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We investigate the static and dynamical patterns of entanglement in an anisotropic XY model with an al-

ternating transverse magnetic field, which is equivalent to a two-component one-dimensional Fermi gas on a

lattice, a system realizable with current technology. Apart from the antiferromagnetic and paramagnetic phases,

the model possesses a dimer phase which is not present in the transverse XY model. At zero temperature, we

find that the first derivative of bipartite entanglement can detect all the three phases. We analytically show that

the model has a “factorization line” on the plane of system parameters, in which the zero temperature state is

separable. Along with investigating the effect of temperature on entanglement in a phase plane, we also report

a non-monotonic behavior of entanglement with respect to temperature in the anti-ferromagnetic and param-

agnetic phases, which is surprisingly absent in the dimer phase. Since the time dynamics of entanglement in

a realizable physical system plays an important role in quantum information processing tasks, the evolutions

of entanglement at small as well as large time are examined. Consideration of large time behavior of entan-

glement helps us to prove that in this model, entanglement is always ergodic. We observe that other quantum

correlation measures can qualitatively show similar features in zero and finite temperatures. However, unlike

nearest-neighbor entanglement, the nearest-neighbor information theoretic measures can be both ergodic as well

as non-ergodic, depending on the system parameters.

I. INTRODUCTION

Quantum many-body systems have been established to be a

possible candidate for the implementation of quantum informa-

tion protocols [1, 2] such as one-way quantum computation [3]

and network quantum communication [4]. Also, laboratory re-

alization of model Hamiltonians in various substrates, includ-

ing optical lattice [5–7], ion traps [2, 8], solid state systems [9],

and NMR [10], have made possible the testing of properties

of several information theoretic measures of quantum correla-

tions, belonging to both of the entanglement-separability [11]

and information-theoretic [12] domains. On the other hand,

tools developed in, and with the help of, quantum informa-

tion theory have been found to be useful in the analysis of the

ground and excited states of such many-body systems [13–15].

Moreover, development of topological quantum computation

and especially topological quantum memories indicate the im-

portance of quantum many-body systems in the goal of practi-

cal realization of a quantum computer [16]. Consequently, in

recent years, characterization of quantum many-body systems

from quantum information theoretic perspectives have become

a vibrant field of research.

Although most of such studies are restricted to the “static”

properties of quantum correlations in the zero-temperature and

thermal states, the time evolution of the system is also ex-

tremely important in quantum information processing tasks

like in one way quantum computation [3]. In the static case,

the traditional approach to study a quantum many-body sys-

tem is to recognize appropriate order-parameters defining the

phases occurring in the system, and to investigate the response

of these order parameters to external perturbations. The ground

state of such a system is usually represented by a complex mul-

tipartite quantum state, characterized by the classical as well

as the quantum correlations present between its constituting

parts. A quantum phase transition (QPT) [17, 18], which oc-

curs at zero temperature and solely due to quantum fluctua-

tions, brings about a qualitative change in the ground state of a

quantum many-body system, when a system parameter is var-

ied. Quantum correlations having quantum information theo-

retic origins, are shown to be useful in characterizing various

phases and corresponding QPTs in a large spectrum of quan-

tum many-body systems [19–28] (see also [1, 12], and the ref-

erences therein). Among all these models, a prominent one

is the one-dimensional (1d) Fermi gas of spinless fermions in

an optical lattice – a system realizable in ultracold atom sub-

strate, by using a Fermi-Bose mixture in the strong-coupling

limit [29]. In the spin language, the model can be described

by an anisotropic XY model in a transverse magnetic field

[17, 18, 30, 31].

Manipulation of cold atoms in the laboratory has allowed

the realization of physical systems such as dilute atomic Fermi

and Bose gases, in different spatial dimensions, thereby provid-

ing excellent opportunities to apply quantum information the-

oretic concepts in these systems [32, 33]. Recent experimental

evidences of superfluid, metallic, and Mott-insulating phases

[34, 35] motivates one to investigate a Fermi gas of spinless

fermions in an 1d optical lattice, where the fermions are of two

types, distinguished by different chemical potentials. Consid-

ering the two types of fermions to be located on two different

sublattices, one of which contains all the “even” sites and the

other one holds all the “odd” ones, the fermionic model, via a

Jordan-Wigner transformation, can be shown to be equivalent

to an 1d anisotropic XY model in the presence of a uniform,

and an alternating transverse magnetic field that alternates its

direction from +z to −z depending on whether the lattice site

is even, or odd [18, 36–39]. The model offers a rich phase di-

agram. While only two phases, viz. a “paramagnetic” (PM)

phase and an “antiferromagnetic” (AFM) phase occur in the

ground state of the XY model in a uniform transverse field,

[17, 30, 31], an additional “dimer” (DM) phase emerges due to

the introduction of the local site-dependent alternating field in

the present model [18, 36–39]. Although the properties of sev-

eral quantum information theoretic measures of quantum cor-
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relations have been extensively studied and reported for differ-

ent phases and corresponding QPTs in the former case [21–23]

(see also references in [1, 12]), it is interesting to see how the

new phase structure, formed due to the introduction of the alter-

nating field, can be characterized using quantum correlations.

In this paper, we characterize the static as well as dynamic

properties of quantum correlations in the 1d anisotropic XY

model in a uniform and an alternating field. As the measures

of quantum correlations, we focus on bipartite measures, and

use logarithmic negativity (LN) [40] from the entanglement-

separability genre, and quantum discord (QD) [42, 43] from

the information-theoretic domain. We show that irrespective

of the values of the anisotropy parameter, first derivative of

bipartite entanglement can detect all the three phases in this

model. Moreover, the finite-size scaling analysis of the system

near the QPTs is performed to distinguish phase boundaries

between the AFM and the PM, and between the AFM and

the DM. Similar investigations are also carried out for quan-

tum discord, which also faithfully indicate the quantum critical

points. Like the factorization point in the XY model [44, 45],

we here prove the existence of a line in the space of the sys-

tem parameters, which we call as the “factorization line” (FL),

on which the ground state of the system is separable, having a

Néel-type order.

The change of phase diagram with finite temperature has

both fundamental and experimental importance due to the tech-

nological limitations of reaching absolute zero temperature. In

this scenario, we discuss the weathering of the landscapes of

quantum correlations over the phase-plane of the system pa-

rameters, chosen to be the strengths of the uniform and the

alternating transverse field, with increasing temperature. We

point out that bipartite entanglement is the most fragile in the

AFM phase, while it is robust in the DM phase against increas-

ing temperature. We identify the phases in which nonmono-

tonicity of entanglement with the increase of temperature is

observed. Specifically, we perform a non-monotonicity car-

tography, and map, on the plane of the chosen system parame-

ters, the regions in which the thermal quantum correlations ex-

hibit non-monotonic variation with temperature. We show that

for LN and for high values of anisotropy parameter, most of

the non-monotonicity occurs in the AFM region, while QD is

found to be nonmonotonic in the PM phase for low anisotropy.

Interestingly, we discover that the temperature variation of LN

is found to be monotonic in the entire DM phase, while for

QD, non-monotonicity occurs at a very small region of the DM

phase.

As already stated, the time dynamics of quantum correla-

tions in any physical system is extremely relevant for imple-

mentation of quantum information processing tasks. In this

paper, we find both the small and large time quantum corre-

lation patterns of the evolved state. We observe that although

entanglement dies quickly compared to QD, it possesses larger

value than QD, which ensures the possibility of implement-

ing several information tasks requiring high values of entangle-

ment. The study of large time behaviour of quantum correla-

tions also helps us to settle issues like the ergodicity [46–54] of

LN and QD, quantified by the ergodicity scores. We find that,

up to our numerical accuracy, entanglement always remains

ergodic, while QD shows nonergodicity in different phases of

the model. We point out that the region of nonergodicity of

QD increases with an increase in the anisotropy in the system.

Therefore with respect to transverse field parameter, we show

that QD undergoes a nonergodic to ergodic transition which is

absent for entanglement upto our numerical accuracy, irrespec-

tive of the anisotropy parameter and initial temperature.

The paper is organized as follows. In Sec. II, the Hamilto-

nian describing the anisotropic XY model in the presence of a

uniform, and an alternating transverse field, and its relation to

a two-component 1d Fermi gas are discussed. Brief descrip-

tions on the diagonalization of the model Hamiltonian, and the

different phases occurring in the ground state of the model are

provided in the same section. Sec. III contains the definitions

of the canonical equilibrium state and the time-evolved state of

the system. The determination of the single-site and two-site

reduced density matrices from the canonical equilibrium state

and the time-evolved state of the model is also presented in

this section. The static properties of the quantum correlations,

including the different types of QPTs, finite-size scaling anal-

ysis, determination of the factorization line, and thermal quan-

tum correlations are discussed in Sec. IV. Sec. V reports the

ergodicity of quantum correlations and short-time dynamics of

entanglement as well as QD. Sec. VI contains the concluding

remarks.

II. THE MODEL

Let us consider a family of models describing a system of

spins of magnitude 1
2 on an 1d lattice consisting of N sites.

We assume that an external transverse magnetic field of site-

dependent strength hi(t) = h1(t) + (−1)ih2(t), i being the

site index, acts on the spins at time t. The magnetic field can be

interpreted as the resultant of a uniform transverse field, h1(t),
and a transverse field, h2(t), which reverses its direction from

+z to −z, depending on whether the lattice site is even, or odd.

