1,Kn−1,K+n1,K′n−1,K′)+
∑

µ

V3nµ,Kn−µ,K′

(A6)
with six parameters, V0, U, V1, JH , V2, V3. On general
grounds, we expect the following inequalities to hold:

V0 & U ≥ V1 > JH ,

V1 > V2 ≥ V3. (A7)

In addition to these local interactions, there are also long-
range Coulomb (monopole-monopole and dipole-dipole)
interactions.

Appendix B: Mean Field Theory with Local

Interactions: general formulation

Consider the following Hamiltonian:

H = H0 +Hint − µ(ψ†ψ − n0), (B1)

where H0 is the single particle Hamiltonian of BLG, Hint

is a local exchange interaction (Eq. A4). The chemical
potential µ is chosen such that the density is 〈ψ†ψ〉 = n0.
We use a variational mean-field Hamiltonian:

HMF = H0 −
15
∑

a=1

λa,sψ
†
sOaψs − µ0sψ

†
sψs. (B2)

Oa are the following matrices in valley and layer space:

Oa=0,..,15 =

{1, µzτz , µx, µyτz, µz, µyτy , µyτx, τz ,

µxτx, µxτy, µxτz , µy, τx, τy , µzτx, µzτy}.
(B3)

These form a complete basis of hermitian matrices in
the layer and valley space. They satisfy

TrOaOa′ = δa,a′ . (B4)

The mean-field energy is

E({λa}, µ0) = 〈H〉

= 〈HMF 〉+
15
∑

a=1

λas〈ψ†
sOaψs〉+ µ0s〈ψ†

sψs〉

+ 〈Hint〉 − µ(〈ψ†ψ〉 − n0). (B5)

A general spin diagonal quartic interaction term in
〈Hint〉 can be written as

〈(ψ†Oaψ)(ψ
†Obψ)〉

= 〈ψ†Oaψ〉〈ψ†Obψ〉 −
∑

s

〈ψ†
αsψβ′s〉〈ψ†

βsψα′s〉Oαα′

a Oββ′

b

(B6)

Summation over repeated indices is implied. Let us
write Gαβ

s ≡ 〈ψ†
αsψβs〉 =

∑

a φasO
αβ
a , where φas =

1
4TrOaGs = 〈ψ†

sOaψs〉. Then

〈ψ†
αsψβ′s〉〈ψ†

βsψα′s〉Oαα′

a Oββ′

b

=
1

16

∑

c,d

φcsφdsO
αα′

a Oββ′

b Oαβ′

c Oβα′

d

=
1

16

∑

c,d

φcsφdsTr[OaO
∗
cObO

∗
d] (B7)

For the general local Hint we will have a = b which gives
c = d. Then Tr[OaO

∗
cOaO

∗
c ] = ±4 and

〈(ψ†Oaψ)
2〉 =〈ψ†Oaψ〉2 −

1

4

∑

c,s

φ2c,sSgn[OaOc] (B8)

Here Sgn[OaOc] = +1 if Oa, Oc commute and −1 if
they anti-commute. We can then collect and write all
the terms in a compact way as

〈Hint〉 = −1

2

∑

a

φTaMaφa (B9)

where Ma’s are 2× 2 matrices in spin label for each φa.
The energy functional then becomes

E({λa}, µ0s) = 〈HMF 〉+
15
∑

a=1

λa〈ψ†Oaψ〉+ µ0s〈ψ†
sψs〉

− 1

2

15
∑

a=0

φTaMaφa − µ(〈ψ†ψ〉 − n0)

= 〈HMF 〉+
15
∑

a=1

λaφa + µ0s〈ψ†
sψs〉

− 1

2

15
∑

a=0

φTaMaφa − µ(〈ψ†ψ〉 − n0) (B10)

The saddle point equations are

∂E({λa}, µ0s)

