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Statistics of leading digits leads to unification of quantum correlations
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We show that the frequency distribution of the first significant digits of the numbers in the data sets generated

from a large class of measures of quantum correlations, which are either entanglement measures, or belong to

the information-theoretic paradigm, exhibit a universal behavior. In particular, for Haar uniformly simulated

arbitrary two-qubit states, we find that the first-digit distribution corresponding to a collection of chosen com-

putable quantum correlation quantifiers tend to follow the first-digit law, known as the Benford’s law, when

the rank of the states increases. Considering a two-qubit state which is obtained from a system governed by

paradigmatic spin Hamiltonians, namely, the XY model in a transverse field, and the XXZ model, we show that

entanglement as well as information theoretic measures violate the Benford’s law. We quantitatively discuss

the violation of the Benford’s law by using a violation parameter, and demonstrate that the violation parameter

can signal quantum phase transitions occurring in these models. We also comment on the universality of the

statistics of first significant digits corresponding to appropriate measures of quantum correlations in the case of

multipartite systems as well as systems in higher dimensions.

I. INTRODUCTION

During the advancement of quantum information science,

search for correlations having truly quantum nature has been

in focus. Quantum entanglement [1], a manifestation of quan-

tum correlation, has emerged as the key ingredient in several

protocols related to quantum communication [2–7] and compu-

tation [8]. Over time, exciting results such as non-zero non-

classical efficiency of quantum states having vanishing entan-

glement, and locally indistinguishable orthogonal product states

[9–11] have resulted in the development of quantum correla-

tions beyond the “entanglement-separability” paradigm, broadly

known as the quantum information-theoretic measures [12, 13].

This has led to a large set of bona fide measures of quantum

correlations (see [1, 12, 13], and the references therein), each of

which, belonging usually to either of the two paradigms, has its

own degree of importance, applicability, and computability.

The measures of quantum correlations, belonging to the

entanglement-separability domain, are significantly different

from those of the quantum information-theoretic origin, as in-

dicated by their several properties (see [1, 12, 13], and the

references therein). For example, entanglement measures are

monotone under local operations and classical communication,

whereas information-theoretic ones are not. Besides, a quantum

state with vanishing entanglement can have a non-zero value of a

chosen quantum information-theoretic measure, thereby putting

the two of them on a different footing. Also, recent studies have

shown that, under different types of environmental noise, entan-

glement exhibits a “sudden death” and vanishes at a finite time

[14, 15], while a quantum information-theoretic measures de-

cays asymptotically with time [16–18], showing a more robust

behavior against decoherence. It is also noteworthy that under

specific initial conditions, quantum information theoretic mea-

sures may remain invariant over time [19], while the entangle-

ment measures exhibit no such property (cf. [20]).

Interestingly, despite such differences, measures from the two

domains show some similar behavior in a variety of physical sce-

narios. In the case of pure states, all the bipartite measures be-

longing to the two classes behave quite similarly [1, 13]. Also,

quantum correlation measures, irrespective of their origin, can

be made monogamous by a suitable choice of monotonically

increasing function of the measure [21]. Moreover, measures

from both the areas can be used to detect cooperative phenom-

ena such as quantum phase transition (QPT) [22–27], and the

“order-from-disorder” phenomena [28]. It is thus natural to ask

whether an interlink exists between the values obtained from the

different measures of quantum correlations having drastically

different origins. There has been efforts to relate the measures of

quantum correlations belonging to the two different paradigms

[29–31], although no conclusive result, as yet, exists.

In this paper, we investigate whether the statistical proper-

ties of the different measures of quantum correlation, belong-

ing to either of the paradigms, exhibit a universal behavior. To-

wards this aim, we analyze the frequency distribution of first-

significant digits of quantum correlations of both the classes ob-

tained in different situations. An empirical law, known as the

Benford’s law, has been studied in varied fields including biol-

ogy, geology, finance models, etc. [32–37], and states, in par-

ticular, that the first significant digit in any data is more often 1.

It has been shown that the law is satisfied by several data sets

obtained from various natural phenomena, while it can be vio-

lated in different physical systems including quantum spin mod-

els [37]. We show that the frequency distribution of the first sig-

nificant digits occurring in a dataset corresponding to a measure

of quantum correlation shows a decaying profile. We claim that

a universal feature for all quantum correlation measures. In par-

ticular, we demonstrate that the observed frequency distributions

obtained from all the quantum correlations, in the case of arbi-

trary two-qubit states, tend to follow the Benford’s law [32–34],

and the violation parameter with respect to the Benford’s law de-

creases with the increase of the rank of the quantum state. More-

over, we observe that if deviation of Benford’s law is quantified

by distance measures like the mean and standard deviations, and

the Bhattacharya metric, the Benford violation parameter com-

puted with respect to the Bhattacharya metric always possesses

a lower value compared to the other distance metrics, irrespec-

tive of the quantum correlation measure and rank of the states.

We also consider the set of arbitrary two-qubit states in the para-

metric space, up to local unitary transformations, and verify the

universal behavior of the first significant digits. The universal-

ity is found to be a low value of violation of the Benford’s law,

to be quantified below, is retained even when specific subsets of
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the set of two-qubit states are considered as the sample space

for determining the first-digit distributions corresponding to the

quantum correlations.