The Hamiltonian describing the system is given by

Ĥ =
1

2

N
∑

i=1

[

J
{1 + γ

2
σ̂xi σ̂

x
i+1 +

1− γ

2
σ̂yi σ̂

y
i+1

}

+(h1(t) + (−1)ih2(t))σ̂
z
i

]

. (1)

Here, the system parameter J represents the strength of the

exchange interaction, while γ( 6= 0) is the x − y anisotropy

present in the system. We assume periodic boundary condition

(PBC), and an even number of lattice sites, such that σ̂αN+1 ≡
σ̂α1 , where α = x, y, z.
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A. Relation to one-dimensional Fermi gas

The Hamiltonian in Eq. (1), via a Jordan-Wigner transfor-

mation, given by [38]

σ̂2j
+ = b̂†2j exp

(

iπ

i−1
∑

l=1

b̂†2lb̂2l + iπ

i
∑

l=1

â†2l−1â2l−1

)

,

σ̂+
2j+1 = â†2j+1 exp

(

iπ

i
∑

l=1

b̂†2lb̂2l + iπ

i−1
∑

l=0

â†2l+1â2l+1

)

,

(2)

can be mapped onto a two-component Fermi gas of spinless

fermions, on an 1d optical lattice consisting of two sublattices.

Here, σ̂−
α = (σ̂+

α )
†, where the σ̂±

α operators are related to

the Pauli operators σ̂x,y,z via the relations σ̂x = (σ̂+ + σ̂−),
σ̂y = −i(σ̂+ − σ̂−), and σ̂z = (2σ̂+σ̂− − 1). One of the

two sublattices in the fermionic model is constituted of the

“odd” lattice sites, while the other contains the “even” ones.

One of the two components of the fermions is situated on the

odd sublattice, while the other is located on the even sublat-

tice. The two components are distinguished by two different

time-dependent chemical potentials, µa(t) and µb(t), and the

corresponding creation operators are denoted by â† and b̂†, re-

spectively, following the usual fermionic anticommutation re-

lations {f̂i, f̂
†
j } = δi,j , and {f̂i, f̂j} = {f̂†i , f̂

†
j } = 0. Here,

f̂ = â or b̂, depending on whether i, j, the site indices, are odd

or even, respectively.

Applying the transformation in Eq. (2), the form of the

Hamiltonian representing the 1d two-component Fermi gas of

spinless fermions at every time instant t, up to an additive con-

stant energy Ec(t) = (µa(t) + µb(t))N/4, can be written as

Ĥ =

N/2
∑

i=1

[

τ
{

Âi + B̂i + γ(Ĉi + D̂i)
}

+ µa(t)N̂
a
i + µb(t)N̂

b
i

]

,

(3)

where the operators Âi = â†2i−1b̂2i + h.c., B̂i = b̂†2iâ2i+1 +

h.c., Ĉi = â†2i−1b̂
†
2i + h.c., and D̂i = b̂†2iâ

†
2i+1 + h.c. de-

scribe the interactions between the spinless fermions belong-

ing to the odd and the even sublattices, with N̂ a
i = â†2i−1â2i−1

and N̂ b
i = b̂†2ib̂2i being the corresponding number operators.

Here, τ is the fermionic tunneling strength between a pair of

even and odd sites, and N is the total number of lattice sites.

Note that the existence of the two types of magnetic field (uni-

form and alternating) in the original model is reflected by the

existence of the two sublattices in the fermionic model, differ-

entiated by the chemical potentials and thereby leading to two

types of fermionic operators, a and b.

B. Diagonalization

For general µa,b(t), the Hamiltonian given in Eq. (3) can be

written as Ĥ =
∑N/4
p=1 Ĥp, with

Ĥp = J cosφp(â
†
pb̂p + a†−pb̂−p + b̂†pâp + b̂†−pâ−p)

−iJγ sinφp(â
†
pb̂

†
−p + âpb−p − â†−pb̂

†
p − â−pap)

+h+(t)(b̂
†
pb̂p + b̂†−pb̂−p) + h−(t)(â

†
pâp + â†−pâ−p)

−2h1(t)

(4)

via the Fourier transformations given by

â†2j+1 =

√

2

N

N/4
∑

p=−N/4

exp
(

i(2j + 1)φp
)

â†p,

b̂†2j =

√

2

N

N/4
∑

p=−N/4

exp
(

i(2j)φp
)

b̂†p. (5)

Here φp = 2πp/N , h±(t) = h1(t) ± h2(t), and a†p (b†p) is

fermionic operators. Since [Ĥp, Ĥp′ ] = 0, the above Fourier

transformation decomposes the space upon which Ĥ acts into

non-interacting subspaces. These subspaces, each having a di-

mension sixteen, do not allow transitions within themselves,

irrespective of the values of the system parameters J , γ, and

h±(t). The diagonalization of the Hamiltonian Ĥ is thereby re-

duced to the diagonalization of Ĥp, acting on the pth subspace,

which can be achieved by a convenient choice of the basis (see

Appendix A). We note that the lowest eigenvalue of Ĥp, is

given by −ω4
+(p). The ground state energy per site, E0, of

the Hamiltonian can be obtained as E0 = − 1
2π

∫ π/2

0
ω4
+(p)dp.

C. Phases

We now briefly discuss the patterns of different phases, and

the corresponding QPTs, present in the model described by the

Hamiltonian in Eq. (3). We choose the strength of the trans-

verse fields, uniform and alternating, as the tuning parameters.

Information about the phase-boundaries can be obtained from

the second-order derivatives of the ground state energy, E0,

with respect to λ1 and λ2, where we take λi = hi/J, i = 1, 2
and h1(2)(t = 0) = h1(2). For γ 6= 0, the system undergoes

two different second-order QPTs, namely, a transition from a

paramagnetic (PM) to an antiferromagnetic (AFM) phase, and

a transition from the AFM to a dimer (DM) phase. Fig.1(a)

and (b) depict the spectrum of Ĥp at critical points correspond-

ing to AFM ↔ PM (λ1 = 1, λ2 = 0), and AFM ↔ DM

(λ1 = 0, λ2 = 0.8) QPTs, respectively, for γ = 0.8 (see Ap-

pendix A for the expressions of the eigenvalues as functions of

φp and the system parameters). Note that the vanishing of the

energy gap in the spectrum occurs at φp = 0 for the AFM ↔
PM transition, and at φp = ±π

2 for AFM ↔ DM transition. On
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(c) Factorization point

Figure 1. (Color online.) Spectrum of Ĥp for γ = 0.8. (a), (b) Variation of the eigenvalues of Ĥp as a function of φp at the AFM ↔ PM

(λ1 = 1, λ2 = 0), and the AFM ↔ DM (λ1 = 0, λ2 = 0.8) transitions. (c) Patterns of the eigenvalues of Ĥp against φp at the factorization

point (see Sec. IV B). The chosen parameter values for the factorization point are λ1 = 0.6, λ2 = 0. The minimum eigenvalue in all the cases is

−ω4
+(p) (given in Appendix A). The energy gap vanishes at φp = 0 for the AFM ↔ PM, and at φp = ±π

2
for the AFM ↔ DM QPT point.

the other hand, Fig. 1(c) depicts the variation of the spectrum

of Ĥp as a function of φp for λ1 = 0.6, λ2 = 0. This point

on the (λ1, λ2) plane belongs to the factorization line, which

is discussed in Sec. IV B. One of our aims in this paper is to

detect such transitions by using quantum information quanti-

ties. The phase boundaries corresponding to these transitions

are given by the lines λ21 = λ22 + 1, and λ22 = λ21 + γ2, respec-

tively. It is interesting to note that there exists a set of duality

relations, given by {h1 ↔ h2, J ↔ −γ}, by virtue of the

unitary transformation {σ̂αi → (−1)iσ̂αi : α = x, z}, which

indicates that both AFM ↔ PM and AFM ↔ DM transitions

belong to the same universality class, namely, the Ising univer-

sality class [18]. One must also note that for h2 = 0, the model

reduces to the well-known anisotropic XY model in a uniform

transverse magnetic field of magnitude h1.

III. CANONICAL-EQUILIBRIUM AND TIME-EVOLVED

STATES: LOCAL DENSITY MATRICES

In this paper, we intend to study the statistical mechanical

properties of the model in terms of bipartite quantum corre-

lations. We now briefly introduce the notions of canonical

equilibrium states and time-evolved states corresponding to the

Hamiltonian given in Eq. (1), and describe how two-spin re-

duced density matrices corresponding to such states can be ob-

tained. For our purpose, we consider the situation where the

time-dependent magnetic fields h1(t) and h2(t), are chosen as

h1(t) =

{

h1, t ≤ 0
0, t > 0

, h2(t) =

{

h2, t ≤ 0
0, t > 0

. (6)

The canonical equilibrium state (CES) of the system at time

t is given by

ρ̂eq(t) =
e−βĤ(t)

Z
, (7)

where Z = Tr
[

exp(−βĤ(t))
]

is the partition function, and

Ĥ(t) is given in Eq. (1). Here, β = 1/kBT , T is the abso-

lute temperature, and kB is the Boltzmann constant. In all our

calculations, we set kB = 1. For the purpose of this paper, we

consider a system which is in contact with a heat bath at tem-

perature T for a long time up to the instant that we call t = 0,

so that a thermal equilibrium between the system and the heat

bath have developed. The equilibrium is in the canonical sense,

allowing exchange of energy between the bath and the system

with the usual average energy constraint, but forbidding ex-

change of particle. To study quantum correlations in the evolu-

tion, we choose the canonical equilibrium state
(

ρ̂eq(t = 0)
)

as

an initial state. When the magnetic fields are switched off, the

CES starts evolving in time following the Schrödinger equa-

tion dictated by the Hamiltonian in Eq. (1). At any time t, the

time-evolved state (TES), ρ̂(t), is given by

ρ̂(t) = e−iĤtρ̂eq(t = 0)eiĤt, (8)

where Ĥ represents the Hamiltonian given in Eq. (1) at t > 0.