∂λa′s′
=

15
∑

a=1

(

λTa − φTaMa

) ∂φa
∂λa′s′

− φT0M0
∂φ0
∂λa′s′

+ (µ0s − µ)
∂〈ψ†

sψs〉
∂λa′s′

= 0 (B11)



7

∂E({λa}, µ0s)

∂µ0s′
=

15
∑

a=1

(

λTa − φTaMa

) ∂φa
∂µ0s′

− φT0M0
∂φ0
∂µ0s′

+ (µ0s − µ)
∂〈ψ†

sψs〉
∂µ0s′

= 0 (B12)

∂E({λa}, µ0)

∂µ
= 〈ψ†ψ〉 − n0 = 0 (B13)

This gives the following mean-field equations:

λa =Maφa

n0 = 〈ψ†ψ〉 (B14)

µ0s = µ+M0φ0 (B15)

Substituting φa = M−1
a λa and 〈ψ†ψ〉 = n0 back into

the expression for the energy, we get

Ẽ({λa}, µ0) =〈HMF 〉+
1

2
λTaM

−1
a λa + µn0

+
1

2
(µ0s − µ)(M−1

0 )s,s′(µ0s′ − µ) (B16)

Note that this energy functional coincides with the
original one at the saddle point, and its variation with
respect to λa and µ0 gives the correct mean-field equa-
tions.

1. Symmetries of the BLG Hamiltonian

The non-interacting Hamiltonian of BLG in absence
of external magnetic field has the following symmetries.
Below we describe the behaviour of our wavefunc-
tions |ψτz=K/K′,µz=±1,σz=A/B(~q)〉 under the symmetry
operations. (τ , µ, σ represent Pauli matrices acting
in valley, layer, and sub lattice space, respectively,

and ~K =
(

− 4π
3
√
3a0

, 0
)

) where a0 is the inter-atomic

spacing in each layer. Other definitions as shown in

the figure are ~R1 = (0,−a0) , ~R2 = a0

(

−
√
3
2 ,

1
2

)

, ~R3 =

a0

(√
3
2 ,

1
2

)

; ~G1 = 2π
a0

(

−1√
3
, 13

)

, ~G2 = 2π
a0

(

1√
3
, 13

)

.

1. Time reversal symmetry (TRS): (~q → −~q)isyτxK, (K
represents complex conjugation).

2. Rotation by 2π/3 around the A-sublattice of
top layer (the stacking point):

J2π/3 exp

[

2πi

3
τz

(

1 + µz

2

1 + σz
2

)

− 2πi

3
τz

(

1− µz

2

1− σz
2

)]

= J2π/3 exp[
2πi

3
τz

(

σz + µz

2

)

].

A
R

RR

1

2 3

ri

b
B

t

2n1
n

K’K

G

−G

1

1

(a) (b)

FIG. 2: (a) Schematic of bilayer graphene with top/bottom
layer labelled by t/b (with colours blue/pink). Thin black
hexagon defines the effective hexagonal lattice. (b) Brilluion
zone for the effective hopping Hamiltonian

(Under J2π/3, qx → qx cos(2π/3) − qy sin(2π/3), qy →
qx sin(2π/3) + qy cos(2π/3))

3. Translation by ~R = l1~n1 + l2~n2 :

exp[iτz
4π

3
√
3a0

Rx] exp[−i~q. ~R],. ~n1 and ~n2 are primi-

tive vectors of the hexagonal lattice (see Fig. 2).

4. Inversion Symmetry: (~q → −~q)τxµxσx, with in-
version center at mid point of the stacking bond between
the two layers.