The universality may be hindered due to the constraints that

are put to the quantum states when the physical system is gov-

erned by a specific Hamiltonian. We investigate this by con-

sidering the well-known XY model in a transverse external

magnetic field [38], defined on a system of N spin- 12 particles.

We find that although the first-digit distribution does not mimic

Benford’s law, both in the case of entanglement and quantum

information-theoretic measures except quantum work deficit, the

Benford violation parameter can detect quantum phase transi-

tions present in this model [37]. Interestingly, we observe that

quantum discord changes its features of first-digit distribution

qualitatively, by changing specifically from having a decreasing

to an increasing trend, when the system changes from paramag-

netic to antiferromagnetic phases. We also consider the XXZ
chain [39, 40], and show that similar to the case of the XY
model, it is indeed possible to find a suitable quantum corre-

lation measure whose Benford’s violation parameter faithfully

detects quantum critical points in this models.

To observe the effect of increasing the number of parties and

the dimensions of the systems, we also investigate the digit-

distributions of distance-based entanglement and monogamy-

based quantum correlation measures for three-qubit pure states,

and computable quantum correlation measures for bipartite sys-

tems in higher dimensions. Specifically, we show that the ob-

served frequency distribution of first significant digits obtained

from the geometric measure of entanglement in the case of three-

qubit systems can distinguish between two inequivalent classes

of pure states, namely, the Greenberger-Horne-Zeilinger (GHZ)

class and the W class [41–44].

The paper is organized as follows. In Sec. II, we provide

a brief discussion on the Benford’s law and the methodology

adopted to compute the distribution of the first-significant digits.

Sec. III deals with the discussions on the universal features of

the first-digit distributions corresponding to different measures

of quantum correlations. Sec. IV contains the concluding re-

marks.

II. STATISTICS OF LEADING DIGITS:

NEWCOMB-BENFORD’S LAW

The study of the statistics of leading digits started in 1881

[32], when astronomer Simon Newcomb observed that the oc-

currence of the digits 1 to 9 as the first significant digit of

the numbers in a given set of data is not randomly distributed.

Specifically, it was noticed that there exists many data sets for

which the digit “1” occurs almost 30% of the times, the digit

“2” almost 17%, and the decreasing trend continues up to the

digit “9”, which appears almost 4.5% of the times. The fre-

quency distribution, pb(d), of the first significant digits, d (d ∈
{1, 2, · · · , 9}), is governed by an empirical law given by

pb(d) = log10

(

d+ 1

d

)

. (1)

It is widely known as the Benford’s law due to its rediscovery by

Frank Benford in 1938, who verified the law for a wide range of
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FIG. 1. (Color online.) Variations of BVP (ordinate), namely, νmd,

νsd, and νbm, corresponding to LN and EoF with increasing rank, r
(abscissa), in the case of arbitrary two-qubit states. (Inset) Trends of

νmd, νsd, and νbm (ordinate), corresponding to D, against r (abscissa),

in the case of arbitrary two-qubit states. To compare the trends of the

graphs, the values of νsd and νbm are multiplied with a factor x = 50
in the case of all the measures of quantum correlation. All quantities

are dimensionless.

natural datasets [33]. Since then, frequency distribution of first

significant digits of the numbers occurring in datasets of various

origins has attracted a lot of attention of the scientific commu-

nity, and the Benford’s law has been tested in diverse areas of

science [34]. Mathematical insight regarding the scale invari-

ance of Benford’s law has also been obtained in recent studies

[35].

Interestingly, not all naturally occurring datasets obey Ben-

ford’s law. The deviation of the observed frequency distribution,

po(d), can be quantified by computing the distance of po(d) from

pb(d). This quantity, known as the “Benford violation parame-

ter” (BVP), ν [36, 37], depends on the two distributions as well

as the distance-metric used to quantify the separation between

them. For the present study, we consider three specific metrics,

namely, the mean deviation (MD), the standard deviation (SD),

and the Bhattacharya metric (BM), in terms of which the corre-

sponding BVP are given by [37]

νmd =

9
∑

d=1

∣

∣

∣

∣

po(d)− pb(d)

pb(d)

∣

∣

∣

∣

, (2)

νsd =
1

3

(

9
∑

d=1

[po(d)− pb(d)]
2

)
1

2

, (3)

νbm = − ln
9
∑

d=1

[po(d)pb(d)]
1

2 , (4)

where νmd, νsd, and νbm correspond to MD, SD, and BM re-

spectively. The concept of violation of Benford’s law has been

used in several scenarios as diverse as economics, election pro-

cesses, digital image manipulation, seismology, and quantum

phase transition [36, 37].

In the case of a data collected from a specific physical phe-

nomenon, the measured quantity, q, usually has its own range of
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BVP N LN C EoF D W
νmd 1.770 2.340 2.431 0.768 3.497 4.960

νsd × 102 2.086 2.751 2.806 1.091 5.250 6.231
νbm × 103 4.838 8.026 8.770 0.982 23.487 43.074

TABLE I. The values of νmd, νsd, and νbm for N , LN, C, EoF, D, and

W in the case of arbitrary two-qubit states of rank 4.

values, which might lead to a trivial violation of the Benford’s

law. For example, in a data corresponding to q having values

2 ≤ q < 3, the first significant digit will always be d = 2. Such

triviality can be avoided by suitable shifting and scaling of q,

achieved by the “Benford’s quantity” (BQ), qb, defined as

qb =
q − qmin

qmax − qmin
, (5)

where qmin and qmax are respectively the minimum and the

maximum values of q in the dataset. Eq. (5) implies a mapping

of the actual range of q onto the range [0, 1] of qb. Such a scal-

ing also allows one to compare the different first-digit distribu-

tions obtained from quantities having different physical origins.