A. Local density matrices

To investigate the behaviour of bipartite quantum correla-

tion measures of the CES and TES, computation of the single-

site and the two-site reduced density matrices of the entire

state is necessary. Since we consider the system with peri-

odic boundary condition, all the nearest neighbour bipartite

state are same and hence their two-spin correlation functions

would be independent of the choice of the pairs of spins, while

the single-site magnetizations depends on whether the lattice

site is even, or odd. A general single-site density matrix, given

by ρ̂i = [I +
∑

α=x,y,zm
α(t)σ̂αi ]/2, can be obtained by trac-

ing out all the spins except the spin at the lattice site α, which

is “o” for the odd site, and “e” for the even site. Here, I

is the identity operator in the qubit Hilbert space. For CES
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corresponding to a real Hamiltonian, ρ̂i∗eq(t) = ρ̂ieq(t), imply-

ing my
i (t) = 0 with the complex conjugation being taken in

the computational basis. Also, the Hamiltonian possesses a

global phase-flip symmetry, such that [H,Πiσ
z
i ] = 0, implying

mx
i (t) = 0. Hence, the single-site reduced density matrix cor-

responding to the CES is given by ρ̂ieq(t) = (I+mz
i (t)σ̂

z
i )/2.

On the other hand, ρ̂i(t) corresponding to the evolved state is

not necessarily equal to its complex conjugation, and the exis-

tence of the global phase-flip symmetry is a complicated issue

due to the time dependence of the Hamiltonian. However, use

of the Wick’s theorem leads to the same form of ρ̂i(t), when

TES is considered instead of the CES.

Let us now consider the two-site reduced density matrix ρ̂ij ,
corresponding to the spins at the lattice sites i and j, and ob-

tained by tracing out all the other spins except those at the po-

sitions i and j. In the present case, we restrict ourselves to

nearest-neighbor pairs of spins, such that j ≡ i + 1. To keep

the notations uncluttered, from now on, we shall discard the

lattice indices, and denote the nearest neighbor two-spin den-

sity matrix by ρ̂eo, where we assume that the lattice site i be-

longs to the even sublattice without any loss of generality. The

two-party state ρ̂eo, of the CES and TES in this system, can be

written as

ρ̂eo =
1

4

[

Ie ⊗ Io +mz
eσ̂

z
e ⊗ Io + Ie ⊗mz

oσ̂
z
o

+
∑

α,β=x,y,z

cαβeo σ̂
α
e ⊗ σ̂βo

]

, (9)

where cαβeo = Tr[σ̂αe ⊗ σ̂βo ρ̂eo] are the two-site spin correlation

tensor. In the case of CES, by using arguments similar to that

in the case of the single-site density matrix, and by applying

the Wick’s theorem, one can show that only diagonal elements

of the correlation tensor, given by cααeo , α = x, y, z, remain.

On the other hand, in the case of TES, cxyeo and cyxeo remain non-

zero in addition to the diagonal correlators. For brevity, from

now onward, we discard the site indices while mentioning the

two-spin correlators.

B. Quantum correlations between two modes of a 1d Fermi gas

We now demonstrate that the quantum correlation between

a nearest-neighbour spin pair chosen from the anisotropic XY

model in a uniform and an alternating transverse magnetic field

is the same as that present between two fermionic modes lo-

cated at the two nearest-neighbour lattice sites in the fermionic

model given in Eq. (3). Without any loss of generality, the

two-site density matrix of a nearest-neighbour pair of lattice

sites, denoted by “eo”, can be written as ρ̂feo =
1
4

∑

k,l ξkl ς̂
k
e ς̂
l
o,

where k, l = 0, 1, 2, 3, and ς̂α = {I, (cα + c†α),−i(cα −
c†α), (2c

†
αcα − 1)}. Here, c ≡ a(b) depending on whether α ≡

o(e). The coefficients, {ξkl}, are given by ξkl = tr[ρ̂feo(ς̂
k
e ς̂
l
o)

†].
Expanding and applying Wick’s theorem as in Sec. III A, the

TES corresponding to a pair of fermionic modes on the “eo”
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Figure 2. (Color online) (Top horizontal pannels) Variations of LN

(left pannel) and QD (right pannel) as functions of the transverse mag-

netic field λ1 and the alternating field λ2 in the thermodynamic limit

at β → ∞, and γ = 0.8. The phase boundaries λ2
1 = λ2

2 + 1 (PM

↔ AFM) and λ2
2 = λ2

1 + γ2 (AFM ↔ DM) are represented by the

dashed and dot-dashed lines, respectively, while the different shades

in the figures represent different values of quantum correlations. (Bot-

tom horizontal pannels) Variations of the first derivative of LN with

respect to λ1 (left pannel), and the same quantity of LN with respect

to λ2 (right pannel) with N → ∞ at β → ∞, and γ = 0.8. The value

of the respective first derivatives of LN diverges at the phase bound-

aries λ2
1 = λ2

2 + 1 (PM ↔ AFM) and λ2
2 = λ2

1 + γ2 (AFM ↔ DM).

Different shades in the figures represent different values of the first

derivative of LN with respect to respective parameter. All the quanti-

ties plotted in all the figures are dimensionless, except LN which is in

ebits and QD in bits.

site pair for the fermionic model is given by

ρ̂feo =
1

4

[

I4×4 + ξ03ς̂
3
o + ξ30ς̂

3
e + ξ11ς̂

1
e ς̂

1
o + ξ22ς̂

2
e ς̂

2
o + ξ33ς̂

3
e ς̂

3
o

+ξ12ς̂
1
e ς̂

2
o + ξ21ς̂

2
e ς̂

1
o

]

. (10)

With a convenient choice of basis given by

{|0〉, â†|0〉, b̂†|0〉, b̂†â†|0〉}, where |0〉 represents the vac-

cume state, the individual terms in Eq. (10) can be expressed

in their respective matrix forms. A comparison with the matrix

forms of the operators σαe ⊗ σβo implies that in matrix form,

ρ̂feo can be expressed as

ρ̂feo =
1

4

[

Ie ⊗ Io −mz
eσ

z
e ⊗ Io − Ie ⊗mz

oσ
z
o − cxyeoσ

x
e ⊗ σyo

−cyxeoσ
y
e ⊗ σxo +

∑

α=x,y,z

cααeo σ
α
e ⊗ σβo

]

. (11)

Here, σα are 2 × 2 the Pauli matrices, where e.g. σez =
(

1 0
0 −1

)

in the {|0〉, b†|0〉} basis and where e.g. σoy =
(

0 −i
i 0

)

in the {|0〉, a†|0〉} basis. Note that ρfeo is connected

to the TES ρ̂eo in the spin model via a local unitary transfor-

mation given by ρfeo = (σx⊗σx)ρeo(σ
x⊗σx), thereby imply-
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ing no change in the values of the chosen measure of bipartite

quantum correlation.

IV. STATIC BEHAVIOUR OF QUANTUM CORRELATIONS

In this section, we discuss the behaviour of bipartite quan-

tum correlation measures of the reduced density matrix of

the nearest-neighbour qubit pair, obtained from the zero-

temperature and the thermal states of the model. Since the

model is not evolving, we call the states as static states. For

our purpose, we consider logarithmic negativity (LN), denoted

by L(ρAB), and quantum discord (QD), denoted by D(ρAB),
in the ground and thermal states of the model. The former be-

long to the entanglement separability paradigm, while the latter

is from the quantum information theoretic regime of quantum

correlations. Short descriptions of these measures are provided

in Appendix B. While computing QD in the entire paper, we

always perform local rank-1 projection measurement on the

“even” qubit. We choose two different types of quantum corre-

lation quantities since they behave differently as demonstrated

in the XY as well as XXZ model [21, 23, 24].

A. Quantum correlations at zero temperature

In the limit β → ∞, we now investigate the behavior of

LN and QD, as functions of the system parameters λ1 and λ2,

in the thermodynamic limit. For this system, me
z,m

o
z and all

the non-zero classical correlations can be obtained analytically

by diagonalizing Ĥp, following the similar prescription for the

XY model (see Appendix C) and hence the exact computation

of LN and QD is possible, as depicted in the top horizontal

pannels of Fig. 2. To keep the notation uncluttered, from now

on, we denote LN by L, and QD by D. In this paper, all the

analysis are carried out for γ = 0.8 unless specified otherwise.

The qualitative feature of the entire investigation remains same

for γ 6= 0. Note that the LN has a high value in the DM and

PM phases, while the value is low in the AFM phase. On the

other hand, the value of QD is moderate in the PM region. In

the AFM region, the QD has a low value except in the cases

where the values of λ1 and λ2 are comparable. Along the line

λ1 = −λ2, QD is vanishingly small. Note that the situation is

reversed if one performs measurement on the odd qubit while

determining QD. In that case, low values of QD are found

along the λ1 = λ2 line. Hence, the asymmetry imposed into

the model due to the introduction of the alternating field is cap-

tured from the distribution of QD values over the AFM region

in the parameter space of (λ1, λ2), but not by LN. However in

the case of LN, there exist two zero-entanglement lines in the

AFM phase, as depicted in the left pannel of the top horizontal

row of Fig. 2, which represent fully separable ground states.

These lines, which we refer to as the “factorization lines”, are

discussed in detail in the subsequent section.

One must note here that the introduction of only a local

parameter, i.e. the alternating transverse field, in the well-

known transverse-field XY Hamiltonian [30, 31], gives rise to

the DM phase, which is not present in the transverse-field XY

model. It is interesting to investigate how the QPTs occurring

at the AFM ↔ DM phase boundaries can be characterized us-

ing entanglement and information-theoretic quantum correla-

tion measures, and whether such characteristic behaviours are

similar to those observed in the case of the AFM ↔ PM tran-

sition in this model as well as in the usual transverse-field XY

model [30, 31]. In the thermodynamic limit, and for the latter

case, the QPT is found to be signaled by a divergence in the first

derivative of entanglement as well as in the information theo-

retic measures with respect to the system parameters, λ1 and

λ2 (see the bottom panel of Fig. 2). We find that, similar to

the AFM ↔ PM QPT, other transitions can also be detected by

the first derivative of appropriate measures of quantum corre-

lations. As an example, in Fig. 2 (bottom horizontal pannels),

we plot |∂L/∂λ1| (left pannel) and |∂L/∂λ2| (right pannel) as

functions of λ1, and λ2 for γ = 0.8, β → ∞, and N → ∞.