5. Mirror x→ −x: (qx → −qx)τx.

Details of the symmetry transformations:

Rotation by 2π/3 for |ψK,A(~q)〉:

〈~ri|ψK,A(~q)〉 ∼ exp[i( ~K + ~q).~ri,A]

〈~ri|J 2π

3

|ψK,A(~q)〉 ∼ exp[iJ 2π

3

( ~K + ~q).~ri,A]

= exp[i( ~K − ~G1 + J 2π

3

~q).(~ri + ~R2)]

= exp[−i ~G1. ~R2]〈~ri|ψK,A(J 2π

3

~q)〉
= exp (i2π/3) 〈~ri|ψK,A(J 2π

3

~q)〉

Similarly at B sublattice,

〈~ri|J 2π

3

|ψK,B(~q)〉 ∼ exp[iJ 2π

3

( ~K + ~q).~ri,B ]

= exp[i ~K − ~G1 + J 2π

3

~q).(~ri − ~R3)]

= exp[i ~G1. ~R3]〈~ri|ψK,A(J 2π

3

~q)〉
= exp (−i2π/3) 〈~ri|ψK,A(J 2π

3

~q)〉.

At K ′, we get ~K ′ → ~K ′ + ~G1 and the signs are
reversed for A and B sublattices. Thus we get the above
expression for the symmetry operation.

Translation by a lattice translation ~R:

〈~ri|T~R ψK,A/B(~q)〉 = 〈T−~R~ri|ψK,A/B(~q)〉
∼ exp[i( ~K + ~q).(~ri,A/B − ~R)]

= exp[−i( ~K + ~q). ~R]〈~ri|ψK,A/B(~q)〉

= exp[i
4π

3
√
3a0

Rx] exp[−i~q. ~R]〈~ri|ψK,A/B(~q)〉.
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Similarly at ~K ′(= − ~K); 〈~ri|TR ψK′,A/B(~q)〉 =

exp[−i 4π
3
√
3a0

Rx] exp[−i~q. ~R]〈~ri|ψK′,A/B(~q)〉.

2. Most general interaction Hamiltonian

For BLG, we can write all possible symmetry allowed
local interactions making an analysis similar to that of
Vafek et. al.5. There are 9 symmetry allowed spin diag-
onal terms. We write them in following particular form.

I1 =(ψ†ψ)2

I2 =(ψ†µzτzψ)2

I3 =(ψ†µxψ)2 + (ψ†µyτzψ)2

I4 =(ψ†µzψ)2 + (ψ†µyτyψ)2 + (ψ†µyτxψ)2

I5 =(ψ†τzψ)2 + (ψ†µxτxψ)2 + (ψ†µxτyψ)2

I6 =(ψ†µxτzψ)2 + (ψ†µyψ)2 + (ψ†τxψ)2 + (ψ†τyψ)2

+ (ψ†µzτxψ)2 + (ψ†µzτyψ)2

I7 =(ψ†µzψ)2 − (ψ†µyτyψ)2 − (ψ†µyτxψ)2

I8 =(ψ†τzψ)2 − (ψ†µxτxψ)2 − (ψ†µxτyψ)2

I9 =(ψ†µxτzψ)2 + (ψ†µyψ)2 − (ψ†τxψ)2 − (ψ†τyψ)2

− (ψ†µzτxψ)2 − (ψ†µzτyψ)2 (B17)

These combinations of different terms are made such
that the first six interaction terms above commute with
the unitary the transformation Û = exp(iπ4µ

xτy), which
maps FLP state order parameter to STF state. Thus,
having only first 6 terms will not lift the degeneracy be-
tween FLP and STF ground states.
In addition, for a spin symmetric interaction, the al-

lowed spin dependent terms are I1s = (ψ†~sψ)2,I2s =
(ψ†µzτz~sψ)2, ...I9s.
We can use Fierz identities to find the number of in-

dependent interaction terms out of the above 18 terms.
These identities can be written in terms of the 32 indi-
vidual quartic terms appearing in I1, ...I9 and I1s, ...I9s
as:

(ψ†Oaψ)
2 =− 1

8

∑

b

Sgn[OaOb] ((ψ
†Obψ)

2 + (ψ†Ob~sψ)
2)