Unless otherwise stated, we use BQ to compute the frequency

distributions, po(d), and the subsequent values of ν.

III. UNIVERSALITY IN QUANTUM CORRELATIONS

In the present study, we use two broad genres of measures

of quantum correlations, namely, the entanglement measures,

and the quantum information theoretic measures. Our choice

of bipartite quantum correlations belonging to the first category

include entanglement of formation (EoF) [45], concurrence, C
[45, 46], negativity, N , logarithmic negativity, LN [47], and rel-

ative entropy of entanglement, SR [48], while in the second cat-

egory, we take into account quantum discord (QD), D [49], and

one-way quantum work deficit (QWD), W [50]. In the multi-

party cases, we restrict ourselves to pure states due to the lack

of computable multipartite measures of quantum correlations in

the case of mixed multiparty states, and also due to computa-

tional difficulties of numerical generation of multipartite mixed

state. In this domain, we consider the generalized geometric

measure (GGM), G [51], and monogamy scores, δ [21, 46, 52–

54], corresponding to squares of different bipartite quantum cor-

relations, such as C, N , D, and W . Brief descriptions of these

measures have been given in the Appendix. We intend to inves-

tigate whether there exists any common feature to the frequency

distributions of the digits occurring at the first significant posi-

tion in the values of quantum correlations, although they origi-

nated from widely different measures.

A. Qubit systems

We first consider the bipartite measures, and study the behav-

ior of po(d) in the case of quantum states in C2⊗C2. To compute

po(d), one can generate arbitrary pure as well as mixed two-

qubit states, Haar uniformly in the state space. Besides, one can

also consider a parametrization of an arbitrary two-qubit state in
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FIG. 2. (Color online.) Histograms representation of po(d) (ordinate),

of the first significant digit, d (abscissa), corresponding to N , LN, C,

and EoF, in the case of arbitrary two-qubit states of rank (a) r = 2, and

(b) r = 4. The distributions closely obey Benford’s law for r = 4,

confirming the observation in Fig. 1. The insets in the figures show

the profiles of po(d) (ordinate) against d (ordinate) in the case of quan-

tum information-theoretic measures, viz., D and W . All the quantities

plotted are dimensionless.

terms of the correlation matrix and the local Bloch vectors. We

consider both the cases in our analysis.

Arbitrary two-qubit states

Let us first concentrate on the case of arbitrary two-qubit

quantum states of different ranks. To determine po(d) cor-

responding to different measures of quantum correlations in

C2 ⊗ C2 systems, we Haar uniformly generate a sample of 106

two-qubit states, ρ12, for each of the ranks r = 2, 3, and 4. The

rank-1 states form the set of pure states, on which we shall com-

ment later. We find that the values of ν, for different measures

of quantum correlations, decreases with the increase of ranks of

the states in the case of arbitrary two-qubit states. This is clearly

observed from Fig. 1, where the variations of the values of ν (or-
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dinates) with r (abscissa) in the cases of LN, EoF, and D (in the

inset) are shown for all the three distance metrics considered. We

find that ν is minimum and considerably low for r = 4, the max-

imum rank possible for a two-qubit state, implying a po(d) very

close to pb(d), irrespective of the distance measures. Hence, it

is reasonable to conclude that the frequency distribution of the

first significant digits in a data corresponding to a given measure

of quantum correlation closely mimics Benford’s law when the

two-qubit quantum states have full rank. Interestingly, we note

that BVP for entanglement measures shows monotonic behav-

ior with respect to the rank while that for quantum information-

theoretic measures shows non-monotonicity with the increase of

r. Fig. 2(a) and (b) depict the histogram representations of the

profiles of po(d) originated from different measures with d in

the cases of two-qubit mixed states of rank r = 2 and r = 4
respectively.

Note that amongst the information-theoretic measures of

quantum correlations, po(d) corresponding to QD mimics pb(d)
more closely compared to that in the case of QWD, while po(d)
corresponding to the EoF have the least violation from the Ben-

ford’s law among the entanglement measures considered in this

study. The analysis shows that for any computable entangle-

ment measure as well as information-theoretic measure, νbm
possesses the minimum value among all the distance measures.

For example, in the case of rank-4 states, we compare the values

of ν obtained from different quantum correlation measures with

different distance measures (See Table I). For arbitrary two-qubit

states, we therefore find a quantifier using Benford’s law, where

patterns unify all the quantum correlation measures, and erases

their origin. On the other hand, violation parameter of Benford’s

law are capable to distinguish them.