From the figures, we can clearly see that both |∂L/∂λ1| (left

pannel) and |∂L/∂λ2| (right pannel) diverge at the AFM ↔
DM and AFM ↔ PM boundaries. We plot the absolute val-

ues of the first derivatives of LN for a better representation of

the divergence, as the actual first derivative can tend to both

positive as well as negative infinity, depending on the varia-

tion of LN with respect to λ1 and λ2. Note here that there ex-

ists two lines, one vertical (|∂L/∂λ1|) and the other horizontal

(|∂L/∂λ2|) in the variations of the first derivative of LN, as

depicted in Fig. 2, over which the value of LN remains almost

constant. This is indicated by the low value of the first deriva-

tive of LN over those lines. Note also that there exists several

models in which bipartite entanglement cannot detect quantum

phase transitions [1, 2, 55]. Such example includes the spin

liquid-dimer transition in 1D J1 − J2 model [56]. The results

obtained here show that this is not the case for the XY model

with uniform and alternating transverse field.

Finite-size scaling analysis

Advancement of experimental techniques has made the lab-

oratory realization of several quantum many-body systems of

finite size, such as the quantum anisotropic XY model with

a transverse alternating magnetic field, possible [8, 9], which

highlights the importance of studying the behavior of quantum

correlations in the context of QPTs in system of finite number

of spins. Towards this aim, we present the finite size scaling

analysis of the system using the bipartite quantum correlations,

and determine the scaling exponents. More specifically, we

discuss the finite-size scaling of the system at the QPTs corre-

sponding to (i) AFM ↔ PM and (ii) AFM ↔ DM transitions.

(i) AFM ↔ PM transitions: At λ2 = 0, the model reduces

to the widely studied anisotropic XY model in a uniform trans-

verse magnetic field of strength λ1. As N → ∞ and β → ∞,

the model undergoes a QPT, between the quantum PM phase

and the AFM phase, at λc1 = ±1. It is well known that this QPT

is signaled by a non-analyticity in the first-derivatives of the

quantum correlation measures, Q, with respect to the system

parameter, λ1 [21, 23]. With the introduction of the transverse

alternating field λ2, the QPT point changes according to the
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Figure 3. (Color online) Finite-size scaling using LN and QD in (a) AFM ↔ PM and (b) AFM ↔ DM phase transitions. (a) The figure in the

left (right) panel depicts the variation of ∂L/∂λ1 (∂D/∂λ1) with λ1 across the AFM ↔ PM QPT for different values of N , with λ2 = 1.5,

and γ = 0.8. (Insets) Corresponding variations of ln |λc
1(N)− λc

1(∞)| (both numerical data and fitted line) as a function of lnN . (b) The

figure in the left (right) panel depicts the variation of LN (QD) with λ2 across the AFM ↔ DM QPT for different values of N , with λ1 = 1.5.

(Insets) Corresponding variations of ln |λc
2(N)− λc

2(∞)| (both numerical data and fitted line) as a function of lnN . All the quantities plotted

are dimensionless, except LN which is in ebits and QD, that is in bits.

line λ21 = λ22 + 1, which denotes the phase-boundary between

the AFM and the quantum PM phase in the present model. As

shown in Fig. 2, the AFM ↔ PM transition is also signalled by

a non-analyticity in the first-derivative of LN, or QD, with re-

spect to λ1(λ2), when λ2(λ1) is kept fixed as N → ∞. In the

case of a system of finite size, the QPT is signalled by a maxi-

mum or a minimum in the variation of the first-derivative of LN

and QD with respect to λ1(λ2), for fixed values of λ2(λ1) (see

Fig. 3). The position of the maximum or minimum denotes

the position of the critical point on the axes of the respective

system parameter. The maximum or minimum sharpens with

increasing system size, and the position of the QPT approaches

the QPT point as N → ∞, denoted by λc1(2)(∞), as

λc1(2)(N) = λc1(2)(∞) + α1(2)N
−ν1(2) . (12)

Here, α1(2) are dimensionless constants, and ν1(2) are the scal-

ing exponents.

Fig. 3(a) depicts the variation of derivative of LN and QD, as

functions of λ1, as β → ∞, for fixed value of λ2 i.e. λ2 = 1.5
with γ = 0.8. The approach of the QPT points, λc1(N), at

finite N , towards the QPT point in the thermodynamic limit,

λc1(∞), are depicted in the insets. Fitting the numerical data

with Eq. (12), one can estimate the values of α1 and ν1. Table

I(a) contains the values of α1,2 and ν1,2, in the case of both LN

and QD, when the value of λ2 (λ1) is kept fixed at λ2 = 0 and

1.5 (λ1 = 1.5). Note that the values of α1,2 and ν1,2 change

with γ although the qualitative feature remains invariant.

(ii) AFM ↔ DM transition: Similar to the case of AFM ↔
PM transition, in the thermodynamic limit, the AFM ↔ DM

transition is signaled by a non-analyticity in the first-derivative

of LN, or QD, with respect to either of λ1 and λ2. It is in-

teresting to investigate how the position of the QPT point, as

determined by the position of the sharp peak in the variation

of the derivatives of LN and QD with respect to either λ1, or

λ2, changes with a variation in the system size. In order to do

so, one may try to determine the canonical equilibrium state at

zero temperature by using the same methodology as in the case

of the AFM ↔ PM transition. However, due to the approxima-

tions involved in determining the zero-temperature state, in the

present case, LN and QD, as functions of either of λ1 and λ2,

exhibit finite jumps in values at the QPT point, thereby forbid-

ding a finite-size analysis in a similar fashion as in the previous
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Tuning parameter: λ1

λ2 LN QD

0.0
ν1 = 1.645± 0.013

lnα1 = 2.842± 0.070
ν1 = 1.292± 0.093

lnα1 = 1.851± 0.631

1.5
ν1 = 2.278± 0.053

lnα1 = 3.828± 0.230
ν1 = 1.489± 0.027

lnα1 = 1.507± 0.175

Tuning parameter: λ2

λ1 LN QD

1.5
ν2 = 1.941± 0.042

lnα2 = 3.614± 0.204
ν2 = 1.507± 0.008

lnα2 = 2.380± 0.052

Table I. Finite-size scaling exponents and fitting parameters for the

QPT corresponding to AFM ↔ PM transition. For all the computa-

tions, γ = 0.8.

case (for a discussion on the behaviour of the finite jumps, and

a figure, see Appendix E). Therefore, we employ the exact di-

agonalization technique in the present case, and determine the

non-degenerate ground state of the Hamiltonian given in Eq.

(1) by using Lanczos algorithm [57]. The reduced density ma-

trix correspponding to a nearest-neighbour even-odd spin pair,

labeled by “eo”, can be determined by tracing out all the other

spin variables from the ground state. Using the reduced density

matrix, the nearest-neighbour LN and QD can be computed.

Here, for the purpose of discussions, the first-derivatives of LN

and QD, with respect to λ2, by keeping λ1 fixed at 1.5, are

plotted in Fig. 3(b). We find that in the case of the AFM ↔
DM transition also, the position of the QPT at a finite N ap-

proaches the actual QPT point at N → ∞ according to an

equation similar to Eq. (12), where the constants are denoted

by α1,2 and ν1,2. For example, for λ1 = 1.5, the correspond-

ing values of these fitting parameters are ν2 = 2.525 ± 0.084,

lnα2 = 2.077 ± 0.220 (for LN), and ν2 = 1.153 ± 0.036,

lnα2 = −0.568± 0.092 (for QD).

B. Factorization line: Separable ground state

We now discuss the occurrence of the separable ground state

in the AFM phase of the model which can observed by consid-

ering the variation of bipartite as well as multipartite entangle-

ment as functions of λ1 and λ2 (Fig. 2). The symmetry of the

Hamiltonian (Eq. (1)) under PBC motivates one to look for a

separable eigenstate of the form

|ψ〉 =

N
2 −1
∏

i=0

|ψo2i+1〉 ⊗ |ψe2i+2〉, (13)

having a Néel type order, where |ψ
o(e)
α 〉 are the states of the

spins on the odd (even) site α. The Hamiltonian can be written

as H =
∑(N/2)−1
i=0 (Hoe

2i+1,2i+2 + Heo
2i+2,2i+3), where Hoe is

the two-site Hamiltonian given by

Heo = J

{

1 + γ

4
σxeσ

x
o +

1− γ

4
σyeσ

y
o

}

+
h+
2
σze +

h−
2
σzo ,

(14)

with h± = h1 ± h2, defined on an even-odd pair of sites,

and Hoe can be obtained from Heo straightforwardly by inter-

changing the site indices. Using Eq. (13), the lowest separable

eigenenergy can be obtained as

Esep
min = min

|ψe〉,|ψo〉
〈ψ|H|ψ〉

=

N
2 −1
∑

i=0

min
|ψe〉,|ψo〉

〈ψe|〈ψo|Heo
2i+1,2i+2|ψ

e〉|ψo〉

+

N
2 −1
∑

i=0

min
|ψo〉,|ψe〉

〈ψo|〈ψe|Hoe
2i+2,2i+3|ψ

o〉|ψe〉

= N min
|ψe〉,|ψo〉

〈ψe|〈ψo|Heo|ψe〉|ψo〉,

where we have used the fact thatHeo andHoe are energetically

equivalent. This leads to a minimum separable energy per site,

ǫ, given by ǫ = min
|ψe〉,|ψo〉

〈ψe|〈ψo|Heo|ψe〉|ψo〉. Without any

loss of generality, one can choose the states |ψe(o)〉 to be

|ψe(o)〉 = cos
θe(o)

2
|0〉+ exp iφe(o) sin

θe(o)

2
|1〉, (15)

where θe(o) and φe(o) are real parameters such that 0 ≤ θe(o) ≤
π and 0 ≤ φe(o) ≤ 2π. The Two-spin reduced density matrix