(ψ†Oa~sψ)
2 =− 1

8

∑

b

Sgn[OaOb] (3(ψ
†Obψ)

2 − (ψ†Ob~sψ)
2)

Oa ={1, µzτz , µx, µyτz, µz, µyτy , µyτx, τz , µxτx, µxτy ,

µxτz, µy, τx, τy, µzτx, µzτy}

Out of these 18 equations, only 9 are independent and
therefore we can express (ψ†Oa~sψ)

2 terms in terms of
(ψ†Oaψ)

2. Then I1s, I2s..I9s can be rewritten in terms
of I1, I2..I9 as Iis =

∑

ΓijIj , where

Γ =



























− 3
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2 0 0 0
− 1

2 − 3
2

1
2 − 1

2 − 1
2

1
2 0 0 0

−1 1 −1 1 −1 0 0 0 0
− 3

2 − 3
2

3
2 − 1

2
1
2 − 1

2 0 0 0
− 3

2 − 3
2 − 3

2
1
2 − 1

2
1
2 0 0 0

−3 3 0 −1 1 −1 0 0 0
1
2

1
2 − 1

2 − 1
2 − 1

2
1
2 −2 −1 1

1
2

1
2

1
2 − 1

2 − 1
2 − 1

2 −1 −2 −1
1 −1 0 1 −1 0 2 −2 −1



























.

(B18)

The most general local interaction Hamiltonian for
BLG can now be written as

Hint =

9
∑

i=1

giIi (B19)

Appendix C: Mean field analysis for ν = 2 BLG

For filling fraction ν = 2, we consider two symmetry
broken states and compare their ground state energies
to find the favored state at zero electric field. Below we
discuss the the mean field analysis for both of them.

1. Layer polarized state

We first consider a state in which inversion symmetry is
broken, but translational and rotational symmetries are
preserved. In such state, the following mean-field terms
are allowed:

Oa={1,2,3} = {µz, τz, µzτz}. (C1)

Note that, since we have assumed a uniform state and
these are local terms, they must be diagonal in the LL
index n. We therefore write the mean-field Hamiltonian
as follows:

HMF = H0−
∑

ζ=±1,a=1,2,3

λaζψ
† 1 + ζsz

2
Oaψ−hψ†szψ−µ0ψ

†ψ,

(C2)
where h is a Zeeman field. The Hamiltonian can be

diagonalized and the spectrum is

En,s,τ=

{

−hs− µ0 − (λ1s + λ2s)τ − λ3s , n ≤ 1

−hs− µ0 − λ2sτ ±
√

(λ1s + τλ3s)2 + E2
n , n > 1

(C3)

Filling all the Landau levels up to ν = 2, the total
energy is:
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EMF =
∑

τ=±1

(E0,↑,τ + E1,↑,τ ) + E0,↓,τ=1 + E1,↓,τ=1

+

∞
∑

n=2

∑

τ,s=±1

En,s,τ

= 2 [−h− 2λ3↑ − λ1↓ − λ2↓ − λ3↓]

−
∞
∑

n=2

∑

τ,s=±1

√

(λ1s + τλ3s)2 + E2
n (C4)

We first consider the weak interaction limit such that
λ ≪ ~ωc and we can expand to second order in the λ’s.
We get (ignoring the chemical potential terms)

EMF ≈ 2 [−h− 2λ3↑ − λ1↓ − λ2↓ − λ3↓]

− χ0ℓ
2
B

2

∑

s=±1

(

λ21s + λ23s
)

− E0 (C5)

where χ0 ≡ ∑∞
n=2

2
Enℓ2B

= m
π

∑∞
n=2

1√
n(n−1)

and E0 =

−4
∑∞

n=2En (Note that these sums actually diverge, and
a cutoff needs to be introduced). EMF above is the en-
ergy per ℓ2B area of the system while 〈Hint〉 terms are
energy per unit area. Thus, collecting the different terms
in Eq. (B16) and matching the dimensions, we get (drop-
ping constants)