Two-qubit states in parameter space

It is well-known that an arbitrary two-qubit state, up to local

unitary transformation, can be expanded in terms of nine real

parameters and the Pauli matrices, σα (α = x, y, z), as [55]

ρ12 =
1

4

[

I1 ⊗ I2 +
∑

α=x,y,z

cαασα
1 ⊗ σα

2

+
∑

α=x,y,z

cα1σ
α
1 ⊗ I2 +

∑

β=x,y,z

cβ2I1 ⊗ σβ
2

]

. (6)

Here, cαα = 〈σα⊗σα〉, called the “classical correlators”, are the

the diagonal elements of the correlation matrix with |cαα| ≤ 1,

cα1 = 〈σα
1 ⊗ I2〉 and cβ2 = 〈I1 ⊗ σβ

2 〉, called the “magnetiza-

tions”, are the elements of the two local Bloch vectors where

|cα1 |, |cβ2 | ≤ 1, and I1(2) is the identity operator in the Hilbert

space of qubit 1(2). A two-qubit state ρ12 of the form given in

Eq. (6) can have a maximum rank, r = 4.

One can generate random two-qubit states in the parame-

ter space by choosing the relevant parameters in their allowed

ranges from specific probability distributions to check the effect

of different simulations of states on Benford’s law. To compute

po(d) corresponding to different measures of quantum correla-

tions, we simulate sets of 106 random states of the form ρ12
given in Eq. (6) for each of the measures, by choosing the pa-

rameters from uniform distributions in appropriate ranges. We
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FIG. 3. (Color online.) Histograms of po(d) (ordinate) against d (ab-

scissa), for the entanglement measures, N , LN, C, and EoF, and the

information-theoretic measures, D and W (inset) for the two-qubit

states of the form given in Eq. (6). All the quantities plotted are di-

mensionless.

observe that po(d), corresponding to all the quantum correlation

measures, closely follow Benford’s law, as indicated by the pro-

files of po(d) depicted in Fig. 3.

Depending on the discussions presented above, it is natural to

ask whether po(d) corresponding to two-qubit states generated

within specific subsets of the complete set of arbitrary two-qubit

states possess such universal feature. To address this question,

we consider three special instances, two of which can be ob-

tained as special cases of Eq. (6).

(i) Bell-diagonal (BD) state. It is obtained from Eq. (6) by set-

ting cα1 = cβ2 = 0, where α, β = x, y, z. By generating a set

of 106 such random states for each of the quantum correlations,

where the three diagonal correlators are drawn from a uniform

distribution within their allowed ranges, we analyze the behavior

of po(d).
(ii) Two-qubit states with single magnetization. Let us con-

sider the state with z magnetization (cx,y1 = cx,y2 = 0, cz1 6=
cz2 6= 0). Here, ρ12, written in the computational basis

{|00〉, |01〉, |10〉, |11〉}, assumes the form of an X-state [56],

given by

ρ12 =







a1 0 0 b1
0 a2 b2 0
0 b̄2 a3 0
b̄1 0 0 a4






, (7)

where the matrix elements are real (b1 = b̄1, b2 = b̄2). Similar

to the previous case, here also we study the trends of po(d) over

a set of 106 random states for each of the measures of quantum

correlations. However, in the present case, the sets are generated

by choosing the matrix elements from uniform and normal dis-

tributions, in such a way that ρ12 becomes a valid density matrix.

(iii) Generic two-qubit X state. The state is of the form given

in Eq. (7), but with complex off-diagonal elements. In this case,

a set of 106 random states is generated by choosing the real and

imaginary parts of the matrix elements from uniform and normal
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FIG. 5. (Color online.) Variations of po(d) (ordinate) against d (ab-

scissa) in the case of C (left panels) and D (right panels). The two-qubit

states are the zero-temperature states of the transverse-field XY model

with J/h = 0.7 (top panels) and J/h = 1.3 (bottom panels). All

quantities are dimensionless.

distributions.

In all the three cases listed above, we observe that po(d), for

both entanglement and information-theoretic measures, closely

follow Benford’ law. For example, we find that the BVP, νbm,

corresponding to EoF, LN,D, andW are respectively 3× 10−4,

3.2× 10−3, 2.7× 10−3, and 4.5× 10−3 for the X states, when

the matrix-elements are real, and are chosen from normal distri-

butions. In the case of the BD states, we compute po(d) corre-

sponding to the relative entropy of entanglement, which, in ad-

dition to all the other quantum correlation measures, obeys such

universality. Hence the universality of the variation of po(d)
against d is retained in the case of entanglement measures as

well as quantum information-theoretic measures, when arbitrary

two-qubit states in the parameter space are considered. Such

analysis indicates that the quantum correlation measures, irre-

spective of the choice of the measures, tend to follow Benford’s

law, especially when the states are of full rank, independent of

the simulation process.

νbm × 102

J/h N LN C EoF D W
0.7 5.587 5.656 5.606 5.305 4.593 3.875
1.3 5.627 5.700 6.378 4.937 6.102 4.142

TABLE II. The values of νbm for N , LN, C, EoF, D, and W in the

case the zero-temperature states of the transverse-field XY model with

J/h = 0.7 and J/h = 1.3 in the thermodynamic limit.