ρeo, corresponding to the odd-even pair of spins, is then given

by ρeo = ρe ⊗ ρo, where ρe(o) = |ψe(o)〉〈ψe(o)|. Since the

Hamiltonian in Eq. (1) is a real one, we expect ρeo = ρ∗eo,

leading to

ǫ = min
θe,θo

1

4

{

J(1 + γ) sin θe sin θo + h+ cos θe + h− cos θo

}

,

(16)

where the optimization over the states |ψo(e)〉 is reduced to an

optimization over the real parameter space of θo and θe. The

minimum is achieved for

θe = tan−1

{

±
1

h+

√

J4(1 + γ)4 − h2+h
2
−

J2(1 + γ)2 + h2+

}

θo = tan−1

{

±
1

h+

√

J4(1 + γ)4 − h2+h
2
−

J2(1 + γ)2 + h2−

}

. (17)

However, the state |ψ〉 (Eq. (13)) would be the ground state

of the Hamiltonian if ǫ = ǫ0, the ground state energy of the

two-spin Hamiltonian Heo [44, 45]. We find that the ground

state ofHeo is nondegenerate, with a ground state energy given

by ǫ0 = 1
2

√

J2 + 4h22. Determination of ǫ using the values of

θo(e), and equating to ǫ0 leads to the following condition

h21 = h22 + J2(1− γ2), (18)

equivalently λ21 = λ22 + (1 − γ2), which represents a line on

the (λ1, λ2) plane for fixed values of γ. The ground state of

the Hamiltonian, at every point on this line on the (λ1, λ2)
plane, is separable, represented by a line of vanishing entan-

glement (Fig. 2). We call this line as factorization line. At

any point on this line, the minimum eigenvalue of Ĥp, given
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Figure 4. (Color online) Variation of LN and QD as functions of the

transverse magnetic field h1 and the alternating field h2 in the ther-

modynamic limit at (a) βJ = 5 and (b) βJ = 2, and γ = 0.8.

The zero-temperature phase boundaries, λ2
1 = λ2

2 + 1 (PM ↔ AFM)

and λ2
2 = λ2

1 + γ2 (AFM ↔ DM), are also plotted for comparison,

represented by the dashed and dot-dashed lines, respectively. All the

quantities plotted are dimensionless, except LN and QD, which are in

ebits and bits respectively.

by −ω4
+(p), becomes independent of φp, as demonstrated for

(λ1 = 0.6, λ2 = 0) with γ = 0.8 in Fig. 1(c). This feature is

in contrast to the φp dependence of −ω4
+(p) at the QPT points

(see Figs. 1(a) and (b)).

C. Effect of temperature on quantum correlations

Quantum correlations are known to be fragile quantities,

and are expected to decay with increasing thermal noise in

the system. Moreover, absolute zero temperature is hard to

be achieved in a real experiment. It is therefore interesting to

investigate the effect of thermal fluctuations on the bipartite

quantum correlations corresponding to the Hamiltonian (Eq.

(1)). The patterns of LN and QD as functions of λ1 and λ2,

for βJ = 5 (Fig. 4(a)) and βJ = 2 (Fig. 4(b)) are plotted

in Fig. 4. In the case of LN, we observe that starting from

the factorization line at β → ∞, a zero-entanglement region

grows with increasing temperature, and spans the entire AFM

phase at sufficiently high temperature. Note here that the zero-

entanglement region at βJ > 0 can also be found in the PM

phase, while it is absent in the DM phase even at high temper-

ature. A few interesting features emerge from these results.

(i) The rate of spreading of the vanishing entanglement re-

gion with increasing temperature is found to be much

slower towards the PM phase compared to that inside

the AFM phase. This can be easily perceived from the

fact that with the increase of temperature from βJ = 5

 0

 0.02
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Figure 5. (Color online) Non-monotonic variations of LN (left panel)

and QD (right panel) with temperature. We choose λ1 = −0.9, λ2 =
0.25 for LN, and λ1 = −0.4, λ2 = 0.7 for QD. Here, γ = 0.8. LN

and QD are measured respectively in ebits and bits. T/J is dimension-

less,

to βJ = 2, the entanglement vanishes in the entire AFM

phase, but covers only a small region in the PM phase. It

implies that bipartite entanglement is more fragile in the

AFM region compared to the other phases.

(ii) Remarkably, bipartite entanglement in the DM phase is

the most robust against increasing thermal noise among

the three phases.

(iii) The effect of thermal noise on QD is less drastic com-

pared to that in the case of LN, as observed from Fig. 4.

With increasing temperature, the minimum value of QD

along the line λ1 = −λ2 increases. However, the quali-

tative distribution of QD over the (λ1, λ2) plane remains

unchanged.

Remark 1. We choose βJ = 2.0 and treat as high tempera-

ture since bipartite entanglement of the AFM phase has been

destroyed at this temperature. However, if one increases tem-

perature beyond βJ = 2, LN in the entire region of (λ1, λ2)
plane becomes zero.

Remark 2. For the purpose of demonstration, we have kept

the anisotropy parameter constant to a fixed value γ = 0.8.

One must remember that the definition of “high” βJ depends,

along with the other system parameters, on the anisotropy pa-

rameter also. However, the qualitative features, such as the ro-

bustness of bipartite entanglement in the DM phase compared

to other phases, or the fragility of LN in the AFM phase re-

main unchanged with a change in the value of the anisotropy

parameter.

Monotonicity vs. non-monotonicity

Up to now we have discussed the variation in the pattern of

entanglement and QD with the increase of temperature. We

now report the existence of non-monotonic variation of LN

and QD as functions of temperature in this model. Such non-

monotonicity is known for other quantum many-body Hamilto-

nians, including the transverse-field XY model [25–27]. Since

the model under consideration possess different phase diagram

than the XY model, non-monotonicity of quantum correlations,
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Figure 6. (Color online) Map of the regions over the (λ1, λ2) plane where non-monotonic behavior of LN (figures in top horizontal panels) and

QD (figures in bottom horizontal panels), with variation of temperature (marked by the shaded regions). The zero-temperature phase boundaries,

λ2
1 = λ2

2 + 1 (PM ↔ AFM), λ2
2 = λ2

1 + γ2 (AFM ↔ DM), and the factorization line (λ2
1 = λ2

2 + (1− γ2)) are also plotted for comparison, λ1

and λ2 are dimensionless while LN and QD are in ebits and bits respectively.

specially entanglement with temperature may reveal some new

feature. We will show that this is indeed the case. For fixed

choices of (λ1, λ2), typical variation profiles exhibiting non-

monotonicity of LN and QD with temperature, as shown in

Fig 5. The importance of non-monotonic behavior of bipartite

quantum correlation lies in the fact that even at high tempera-

ture, which is much easier to attain in the laboratory, a higher

value of quantum correlations is obtained compared to the state

with lower temperature. This has potential applicability in the

realization of those quantum protocols in the laboratory, which

use quantum correlations as resources.

It is therefore necessary to map the occurrence of non-

monotonic variations of bipartite quantum correlations over

the phase plane of the model, so that the useful regions at

finite temperature can be recognized. Let us consider a set

of values in the space of the system parameters, denoted

by {λ1, λ2, γ}Q, which results in a non-monotonic variation

of the bipartite quantum correlation measure, Q, with the

variation of temperature. We call such a set as the “non-

monotonicity generator” (NG). Fig. 6 exhibits the NGs for

different values of γ, specially γ = 0.2, 0.5, 0.8, and 1.0, on

the (λ1, λ2)-plane, when LN and QD are considered to be the

bipartite quantum correlation measures. We observe that in the

case of LN, for low values of γ, the NGs are confined to the

AFM phase, and narrow regions inside the PM phase, in the

vicinity of the AFM ↔ PM QPT line. At γ = 0.2, the factor-

ization lines, denoted by the solid line on the (λ1, λ2) plane,

almost coincides with the AFM ↔ PM QPT line, which is rep-

resented by the dashed lines. With increasing value of γ, the

factorization lines get separated from the AFM ↔ PM transi-

tion lines, and the NGs span the region confined by these lines,

as can be seen in the case of γ = 0.5 and γ = 0.8. At γ = 1.0,

which represents the Ising model in transverse-uniform and

transverse-alternating field, the factorization lines meet each

other, and almost entire AFM phase is filled by the NGs. Re-

markably, the DM phase remains completely free from NGs

for all values of γ.

The behaviors of QD and LN, with respect to non-

monotonicity, are somewhat complementary to each other for

low and high values of the anisotropy parameter. At γ = 0.2,

NGs for QD span the PM phase, which is in contrast to the

case of LN, where NGs can be found in the PM phase only in

the vicinity of the AFM ↔ PM phase boundary. On the other

hand, for γ = 1.0, in the case of LN, NGs fill almost entire

AFM phase while being absent in the PM and the DM phase

while in the case of QD, non-monotonicity occurs in a very

small region of the AFM and DM phase. In Fig. 7, we map,

on the (λ1(2), βJ)-plane, the regions where LN increases with

decreasing the value of β which confirms the findings in Fig. 6.

To generate the figures corresponding to the (λ1(2), βJ)-plane,

we have kept the value of λ2(1) fixed.