Ẽ(λγ , µ0) =
1

ℓ2B
(−4λ3↑ − 2λ1↓ − 2λ2↓ − 2λ3↓)

+
1

2
λT1

(

M−1
1 − χ0

)

λ1 +
1

2
λT2M

−1
2 λ2 +

1

2
λT3

(

M−1
3 − χ0

)

λ3

(C6)

This is conveniently written as

Ẽ(λγ , µ0) = − 1

ℓ2B
QTλ+

1

2
λT M̃−1λ, (C7)

where λT = (λ1↑, λ1↓, . . . , λ3↓). Minimizing the energy
over λ gives

Emin = − 1

2ℓ4B
QT M̃Q (C8)

We can now calculate 〈Hint〉FLP , using the general
interaction Hamiltonian in Eq. (B19). In FLP, three φ’s
corresponding to the aboveOa’s are nonzero. Calculating
〈Hint〉FLP , we get the following Mi matrices in Eq. (C6)
for FLP phase:

M1 =





K1

2 − 2g4 − 2g7 −2g4 − 2g7

−2g4 − 2g7
K1

2 − 2g4 − 2g7



 , (C9)

M2 =





K2

2 − 2g5 − 2g8 −2g5 − 2g8

−2g5 − 2g8
K2

2 − 2g5 − 2g8



 , (C10)

M3 =





K3

2 − 2g2 −2g2

−2g2
K3

2 − 2g2



 , (C11)

where
K1 = g1 + g2 − 2g3 − g4 − g5 + 2g6 + 3g7 + 3g8 − 6g9
K2 = g1 + g2 + 2g3 − g4 − g5 − 2g6 + 3g7 + 3g8 + 6g9
K3 = g1 + g2 − 2g3 + 3g4 + 3g5 − 6g6 − g7 − g8 + 2g9

2. Staggered flux state

The second natural possibility for an ordered state
(that lifts the degeneracy of the lowest Landau level)
is a staggered flux (STF) state with a wavevector that
connects K to K ′. This state preserves the three fold
rotational symmetry R̂2π/3 = exp(2πiµzτz/3) around
the aligned sites and the inversion symmetry, but breaks
translational symmetry. The allowed mean fields in this
state are

Oa={1,2,3} = {µxτx, µyτy , µzτz}. (C12)

Now,

HMF = H0 −
∑

ζ=±1,a=1,2,3

λaζψ
† 1 + ζsz

2
Oaψ − hψ†szψ − µ0ψ

†ψ

(C13)

which has the spectrum

En,s,τ=

{

−hs− µ0 + (λ1s − λ2s)τ − λ3s , n ≤ 1

−hs− µ0 + λ1sτ ±
√

(λ2s + τλ3s)2 + E2
n , n > 1.

(C14)

Filling all the Landau levels up to ν = 2, the total energy
is:

EMF =
∑

τ=±1

(E0,↑,τ + E1,↑,τ ) + E0,↓,τ=1 + E1,↓,τ=1

+
∞
∑

n=2

∑

τ,s=±1

En,s,τ

= 2 [−h− |λ1↓ − λ2↓| − 2λ3↑ − λ3↓]

−
∞
∑

n=2

∑

τ,s=±1

√

(λ2s + τλ3s)2 + E2
n (C15)

Again considering the weak interaction limit and ex-
panding to second order in the λ’s, we get
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EMF ≈ 2 [−h− |λ1↓ − λ2↓| − 2λ3↑ − λ3↓]

− χ0ℓ
2
B

2

∑

s=±1

(

λ22s + λ23s
)

− E0 (C16)

Taking 〈Hint〉STF , we get the following Mi matrices
corresponding to the STF order parameters above

M1S =





K1S

2 − 2g5 + 2g8 −2g5 + 2g8

−2g5 + 2g8
K1S

2 − 2g5 + 2g8



 , (C17)