Physical Systems: Quantum Spin Models

In all the qubit systems considered so far in this paper, we

have generated quantum states uniformly in either the state

space, or the parameter space of the corresponding states. In

all these cases, we have seen that quantum correlation measures

almost follow the Benford’s law and can not detect the genera-

tion process of the states. However, there exist physical systems

in which the allowed quantum states are governed by the Hamil-

tonian describing the system. It is, thus, natural to ask what hap-

pens to such unifying features of po(d), corresponding to dif-

ferent quantum correlations, if it is constrained by the system

Hamiltonian. To address this question, we consider a quantum

spin model in one dimension, given by the Hamiltonian

H =
J

2

N
∑

i=1

{

(1 + γ)σx
i σ

x
i+1 + (1− γ)σy

i σ
y
i+1 +∆σz

i σ
z
i+1

}

+h

N
∑

i=1

σz
i . (8)

Here, J , and h are respectively the strengths of the exchange

interaction and the transverse magnetic field. The anisotropies

in the strengths of the exchange interaction are given by ∆ in

the z direction, and γ in the xy direction. The total number of

quantum spin-1/2 particles in the system is N . We consider

two specific cases of the HamiltonianH : (a) the anisotropic XY

model in a transverse field, represented by ∆ = 0 [38], and

(b) the XXZ model, given by γ = 0 and h = 0 [39]. In the

case (a), with a choice of the system parameter as λ ≡ J/h, the

model, with increasing λ, undergoes a QPT at λ = 1 from an

antiferromagnetic phase to a quantum paramagnetic phase [27].

In the case of (b) with λ ≡ ∆, two QPTs take place at ∆ =
±1. For ∆ = −1, the ground state of the model undergoes a

Kosterlitz-Thouless (KT) QPT , while at ∆ = 1, a QPT from

the metalic phase (0 ≤ ∆ ≤ 1) to the insulating phase (∆ > 1)
occurs [39, 40].

For the purpose of the present study, we are interested to look

at the profile of po(d) of the zero-temperature state in the dif-

ferent phases of the model. Note here that the present case is

an example where the observable, q, may have an allowed range

of values in the corresponding phase, and thus may result in a

trivial violation of the Benford’s law, as discussed in Sec. II. To

avoid such trivial violations, we employ the following procedure

[37]. Let us assume that in a particular phase, q is bounded in

the range [q1, q2]. We consider a fixed value of the system pa-

rameter, λ = λ0, in the given phase, and choose a small interval

around λ0, of width ǫ, given by (λ0 − ǫ/2, λ0 + ǫ/2). In this in-

terval, we sample n values of λ. Corresponding to those n values

of J/h, we create a data of n values of q, in which the range of q
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is given by [q′1, q
′
2]. Next, we scale the observable, q, so that all

of the n data points in [q′1, q
′
2] now lie in the range [0, 1]. This is

achieved by a scaling similar to that described in Eq. (5), where

qmin = q′1, and qmax = q′2, and the scaled data now belongs to

the corresponding BQ, qb. The next step is to determine the fre-

quency distribution of first significant digits from the data of qb,

which provides the po(d) corresponding to the system parameter

λ = λ0.

The QPTs in both the models have been detected by stan-

dard condensed matter physics techniques [27, 38, 39] as well

as several quantum correlation measures (see [22], and refer-

ences herein). It has been shown that BVPs corresponding to

transverse magnetization and two-site LN can also signal the oc-

currance of the QPT in the transverse-field XY model [37]. In

the present study, we find that for the XXZ model, all the QPTs

on the ∆ axis described above are signalled by the BVP cor-

responding to different entanglement measures even when the

system size is small, but not by the same corresponding to in-

formation theoretic measures. Fig. 4 depicts the variation of

νbm correponding to nearest neighbour concurrence and quan-

tum discord for the ground state of the XXZ model with ∆.

The QPT at ∆ = 1 is signaled by a sharp kink in the case of

concurrence, while no change in the case of quantum discord

takes place.

In the case of the XY model, we choose two specific values

of the system parameter λ, given by λ = 0.7 and λ = 1.3, in

two separate phases of the transverse-field XY model, and de-

termine po(d) corresponding to different bipartite measures of

quantum correlations for the zero-temperature case of the model.

In each case, po(d) is computed from a sample of n = 5 × 103

data points in the vicinity of the fixed value of λ, with a small

fixed interval ǫ = 0.1. Curiously, we observe that although the

profile of po(d), in the case of entanglement measures, show

a complementary behavior to that of pb(d), the universality in

the behavior of po(d), in the sense that the BVP being small

throughout, remains invariant across the QPT. On the other hand,

the behavior of po(d) corresponding to QD changes across the

QPT, similar to the transverse magnetization [37], while that cor-

responding to QWD remains unchanged. Although BVP for

entanglement measures can detect QPT, the analysis of po(d)
reveals that the distribution trend of digits for QD clearly dif-

ferentiates the two phases, which is not possible by considering

entanglement measures. Moreover, the Benford satisfying na-

ture of the digit distribution, po(d), in the sense that both po(d)
and pb(d) have decaying profiles with respect to the first sig-

nificant digits, for any quantum correlation measure, showing

universality among quantum correlation measures, observed for

arbitrary two-qubit states as well as restricted classes of states, is

washed out when the two-qubit state is generated from a given

Hamiltonian. The profiles of po(d) against d, for C as the en-

tanglement measure and QD as the quantum information theo-

retic measure in the different phases of the transverse-field XY
model, are shown in Fig. 5. One must note here that even a fi-

nite sized system, with size as small as N = 11, is sufficient to

mimic the system in the thermodynamic limit (N → ∞). An

important point to note is that among all the entanglement as

well as information theoretic measures, the frequency distribu-

tion corresponding to QWD, originated from the ground state of

the model, satisfies Benford’s law most closely. This is clearly

visible from the values of νbm computed from po(d) obtained

from different measures of quantum correlations in the two dif-

ferent phases of the model (see Table II).