Note. In a system of finite number of spin-1/2 particles, use

of the open boundary condition (OBC) instead of the PBC

changes the phase boundaries only slightly, and the AFM re-

gion on the (λ1, λ2) plane shrinks. With an increase in the

system size, the difference between the phase portraits corre-

sponding to the PBC and the OBC reduces. Note here that

each of the pairs of nearest-neighbour spins in the quantum
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Figure 7. (Color online) Map of the regions on the (λ1(2), βJ) plane,

where LN decreases with an increasing βJ , with the value of λ2(1)

being fixed at (a), (d) λ2(1) = 0.4, (b), (e) λ2(1) = 1.2, and (c),

(f) λ2(1) = 2.0. All the other lines are same as Fig. 6. Here, λ1

and λ2 are dimensionless while βJ has the dimension of energy with

kB = 1.

spin model described by Eq. (1) consist of an even, and an odd

spin. In the case of the PBC, there is a special type of trans-

lational symmetry in the model, such that ρi,i+1 = ρi+2,i+1,

where i is, say, an odd site. Hence, LN is same for all the

nearest-neighbour spin pairs, while due to this property, quan-

tum discord is same only when measurement is performed on

the same type of spin (even or odd) in all nearest-neighbour

spin pairs. This implies that under PBC, investigation of the bi-

partite quantum correlations belonging to any one of the nerest-

neighbour spin pairs suffice. On the other hand, for com-

plete characterization of the static and dynamical behaviour of

nearest-neighbour bipartite quantum correlations in a system

of N spins under OBC, computation of bipartite quantum cor-

relation measures corresponding to N/2 ((N − 1)/2) nearest-

neighbour pairs, depending on whetherN is even (odd), is nec-

essary. However, the broad qualitative features of the factor-

ization line and the phase boundaries, as reported in this paper,

remain unaltered even under OBC for finite-sized systems.
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Figure 8. (Color online) Ergodicity of LN and QD for three specific

cases. Case I: (h1 = 0.0, h2 = 0.15). Here, both LN and QD are

ergodic. Case II: (λ1 = 1.0, λ2 = 2.0). Here, LN is ergodic, but QD

is nonergodic. Case III: (λ1 = 0.15, λ2 = 0.0). Here, QD is clearly

ergodic, while the status of LN is inconclusive, and depends on the

numerical accuracy. For all the cases, initial temperature at t = 0 is

taken to be βJ = 100 at γ = 0.8. LN and QD are in ebits and bits

respectively while βJ is dimensionless.

V. DYNAMICS OF QUANTUM CORRELATIONS

So far, we have considered the static characteristics of quan-

tum correlations in different phases of the 1d anisotropic XY

model in uniform and alternating transverse field. In this sec-

tion, we aim to study the behaviour of quantum correlations

and their statistical mechanical properties under time evolution.

In order to compute nearest neighbour LN and QD of TES, the

two-spin reduced density matrix has to be determined, which,

in turn, requires the evaluation of single-site magnetizations

and two-site spin correlation functions. This can be done by

utilizing the fact that the evolutions of the subspaces in the mo-

mentum space (see Sec. II and Appendix A) are independent

of each other. This leads to ρ̂p(t) = e−iĤptρ̂p(0)eiĤpt, where

Ĥp is the Hamiltonian in the pth momentum subspace at t > 0,

and ρ̂p(0) = ρ̂peq(0). The time-evolved single-site magnetiza-

tions and two-site spin correlation functions are given by

mz
o(e)(t) =

2

N

N/4
∑

p=1

Tr[m̂z,o(e)
p ρ̂p(t)]/Tr[ρ̂p(t)],

cαβ(t) =
2

N

N/4
∑

p=1

Tr[ĉαβp ρ̂p(t)]/Tr[ρ̂p(t)]. (19)

Note here that Eq. (19) addresses systems of finite size, N . In

the thermodynamic limit, the relevant quantities are obtained

by replacing the sum with an proper integral, as discussed in

Sec. IV. Note also that unlike the CES, cxy(t) and cyx(t) cor-

responding to TES do not vanish, which leads to a contribution

in the czz , given by

czz(t) = mz
o(t)m

z
e(t)− cxx(t)cyy(t) + cxy(t)cyx(t).(20)

A. Ergodicity and ergodicity score

Let us now discuss the statistical mechanical properties,

specifically the ergodicity of bipartite quantum correlations, in
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Figure 9. (Color online) Ergodicity score, ηD

S , corresponding to QD,

as a function of λ1 and λ2 for γ = 0.5 and γ = 0.8.The phase

boundaries are same as in Fig. 6. Here, λ1, λ2 are dimensionless, and

ηD

S is in bits.

the case of the Hamiltonian given in Eq. (1). We start with a

brief description and quantification of ergodicity of a generic

quantum correlation measure, Q. A physical quantity is said

to be ergodic if the time average of the quantity is the same

as its ensemble average. In the present scenario, the bipar-

tite quantum correlation, Q, is said to be ergodic if there ex-

ists a temperature, T , at which the “large time” time-averaged

value of Q in the TES, given by Q∞(T, λ1, λ2), coincides with

Qeq(T
′, λ∞1 , λ

∞
2 ), the value of Q in the CES at temperature T ′

at t → ∞. Here, λ1(2)(t → ∞) = λ∞1(2). We shall shortly

discuss what we mean by “large” time. Using the above defi-

nitions, one can define an “ergodicity score” as [52, 53]

ηQS = max
[

0,Q∞(T, λ1, λ2)−max
T ′

Qeq(T
′, λ∞1 , λ

∞
2 )

]

,

(21)

where S is the set of all system parameters, {λ1, λ2, γ}, and

the maximization inside the parenthesis is over the physically

relevant range of T ′, which is up to an order of magnitude of

T . Note that the value of the ergodicity score depends on all

the relevant system parameters, viz. λ1, λ2 and γ, which is

indicated by the subscript S . As evident from the definition,

a non-zero value of ηQS implies the non-ergodicity of Q, while

the vanishing ηQS indicates that the quantity is ergodic.

In the case of bipartite quantum correlations, we consider the

time average of the quantity at “large” time, tL. The definitions

of large time may vary depending on the situation in hand. In

general, we call a time instant, tL, to be “large” if any one of

the following scenarios occur.

(a) Q saturates to Qc for t ≥ tL, and remains constant at

Q = Qc for t ≥ tL.

(b) Q oscillates for t ≥ tL, such that δQ ≤ δ. Here, δQ is

the amplitude of fluctuation in the values of Q for t ≥
tL, and δ is a small quantity whose value provides the

required precision in determining Q.

(c) For t ≥ tL, δQ has a finite value, which remains constant

in time.

Evidently, the time-average is not required in the case of (a)

and (b).

To determine ergodicity of the bipartite quantum correla-

tions, as measured by LN and QD, we compute the value of

ηLS and ηDS , corresponding to LN and QD, respectively, for the

points on the (λ1, λ2) plane, with different values of γ. The

initial CES at t = 0 is chosen to be the one with βJ = 100.

The values of both LN and QD tend to show the behavior de-

scribed in (c) for Jt→ JtL, which we found to be ∼ 100π. To

determine the time averaged values of LN and QD, which de-

pend on the choice of the values of the system parameters, we

consider an interval of 20π, starting from Jt = 100π. We anal-

yse the ergodicity properties of LN and QD via three specific

cases, as follows.

In the first case, (Case I.) we take λ1 = 0.0, λ2 = 0.15,

which is a point in the AFM region. In the left panel of Fig.

8, the time-averaged value of LN at large time, starting from a

CES with βJ = 100 at Jt = 0, is represented by a dashed line,

which is intersected by the graph of LN varying with β (solid

line). This, according to Eq. (21), implies that LN is ergodic

in this case. Similar conclusion about QD can be drawn, as

depicted from the right panel of Fig. 8. However, QD does

not always remain ergodic, as can be seen from Case II. Here,

we take a point in the DM phase, given by λ1 = 1, λ2 = 2,

and see that the time-averaged value of LN at large time is zero

(left panel, Fig. 8), leading to ergodicity of LN. In contrast, the

time-averaged QD at large time, depicted by the double-dotted

line in the right panel of Fig. 8, does not coincide with QD of

any CES for all βJ , (solid line). Hence, QD is nonergodic in

this case.

The above examples naturally leads to the question as to

whether bipartite entanglement in the present model is always

ergodic. To verify this, we perform extensive numerical search

in the parameter space of (λ1, λ2). We find that that bipartite

entanglement, remains ergodic over the entire (λ1, λ2) plane,

up to our numerical accuracy (accurate up to the third deci-

mal place). However, there are very small sets of values of

λ1 and λ2, for which the status of ergodicity of LN remains

inconclusive. One such instance is presented by a third case,

Case III. Here, λ1 = 0.15 and λ2 = 0.0, representing a point

in the AFM phase. The corresponding time-averaged value of

LN is shown by dot-dashed line in the left panel of Fig. 8.

We find that ηLS , corresponding to LN, is zero up to the third

decimal place – the point to which we claim our data to be ac-

curate. However, there is a possibility of obtaining non-zero

values of ηLS with increased accuracy, which would imply that

LN is nonergodic at (λ1 = 0.15, λ2 = 0.0). Our numerical

search suggests that the area of such regions on the (λ1, λ2)
plane is negligibly small (cf. [52]). From exclusive numerical

simulations we possibly conclude that except for λ1, λ2 ≈ 0,

bipartite entanglement is always ergodic irrespective of γ and

low values of β of the initial state upto the numerical accu-

racy. In contrast, QD exhibits nonergodicity in the Case III.

To investigate the ergodicity of QD over the (λ1, λ2) plane, we

compute ηDS , corresponding to QD, as a function of λ1 and λ2.

We find that the region of nonergodicity is small for small γ,

and grows over the (λ1, λ2) plane, when the value of γ is in-

creased. This can be understood from Fig. 9, where the plots

of the values of ηDS as function of λ1 and λ2 for different values

of γ are depicted. We have also plotted the zero-temperature
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Figure 10. (Color online) Plot of the time-averaged LN (left panel)

and QD (right panel) at large time as a function of λ1 and λ2, which

are dimensionless.The phase boundaries are same as Fig. 6. LN and

QD are measured respectively in ebits and bits.

QPT lines and the separable lines for comparison. Note that

even for fairly high values of γ, QD in almost the entire AFM

phase remains ergodic, while the nonergodicity in QD is most

prominent in the DM phase near the AFM ↔ DM QPT line.