M2S =





K2S

2 − 2g4 + 2g7 −2g4 + 2g7

−2g4 + 2g7
K2S

2 − 2g4 + 2g7



 , (C18)

M3S =





K3S

2 − 2g2 −2g2

−2g2
K3S

2 − 2g2



 , (C19)

where

K1S =g1 + g2 + 2g3 − g4 − g5 − 2g6 − g7 − g8 − 2g9

K2S =g1 + g2 − 2g3 − g4 − g5 + 2g6 − g7 − g8 + 2g9

K3S =g1 + g2 − 2g3 + 3g4 + 3g5 − 6g6 − g7 − g8 + 2g9

Ẽ(λγ , µ0) =
2

ℓ2B
[−h− (λ1↓ − λ2↓)− 2λ3↑ − λ3↓] +

1

2
λT1M

−1
1S λ1

+
1

2
λT2

(

M−1
2S − χ0

)

λ2 +
1

2
λT3

(

M−1
3S − χ0

)

λ3

= − 1

ℓ2B
QT

Sλ+
1

2
λT M̃S

−1
λ, (C20)

And after minimizing over λ

Emin = − 1

2ℓ4B
QT

SM̃SQS. (C21)

Using equations (C8) and (C21), we can calculate the
ground state energies of the two phases (EFLP and ESTF)
and compare which phase has lower energy. We get

∆E = EFLP − ESTF

=
4χ0

ℓ4B

(

g1g7 + g2g7 − 2g3g7 − 13g4g7 − g5g7 + 2g6g7 + g27

−g1g8 − g2g8 + 2g3g8 + 5g4g8 + g5g8 − 2g6g8 − g28 + 2g1g9

+2g2g9 − 4g3g9 − 10g4g9 − 2g5g9 + 4g6g9 + 4g8g9 − 4g29
)

(C22)

3. Large Interactions

For the case when the interactions are large and
above approximation doesn’t work, we numerically min-
imize the energy functionals E({λa}, µ0) w.r.t. λa. In
Eq. (B10), we use the MF equation φas = −∂EMF /∂λas
and find the minimum of the resulting energy functional.

Appendix D: Change of variables from V0, U, V1,2,3

and JH to g1...g9 in the Coulomb Hamiltonian

We have found the ground state energies for the most
general interactions in the weak coupling limit. We can
now use our interaction Hamiltonian in Eq. (A4) and
read off the interaction parameters g1, ..g9. Then we can
obtain the difference in ground state energies of FLP and
STF phases from Eq. (C22) to determine which state is
favored.

To write the U term, we use the identity

(n↑ −
1

2
)(n↓ −

1

2
) =

1

4
− 1

6

(

ψ†~sψ
)2

(D1)

that holds for a single orbital.

Up to a chemical potential term this gives,

∑

µ

nµK↑nµK↓ + nµK′↑nµK′↓

= −1

6

[(

ψ† 1 + µz

2

1 + τz

2
~sψ

)

·
(

ψ† 1 + µz

2

1 + τz

2
~sψ

)

+

(

ψ† 1 + µz

2

1− τz

2
~sψ

)

·
(

ψ† 1 + µz

2

1− τz

2
~sψ

)]

+ (µ→ −µ)

= −1

6

[

1

4

(

ψ†~sψ
)

·
(

ψ†~sψ
)

+
1

4

(

ψ†µz~sψ
)

·
(

ψ†µz~sψ
)

+
1

4

(

ψ†τz~sψ
)

·
(

ψ†τz~sψ
)

+
1

4

(

ψ†µzτz~sψ
)

·
(

ψ†µzτz~sψ
)

]

= − 1

24

(

I1s + I2s +
I4s + I7s

2
+
I5s + I8s

2

)

(D2)