B. Universality in higher dimensions and higher number of

parties

It is now natural to ask whether the universal behavior of

po(d) is generic when systems with higher number of parties,

or in higher dimensions are considered. However, generating

multipartite quantum states as well as states in higher dimen-

sions having all possible ranks is itself a non-trivial problem.

For the sake of completeness, in our study, we comment on the

nature of po(d) in the cases of certain paradigmatic classes of

states. More specifically, we consider pure states in three-qubit

systems, the complete set of which is constructed by the union

of two independent classes of states, namely, the GHZ class, and

the W class [41–44]. In the case of higher-dimensional systems,

we simulate rank-2 states in C2 ⊗ C3 and C2 ⊗ C4.

To check for unifying features as in the case of two-qubit sys-

tems, we Haar uniformly generate sets of 106 states in each

of the cases including tripartite pure states of GHZ and the W

classes, and higher dimensional states in C2 ⊗ C3 and C2 ⊗ C4

systems, and determine the relevant quantum correlations. See

Appendix for brief descriptions of the GHZ class, the W class,

and different quantum correlation measures considered. It is

important to note that the measures that we consider for two-

qubit systems do not have a direct generalization for three-qubit

systems, and hence we choose a distance-based entanglement

measure, namely, GGM [51], and monogamy based measures

[46, 52, 53] originated from bipartite quantum correlations.

The profiles of po(d) and the corresponding values of ν for

different quantum correlations, in all the mentioned cases, are

found to be inconclusive in determining whether such universal-

ity exists. Note that the multiparty states considered here are

pure (rank-1) states, while all the higher-dimensional bipartite

states have rank-2, and in the case of qubit systems, the univer-

sal feature becomes prominent in the case of states with higher

rank. Hence it is reasonable to infer that conclusive result on

the universality of the behavior of po(d) in the case of multipar-

tite systems as well as systems in higher dimensions can only

be obtained once the corresponding states up to their full rank

can be considered. The behavior of po(d) against d for vari-

ous measures of quantum correlations in the case of three-qubit

pure states are shown in Fig. 6 for the GHZ (Fig. 6(a)) and

the W (Fig. 6(b)) classes. For the three-qubit pure states, po(d)
corresponding to the W class exhibit considerable unifying be-

havior. For example, the violation νbm, obtained from the simu-

lation of the W-class states for G, δN 2 , δD2 , and δW 2 are respec-

tively given by 2.006× 10−3, 3.832× 10−3, 9.846× 10−3, and

31.593× 10−3, showing a very low Benford’s violation similar

to the two-qubit states. Here, the monogamy scores correspond-

ing to D2 and W 2 are computed by performing measurement

over the nodal observer. Interestingly, as seen in Fig. (6)(a),

the distribution, po(d), for all quantum correlation measures ob-

tained from the GHZ class do not closely follow Benford’s law.

Therefore, while the value of GGM can not distinguish these two

inequivalent classes, its first-digit distribution can.
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FIG. 6. (Color online.) Profiles of po(d) (ordinate) with d (abscissa)

in the case of multipartite measures of quantum correlations. The mea-

sures that we choose are δN2 , δC2 , δD2 , and δW2 for arbitrary three-

qubit states belonging to (a) GHZ and (b) W classes. The insets show

the corresponding variations of po(d) (ordinate) with d (abscissa) when

GGM is chosen to be the measure of quantum correlation. All quantities

are dimensionless.

IV. CONCLUDING REMARKS

In this paper, we showed that statistics of the first signifi-

cant digits occurring in the data corresponding to different mea-

sures of quantum correlations, belonging to both entanglement-

separability as well as the information-theoretic paradigms, ex-

hibit a universal feature. More specifically, according to our

data-analysis, the frequency distribution of the first significant

digits in the numbers corresponding to any bona fide measure

of quantum correlation tend to obey Benford’s law, when states

with higher ranks are considered, irrespective of their origin

and nature, in general. This feature becomes prominent when

quantum states with full rank are considered. We also dis-

cuss the effect when states corresponding to specific Hamilto-

nians, namely, the XY model in a transverse field, and the XXZ

model are considered. We find that although the universality is

washed out in such cases, BVP can detect QPTs occurring in

these models. Such investigation revealed that in the case of the

XY model, the first-digit distribution of QD in the paramagnetic

phase follow the Benford’s law more closely than in the antifer-

romagnetic phase, and therefore digit distributions of QD clearly

identifies the quantum phases. On the contrary, concurrence and

logarithmic negativity almost equally violate the Benford’s law

in both the phases, although BVP can still detect the QPT present

in the model. We finally analyze first significant digit distribu-

tion of different computable quantum correlation measures for

multipartite as well as higher-dimensional systems. Specifically,

in a tripartite domain, the first-digit distribution of geometric

measure of entanglement for the W-class states closely follow

Benford’s law, while it is not the case for the GHZ class, in-

dicating another quantity of completely different root that can

identify these two classes.