We conclude the discussion on ergodicity with a descrip-

tion of the variation of time-averaged LN and QD at large time

(Jt ≥ JtL). Fig. 10 depicts the landscape of time-averaged

values of LN and QD over the (λ1, λ2)-plane, where we have

chosen γ = 0.8 for discussion, and the initial state of the time

evolution to be the CES at βJ = 100. It is clear from the figure

that at Jt ≥ JtL, LN persists only in the AFM region, while it

vanishes completely in the entire PM and DM phase. One must

note here that the definition of ergodicity score in Eq. (21), and

the fact that entanglement may decrease with an increasing βJ
imply that probability of finding a set of parameters, for which

LN becomes non-ergodic, is higher in AFM phase where the

time-averaged LN at large t has a non-zero value. This is in

agreement with the Case III reported above, since the param-

eter values (λ1 = 0.15, λ2 = 0.0) are in the region of the

(λ1, λ2) plane, where time-averaged value of LN at large time

is high.

B. Dynamics at small time

The question of ergodicity, of a physical quantity is im-

portant from the point of view of statistical mechanics. On

the other hand, the information theoretic aspects demands the

study of quantum correlation in the dynamics with small time.

We fix the range to 0 ≤ Jt ≤ 4π, which is 25% of the value

of JtL. Figs. 11 and 12 depicts the bird’s-eyeview of the land-

scapes of LN and QD over the (λ1(2), Jt) plane, where λ2(1) is

constant, and t is in the range of small time. For typical fixed

values of the set of systems parameters given by (λ1, λ2), both

LN and QD are found to collapse and revive non-periodically.

It is clear from the Figs. 11 and 12 that the collapse of LN is

more frequent than the collapse of QD at short time, although

LN possesses much higher value.
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Figure 11. (Color online) Field-time landscape of LN (left panels)

and QD (right panels), where λ1 is chosen to be the varying field.

Three different values of λ2 have been chosen, viz. (a) λ2 = 0, (b)

λ2 = 0.8, and (c) λ2 = 1.6 with γ = 0.8. For comparison, we

mark the different phases and the factorization line on the λ1 axes (at

β → ∞), indicated by the horizontal lines, same as Fig. 6. Jt, λ1 and

λ2 are dimensionless. LN and QD are respectively in ebits and bits.

VI. DISCUSSIONS

To summarize, we have considered a one-dimensional

anisotropic XY chain of spin- 12 spins, in the presence of a uni-

form and an alternating transverse field whose direction de-

pends on whether the lattice site is even or odd. The model,

via a Jordan-Wigner transformation, can be mapped onto one-

dimensional two-component Fermi gas defined on an optical

lattice, constituted of two sublattices consisting of the even

and the odd sites. Although the analytical treatment of the

model is similar to the well-known XY model, the system

possesses new dimer phase apart from paramagnetic and anti-

ferromagnetic phase. We determine the singe-site magnetiza-

tions and two-site spin correlation functions corresponding to

a nearest-neighbor spin pair in canonical equilibrium state and

the time-evolved state of the model, and determine the nearest-

neighbor density matrix. We study the static and dynamical

characteristics of nearest neighbour entanglement quantified by

LN and by investigating their variations with relevant system

parameters, temperature, and time. We determine the finite-
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Figure 12. (Color online) Field-time landscape of LN (left panels) and

QD (right panels).(a) λ1 = 0, (b) λ1 = 0.8, and (c) λ1 = 1.6. All

other parameters and lines are same as Fig. 11.

size scaling exponents for the entanglement in the vicinity of

the QPTs at zero temperature of the model. At finite tempera-

ture, we show that against increasing temperature, the bipartite

entanglement is most fragile in the AFM phase, while being

the most robust in the DM phase. We also demonstrate the oc-

currence of nonmonotonic variation of bipartite entanglement

with temperature. We map the regions in different phases of

the model on the plane of the chosen system parameter for

which nonmonotonic variations of entanglement is found. The

trend of QD which is different from entanglement in the AFM

phase, the region of nonmonotonicity grows with anisotropy,

and covers almost the entire AFM phase when anisotropy is

high. However, the dimer phase remains completely free of

such region for LN in the case of both high and low value of the

anisotropy parameter has also been investigated and the mea-

sure found to be a tool for identifying phases present in this

model. We find that when anisotropy in the system is low, non-

monotonicity for QD occurs mostly in the paramagnetic phase,

while at high anisotropy, such regions shrink drastically.

We also consider the dynamics of the bipartite quantum cor-

relations, as measured by LN and QD. We address the question

of ergodicity of the bipartite correlations by looking into the

ergodicity score corresponding to the chosen quantum corre-

lation measure. We show that if canonical equilibrium state

at a very low temperature is chosen to be a initial state of the

evolution, up to our numerical accuracy, entanglement remains

ergodic over the entire phase plane of the system. On the other

hand, QD can be both ergodic as well as nonergodic, suggest-

ing an “ergodic to nonergodic” transition in the space of system

parameters. Benchmarking the time at which the dynamics of

the quantum correlations equilibrates, we also define a range

of short time, and discuss the short-time dynamics of LN and

QD for the model in focus.
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Appendix A: Diagonalization of the pth subspace

The Hamiltonian Ĥp that acts on the pth subspace of di-

mension 16 can be block-diagonalized by a choice of basis

{|ψi〉 : 1, · · · , 16}, given by

|ψ1〉 = a†pb
†
p|0〉,

|ψ2〉 = a†−pb
†
−p|0〉, (A1)

|ψ3〉 = a†p|0〉,

|ψ4〉 = b†p|0〉,

|ψ5〉 = a†pa
†
−pb

†
p|0〉,

|ψ6〉 = a†pb
†
pb

†
−p|0〉, (A2)

|ψ7〉 = a†−p|0〉,

|ψ8〉 = b†−p|0〉

|ψ9〉 = a†pa
†
−pb

†
−p|0〉,

|ψ10〉 = a†−pb
†
pb

†
−p|0〉, (A3)

|ψ11〉 = a†pb
†
−p|0〉

|ψ12〉 = a†−pb
†
p|0〉

|ψ13〉 = a†pa
†
−p|0〉,

|ψ14〉 = b†pb
†
−p|0〉,

|ψ15〉 = a†pa
†
−pb

†
pb

†
−p|0〉,

|ψ16〉 = |0〉, (A4)

where |0〉 denotes the vacuum state. Note that the above sets

of basis block-diagonalizes Ĥp into four blocks of dimensions

2, 4, 4, and 6, such that Ĥp =
⊕4

k=1 Ĥ
k
p , which explains the
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above distribution of the basis vectors into four groups, given

by (A1)-(A4). Using the form of Ĥp (Eq. (4)), and Eqs. (A1)-

(A4), Ĥ1
p is found to be a null matrix of dimension 2, while

Ĥ2
p = Ĥ3

p , with

Ĥ2
p =







−h1 − h2 J cosφp −iJγ sinφp 0
J cosφp −h1 + h2 0 −iJγ sinφp
iJγ sinφp 0 h1 − h2 −J cosφp

0 iJγ sinφp −J cosφp h1 + h2






,

(A5)

and

Ĥ4
p =















−2h1 iJγ sinφp −iJγ sinφp 0 0 0
−iJγ sinφp 0 0 J cosφp J cosφp −iJγ sinφp
iJγ sinφp 0 0 −J cosφp −J cosφp iJγ sinφp

0 J cosφp −J cosφp −2h2 0 0
0 J cosφp −J cosφp 0 2h2 0
0 iJγ sinφp −iJγ sinφp 0 0 2h1















. (A6)

Hence, diagonalization of the pth subspace of dimension 16 re-

duces to the diagonalization of the irreducible operators {Ĥk
p ,

k = 1, 2, 3, 4}. Note that Ĥ2
p and Ĥ3

p provide four dis-

tinct eigenvalues in the spectrum of Hp, each of which is

two-fold degenerate. These four eigenvalues are given by

±ω±
2 (p) where ω±

2 (p) =
√

x(p)± 2
√

y(p). Here, x(p) =

λ21+λ
2
2+cos2 φp+γ

2 sin2 φp, and y(p) = λ21(λ
2
2+cos2 φp)+

γ2λ22 sin
2 φp, where λ1(2) = h1(2)/J . Two of the six eigenval-

ues of Ĥ4
p are zero, while the other four eigenvalues are given

by ±ω±
4 (p), where ω±

4 (p) = 4

√

x(p)±
√

x(p)
2 − 4y(p).

Clearly, −ω+
2 (p) and −ω+

4 (p) are the minimum eigenvalues

of Ĥ2
p and Ĥ4

p , respectively. It can also be checked that

−ω+
4 (p) ≤ −ω+

2 (p) irrespective of the value of p. The ground

state energy per site is obtained by E0 = − 1
2π

∫ π/2

0
ω+
4 (p)dp.

Appendix B: Measures of quantum correlations

We now briefly discuss two specific measures, namely,

logarithmic negativity and quantum discord, belonging to

entanglement-separability and quantum information theoretic

paradigm, respectively.

Negativity and logarithmic negativity. The negativity [40],

N (ρAB), for a bipartite state ρAB , is the absolute value of the

sum of all the negative eigenvalues of ρTA

AB , and is given by

N (ρAB) =
‖ρTA

AB‖1 − 1

2
, (B1)

where ρTA

AB is obtained from ρAB by performing the partial

transposition with respect to the subsystem A [41]. Here,

‖ρ‖1 ≡ tr
√

ρ†ρ is the trace-norm of the matrix ρ. The loga-

rithmic negativity (LN) [40], L(ρAB), defined in terms of neg-

ativity, is given by

L(ρAB) = log2[2N (ρAB) + 1]. (B2)

Quantum Discord. Quantum discord [43] of a bipartite quan-

tum state ρAB is defined as the difference between the total

correlation [42], quantified by the quantum mutual informa-

tion, and the classical correlation present in the system. The

quantum mutual information is given by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (B3)

where ρA(B) are the local density matrices of ρAB , obtained

as ρA(B) = trB(A) [ρAB ], and S(̺) = −tr(̺ log2 ̺) is the von

Neumann entropy. The classical correlation of the state ρAB is

defined as

J (ρAB) = S(ρB)− S(ρB|A), (B4)

where S(ρB|A), the conditional entropy, is given by

S(ρB|A) = min
{Pi}

∑

i

piS(ρB|i). (B5)

Here, S(ρB|A) is conditioned over the measurements per-

formed on A via a rank-one projective measurements {Pi},

which produces the states ρB|i =
1
pi

trA[(Pi ⊗ IB)ρAB(Pi ⊗

IB)], with probabilities pi = tr[(Pi ⊗ IB)ρAB(Pi ⊗ IB)], and

IB is the identity operator in the Hilbert space ofB. From Eqs.