Using the the relations between Iis and Is in Eq. (B18),
we get

nµK↑nµK↓ + nµK′↑nµK′↓

=
1

8

(

I1 + I2 +
I4 + I7

2
+
I5 + I8

2

)

. (D3)
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V1 term:

V1
∑

µ

nµKnµK′

= V1

(

ψ† 1 + µz

2

1 + τz

2
ψ

)(

ψ† 1 + µz

2

1− τz

2
ψ

)

+ (µ → −µ)

=
V1
8

[(

ψ†ψ
) (

ψ†ψ
)

+
(

ψ†µzψ
) (

ψ†µzψ
)

−
(

ψ†τzψ
) (

ψ†τzψ
)

−
(

ψ†µzτzψ
) (

ψ†µzτzψ
)]

=
V1
8

(

I1 − I2 +
I4 + I7

2
− I5 + I8

2

)

. (D4)

V2 term:

V2(n−1Kn1K + n−1K′n1K′)

= V2

[(

ψ† 1 + µz

2

1 + τz

2
ψ

)(

ψ† 1− µz

2

1 + τz

2
ψ

)

+

(

ψ† 1 + µz

2

1− τz

2
ψ

)(

ψ† 1− µz

2

1− τz

2
ψ

)]

=
V2
8

[(

ψ†ψ
) (

ψ†ψ
)

−
(

ψ†µzψ
) (

ψ†µzψ
)

+
(

ψ†τzψ
) (

ψ†τzψ
)

−
(

ψ†µzτzψ
) (

ψ†µzτzψ
)]

=
V2
8

(

I1 − I2 −
I4 + I7

2
+
I5 + I8

2

)

. (D5)

V3 term:

V3(n−1Kn1K′ + n−1K′n1K)

= V3

[(

ψ† 1 + µz

2

1 + τz

2
ψ

)

·
(

ψ† 1− µz

2

1− τz

2
ψ

)

+

(

ψ† 1 + µz

2

1− τz

2
ψ

)

·
(

ψ† 1− µz

2

1 + τz

2
ψ

)]

=
V3
8

[(

ψ†ψ
) (

ψ†ψ
)

−
(

ψ†µzψ
) (

ψ†µzψ
)

−
(

ψ†τzψ
) (

ψ†τzψ
)

+
(

ψ†µzτzψ
) (

ψ†µzτzψ
)]

=
V3
8

(

I1 + I2 −
I4 + I7

2
− I5 + I8

2

)

. (D6)

JH term:

− JH
∑

µ

~sµK · ~sµK′

= −JH
[(

ψ† 1 + µz

2

1 + τz

2
~sψ

)

·
(

ψ† 1 + µz

2

1− τz

2
~sψ

)

+(µ→ −µ)]

= −JH
8

[

(

ψ†~sψ
)2

+
(

ψ†µz~sψ
)2 −

(

ψ†τz~sψ
)2 −

(

ψ†µzτz~sψ
)2
]

= −JH
8

(

I1s − I2s +
I4s + I7s

2
− I5s + I8s

2

)

= −JH
8

(

−I1 + I2 −
I4 + I7

2
+
I5 + I8

2
− I6 + I9

)

(D7)

These give the following values of the interaction pa-
rameters.

g1 = V0 +
1

8
(U + V1 + V2 + V3 + JH)

g2 =
1

8
(U − V1 − V2 + V3 − JH)

g3 = 0

g4 =
1

16
(U + V1 − V2 − V3 + JH)

g5 =
1

16
(U − V1 + V2 − V3 − JH)

g6 =
JH
8

g7 =
1

16
(U + V1 − V2 − V3 + JH)

g8 =
1

16
(U − V1 + V2 − V3 − JH)

g9 = −1

8
JH (D8)

Plugging these in Eq. (C22), we get the difference in
mean field ground state energies of FLP and STF phases
for the weak interaction limit where we can expand the
Mean Field energies to 2nd order in λa.
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