APPENDIX

MEASURES OF QUANTUM CORRELATION

In this section, we briefly discuss the quantum correlation

measures used in this study. We mainly consider two dis-

tinct classes of measures, namely, entanglement measures [1],

and information-theoretic measures of quantum correlations

[12, 13].

Bipartite systems

There is a variety of bipartite measures of quantum correla-

tions existing in literature, each having their own degree of util-

ity and computability. Here, we briefly discuss only a few se-

lected measures relevant for the present study.

Entanglement measures

The set of entanglement measures (see [1], and the references

therein) considered here include von Neumann entropy as a mea-

sure of pure state entanglement [57], and entanglement of for-

mation [45], concurrence [45, 46], negativity, and logarithmic

negativity [47] as the entanglement measures for mixed bipartite

quantum states.

von Neumann entropy: The von Neumann entropy, S(ρ), of a

quantum state ρ, is defined as S(ρ) = −tr[ρ log2 ρ]. In the

case of a pure bipartite quantum state |ψ〉ab, shared between two

parties “a” and “b”, entanglement between a and b is quanti-

fied as S(ρa/b) [57], where ρa(b) = trb(a)[ρab] is obtained from

ρab = |ψ〉ab〈ψ| by tracing out the party b(a).
Entanglement of formation and concurrence: The definition

of concurrence originates from that of entanglement of forma-

tion (EoF) [45] of a bipartite system, which is defined as the

amount of singlets, |ψ−〉 = (|01〉 + |10〉)/
√
2, required to pre-

pare the quantum state of the system by local operations and

classical communications (LOCC). For a bipartite mixed state

ρab, EoF is provided by its convex roof definition E(ρab) =
min

∑

i p
iE(|ψi〉ab), where the minimization is taken over all
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possible pure state decompositions of ρab, such that ρab =
∑

i p
iP [|ψi〉ab].

The optimization involved in the definition of EoF for a bipar-

tite mixed state is what makes the measure intractable. However,

for an arbitrary bipartite two-qubit state ρ, EoF can be obtained

as a monotonic function of concurrence, C, given by [45, 46]

C = max{0, λ1 − λ2 − λ3 − λ4}, (9)

where λ2i ’s, i = 1, · · · , 4, are eigenvalues of the matrix ρρ̃ in

decreasing order, with ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). Here, σy is

the Pauli matrix, and the complex conjugation in ρ∗ is carried

out in the computational basis.

Negativity and logarithmic negativity: Based on the Peres-

Horodecki separability criterion [58], negativity [47], N , for a

bipartite quantum state, ρab, is defined as

N (ρab) =
||ρTa

ab || − 1

2
, (10)

where ||̺|| = Tr
√

̺†̺ is the trace norm of the matrix ̺, and

ρTa

ab is obtained by performing partial transposition of ρab w.r.t.

the party a [58]. The logarithmic negativity [47], LN, can be

obtained from N as

LN = log2 (2N + 1) . (11)

Relative entropy of entanglement. The relative entropy of entan-

glement, SR, is a measure of entanglement quantifying the min-

imum relative entropy distance of an entangled state, ρ, from the

set of separable states, S = {σ}. It is given by

S = min
σ∈S

S(ρ||σ), (12)

where S(ρ||σ) is the quantum relative entropy, given by

S(ρ||σ) = tr
(

ρ log2 ρ− ρ log2 σ
)

.

Quantum information theoretic measures

The set of quantum information-theoretic measures of quan-

tum correlations considered in this paper include quantum dis-

cord and one-way quantum work deficit (see [12, 13], and the

references therein).

Quantum discord: The total correlation between the two parties

of a bipartite system is quantified by the quantum mutual infor-

mation [59]. The definition of quantum discord of a bipartite

quantum system ρab emerges from the difference between the

quantum extensions of two equivalent ways to define mutual in-

formation in the classical domain. In its original form, quantum

discord is defined as [49]

Da = S(ρa)− S(ρab) + min
{Πa}

∑

i

S(ρiab), (13)

where S(ρiab) is the von Neumann entropy of the state ρiab =
M i

aρabM
i
a/p

i, obtained with probability pi, from the projection-

valued measurement, Πi
a, performed over the subsystem a.

Here, Ma = Πi
a ⊗ Ib, pi = Tr[M i

aρabM
i
a], and Ib is the identity

operator in the Hilbert space of b. The subscript “a” in Da de-

notes that the measurement is performed over the subsystem “a”.

Note here that the definition of quantum discord has an inherent

asymmetry due to the local projective measurement performed

over the subsystem “a”. In general, Da 6= Db.

Quantum work deficit: The one-way quantum work deficit

(QWD) is defined as the difference between the amount of

pure states extractable under global “closed operation” (CO),

and “closed local operations and classical communications”

(ClOCC) [50]. The set of CO consists of (i) global unitary oper-

ations, and (ii) dephasing by the set of projectors defined on the

Hilbert space of ρab, while the class of CLOCC consists of (i)

local unitary operations, (ii) dephasing by local measurement on

the subsystem a (b), and (iii) communicating the dephased sub-

system to the other party, b (a), over a noiseless quantum chan-

nel. It can be shown that the amount of pure states extractable

from ρab under CO is given by

ICO(ρAB) = log2 dim (H)− S(ρAB), (14)

while the same under CLOCC is given by

ICLOCC = log2 dim (H)− min
{Πa}

S (ρ′ab) . (15)

where ρ′ab =
∑

i p
iρiab is the average quantum state after the

projective measurement {Πa} on a. The QWD, W , is then de-

fined as W = ICO (ρab)− ICLOCC (ρab).