(B3) and (B4), quantum discord can be obtained as

D(ρAB) = I(ρAB)− J (ρAB). (B6)

Appendix C: Two-site spin correlators

Similar to the Hamiltonian Ĥp, the two-site spin corre-

lator operator ĉαα, α = x, y, can be obtained as ĉαα =
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2
N

∑N/4
p=1 ĉ

αα
p , where in the pth subspace, ĉααp is block-

diagonalizable in the same basis as given in Appendix A. For

example, one can obtain ĉxx = 2
N

∑N/2
i=1 σ

x
2iσ

x
2i+1 correspond-

ing to an “even-odd” pair of spins in the momentum space, such

that

ĉxxp = eiφp
(

b−p
†a−p − ap

†b†−p + ap
†bp + a−pbp

)

+e−iφp
(

bp
†ap − a−p

†b†p + a−p
†b−p + apb−p

)

.

(C1)

In the basis given in Appendix A, one can write ĉααp =
⊕4

k=1 ĉ
xx,k
p , where ĉxx,1p is a null matrix of dimension 2, and

ĉxx,2p , ĉxx,3p , and ĉxx,4p are given by

ĉxx,2p =









0 eiφp −eiφp 0
e−iφp 0 0 e−iφp

−e−iφp 0 0 −e−iφp

0 eiφp −eiφp 0









, ĉxx,3p =









0 e−iφp e−iφp 0
eiφp 0 0 −eiφp

eiφp 0 0 −eiφp

0 −e−iφp −e−iφp 0









,

ĉxx,4p =

















0 −e−iφp −eiφp 0 0 0
−eiφp 0 0 eiφp eiφp −eiφp

−e−iφp 0 0 −e−iφp −e−iφp −e−iφp

0 e−iφp −eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 −e−iφp −eiφp 0 0 0

















. (C2)

Similar calculation for ĉyy leads to ĉyy,1p = cxx,1p , and

ĉyy,2 =









0 eiφp eiφp 0
e−iφp 0 0 −e−iφp

e−iφp 0 0 −e−iφp

0 −eiφp −eiφp 0









, ĉyy,3p =









0 e−iφp −e−iφp 0
eiφp 0 0 eiφp

−eiφp 0 0 −eiφp

0 e−iφp −e−iφp 0









,

ĉyy,4p =

















0 e−iφp eiφp 0 0 0
eiφp 0 0 eiφp eiφp −eiφp

e−iφp 0 0 −e−iφp −e−iφp e−iφp

0 e−iφp −eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 e−iφp eiφp 0 0 0

















(C3)

Moreover, in the case of time-evolution, the operators ĉxy and

ĉyx are given by

ĉxy,2 = −i









0 e−iφp −e−iφp 0
−eiφp 0 0 eiφp

eiφp 0 0 −eiφp

0 −e−iφp e−iφp 0









, ĉxy,3p = −i









0 e−iφp −e−iφp 0
eiφp 0 0 eiφp

−eiφp 0 0 −eiφp

0 e−iφp −e−iφp 0









,

ĉxy,4p = −i

















0 e−iφp eiφp 0 0 0
−eiφp 0 0 −eiφp eiφp eiφp

−e−iφp 0 0 e−iφp −e−iφp e−iφp

0 e−iφp −eiφp 0 0 0
0 −e−iφp eiφp 0 0 0
0 −e−iφp −eiφp 0 0 0

















(C4)
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and

ĉyx,2 = −i









0 −e−iφp −e−iφp 0
eiφp 0 0 eiφp

eiφp 0 0 eiφp

0 −e−iφp −e−iφp 0









, ĉyx,3p = −i









0 −eiφp eiφp 0
e−iφp 0 0 −e−iφp

−e−iφp 0 0 e−iφp

0 eiφp −eiφp 0









,

ĉyx,4p = −i

















0 e−iφp eiφp 0 0 0
−eiφp 0 0 eiφp −eiφp eiφp

−e−iφp 0 0 −e−iφp e−iφp e−iφp

0 −e−iφp eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 −e−iφp −eiφp 0 0 0

















, (C5)

with ĉxy,1 and ĉyx,1 being 2× 2 null matrices.

Appendix D: Magnetization and correlation functions in CES

For the nearest-neighbour reduced density matrix at t = 0,

one needs to determine the single-site magnetizations, mz
e and

mz
o, and the diagonal elements of the correlation tensor, cαα,

of ρeq(t = 0). In order to do so, we exploit the fact that

the Hilbert space of the Hamiltonian (Eq. (1)) can be de-

composed into non-interacting subspaces in the momentum

space. In the pth such subspace of the momentum space, the

CES can be written as ρpeq = exp(−βĤp(t = 0))/Zp, where

Zp = Tr[exp(−βĤp(t = 0))] is the partition function in that

momentum subspace. Using the form of ρpeq , equilibrium ex-

pectation value of an operator Ôp can be obtained as

〈Ô〉 =
2

N

N/4
∑

p=1

Tr[Ôpρ
p
eq]/Tr[ρpeq]. (D1)

From the transformation scheme described in Sec. II, the trans-

verse magnetization operator in momentum space for an odd

(even) site can be calculated as m̂z
p = 2(c†pcp + c†−pc−p − 1),

where c ≡ a (odd site) or c ≡ b (even site). We find that, sim-

ilar to Ĥp, the two-site correlator operators ĉαα, α = x, y, can

be written as ĉαα = 2
N

∑N/4
p=1 ĉ

αα
p , where ĉααp can be expanded

in the same basis as described in Appendix A. The forms of the

operators ĉααp , in the momentum space, are given in Appendix

C. Unlike ĉxx and ĉyy , ĉzz can not be obtained directly due to

the presence of the four-fermionic terms in its expansion, but

its expectation value, czz , can be obtained from the relation

czz = mz
om

z
e − cxxcyy, (D2)

for the thermal state including the zero-temperature state.

Here, we denote the expectation values of the respective op-

erators by the same symbol without the hat. Note that in the

thermodynamic limit N → ∞, the sum in Eq. (D1) is replaced

by an integral with proper limit in the reduced Brillouin zone,

such that Eq. (D1) reads

〈Ô〉 =
1

π

∫ π
2

0

Tr[Ôpρ
p
eq]/Tr[ρpeq]dφp. (D3)

Tuning parameter: λ2

λ1 LN QD

0.0
ν̃2 = 0.992± 0.010

ln α̃2 = 1.357± 0.065
ν̃2 = 0.893± 0.018

ln α̃2 = −1.453± 0.132

1.5
ν̃2 = 0.926± 0.010

ln α̃2 = 0.559± 0.063
ν̃2 = 0.972± 0.015

ln α̃2 = −0.443± 0.092

Tuning parameter: λ1

λ2 LN QD

1.5
ν̃1 = 0.942± 0.009

ln α̃1 = 0.721± 0.054
ν̃1 = 0.988± 0.013

ln α̃1 = −0.286± 0.082

Table II. The fitting parameters corresponding to the finite jumps of

LN and QD at the AFM ↔ DM transition point, arising out of the

approximations used in the analysis. For all the computations, γ =
0.8.

Appendix E: AFM to DM transition

While investigating the AFM ↔ DM QPT, one may try to

determine the zero-temperature canonical equilibrium state ρeo
corresponding to a nearest-neighbour even-odd spin pair, by

using the methodology discussed in Sec. II B. However, due to

the approximations in the calculation, the variations of LN and

QD exhibit finite jumps at the QPT point for fixed finite values

of the system size N . This imposes a restriction in analyzing

the finite size scaling behaviour using the usual procedure as

discussed in the case of the AFM ↔ DM. To understand this

feature of the approximations properly, let us denote the value

of the quantum correlation measure (which, in the present case,

is either LN, or QD) by Q−δ , when λ1(2) = λc1(2) − δ with

arbitrarily small δ(→ 0), while the same for λ1(2) = λc1(2) + δ

is given by Q+δ . We find the trends of absolute value of the

difference between Q±δ for a fixed value of N , denoted by

∆N and it approaches zero with increasing N as

|∆N | = α̃1(2)N
−ν̃1(2) , (E1)

where α̃1(2) is a dimensionless constant. Note that the sub-

script “1(2)” indicates the choice of λ1(λ2) as the tuning pa-

rameter. Insets of Fig. 13 depicts the variations of ln |∆N | as

a function of lnN . Values of α̃1(2) and ν̃1(2) can be estimated

by fitting the numerical data with Eq. (E1). The values of α̃
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Figure 13. (Color online.) The figure in the left (right) panel depicts the variation of L (D) with λ2 across the AFM ↔ DM QPT for different

values of N , with λ1 = 1.5. At the QPT point, the quantum correlations exhibit a finite jump in magnitude, given by ∆N . (Insets) Corresponding

variations of ln
∣

∣∆N
∣

∣ (both numerical data and fitted line) as a function of lnN . All the quantities plotted are dimensionless, except LN which

is in ebits and QD, that is in bits.

and ν̃ for LN and QD are given in Table II, where the values

of λ2(λ1) are kept fixed at λ1 = 0 and 1.5 (λ2 = 1.5). This

analysis indicates that the approximations are too drastic to in-

vestigate the intricacies of the AFM ↔ DM transitions in the

model. However, as expected, the effect of the approximations

tends to disappear with increasing N .
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