Multipartite systems

The set of multipartite measures considered here include the

generalized geometric measure (GGM) [51], and monogamy

scores [21, 52–54] corresponding to different measures of quan-

tum correlations.

Generalized geometric measure: Based on the geometric mea-

sure of entanglement [60–62], the generalized geometric mea-

sure (GGM) [51] is a quantifier of genuine multipartite entangle-

ment content in a multiparty pure state. A pure quantum state,

|ψ〉a1a2···an
, shared between n parties given by a1, a2, · · · , an,

is said to be genuinely multiparty entangled if it can not be writ-

ten as a product across any bipartition. The GGM of a pure

quantum state, |ψ〉a1a2···an
, is defined as

G(|ψ〉a1a2···an
) = 1−max |〈φ|ψ〉|2a1a2···an

, (16)

where the maximization is taken over all n-partite pure states

{|φ〉a1a2···an
}, that are not genuinely n-party entangled. The

advantage in using GGM as a quantifier of pure-state entangle-

ment is that for multipartite pure states in arbitrary dimensions,

G can be calculated as

G(|ψ〉a1a2···an
) = 1−max{λ2A:B}, (17)

where λA:B is the maximal Schmidt coefficient of |ψ〉a1a2···an

in the A : B bipartite split, provided A∪B = {a1, a2, · · · , an},

and A ∩ B = ∅. The maximization in Eq. (17) is over all such

bipartite split A : B.

Monogamy of quantum correlations: The monogamy relation

of a bipartite quantum correlation measure Q, with respect to a

multipartite quantum state ρa1a2···an
shared between n parties

a1, a2, · · · , an, demands that [21, 52, 53]
∑

j 6=k

Q(ρakaj
) ≤ Q(ρak:rest), (18)
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with ρakaj
being the reduced density matrix of the parties ak and

aj obtained by tracing out all the other parties from ρa1a2···an
,

where Q(ρak:rest) is the value of Q in the bipartition ak : rest,
and j, k ∈ {1, 2, · · · , n}. This implies that a high value of Q
between any two parties of the tripartite system does not allow

a high value of Q shared between any one of these parties with

any one from the rest of the parties. The party ak is referred

as “node” for the particular quantum correlation measure Q.

This property is observed amongst several of the known quan-

tum correlation measures belonging to both the entanglement-

separability as well as the information-theoretic regimes. The

correlation measure that satisfies this property is said to be

monogamous. For example, for tripartite state, squared con-

currence as well as squared negativity are monogamous, while

quantum discord is not.

Monogamy score: One can define a monogamy score from Eq.

(18) as [54]

δQ(ρa1a2···an
) = Q(ρak:rest)−

∑

j 6=k

Q(ρakaj
), (19)

which is non-negative for all n-partite quantum states that sat-

isfy Eq. (18), and is negative for states that violate it. There has

been a large number of studies in the direction of understand-

ing the monogamy property of quantum correlations having both

entanglement-separability and information theoretic origin. In

this paper, we shall focus on the monogamy score for squared

quantum correlations, namely, concurrence, negativity, quantum

discord, and quantum work deficit in the case of three-qubit pure

states, and we know that except quantum work deficit, all the

squared measures are monogamous for three-qubit pure states.

THREE-QUBIT PURE STATES: GHZ AND W CLASS

GHZ class. The normalized GHZ-class of three-qubit pure states

can be represented by [41, 42, 44]

|Φghz〉 =
√
K

(

cosα|000〉+ eiβ sinα
3
⊗

i=1

|ηi〉
)

,

where |ηi〉 = cos γi|0〉+ sin γi|1〉, and K being the normaliza-

tion factor such that

1

2

( 1

K
− 1
)

=
(

cosα sinα cosβ
)

3
∏

i=1

cos γi, (20)

and K ∈ (1/2,∞). The ranges for the five real parameters are

α ∈ (0, π/4], γi ∈ (0, π/2], i = 1, 2, 3, and β ∈ [0, 2π).
W class. The three-qubit pure states belonging to W class can be

parametrized as [43, 44]

|Φw〉 =
√
a|001〉+

√
b|010〉+√

c|100〉+
√
d|000〉 (21)

with a, b, c > 0, and d = 1 − (a + b + c) ≥ 0. It is known that

a state from the GHZ class can not be transferred to a state from

the W class by stochastic LOCC (SLOCC) [44].

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009), and the references therein.

[2] C. H. Bennet and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992);

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Phys. Rev.

Lett. 76, 4656 (1996).

[3] M. Zukowski et al., Acta Phys. Pol. 93, 187 (1998); M. Hillery et

al., Phys. Rev. A 59, 1829 (1999); R. Demkowicz-Dobrzanski et

al., ibid. 80, 012311 (2009); N. Gisin et al., Rev. Mod. Phy. 74,

145 (2002). R. Cleve et al., Phys. Rev. Lett. 83, 648 (1999); A.

Karlsson et al., Phys. Rev. A 59, 162 (1999).

[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.
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