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We use direct numerical simulations to calculate the joint probability density function of the
relative distance R and relative radial velocity component VR for a pair of heavy inertial particles
suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale
invariant, with a scaling exponent that is related to the particle-particle correlation dimension in
phase space, D2. It was argued [1, 2] that the scale invariant part of the distribution has two
asymptotic regimes: ➀ |VR| ≪ R where the distribution depends solely on R; and ➁ |VR| ≫ R
where the distribution is a function of |VR| alone. The probability distributions in these two regimes
are matched along a straight line |VR| = z∗R. Our simulations confirm that this is indeed correct.
We further obtain D2 and z∗ as a function of the Stokes number, St. The former depends non-
monotonically on St with a minimum at about St ≈ 0.7 and the latter has only a weak dependence
on St.
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I. INTRODUCTION

Turbulent flows of gas with small heavy particles sus-
pended in it is at the heart many natural phenomenon;
typical examples are: (a) astrophysical dust is protoplan-
etary disks [3], (b) small water droplets in clouds [4],
and (c) aeolian processes (wind and sand) [5]. In all of
these cases, usually two crucial questions are studied: (a)
whether the particles are homogeneously distributed in
space or whether they can form clusters? and (b) what
is the average collision velocities between the particles,
which in turn determines the collision kernel – the num-
ber of collisions per-unit-time, per-unit-volume. Colli-
sions between the particles play a crucial role in the dy-
namics of these systems, for example, some collisions be-
tween the water droplets in cloud may merge the droplets
to form bigger droplets. A similar process of collision and
consequent merging of dust grains plays a crucial role in
formation of planetesimals (loosely held dust balls of size
of the order of kilometers) in protoplanetary disks. Note
that a complete knowledge of the collision kernel does
not allow us to determine the probability of merging or
coagulation which depends on one hand on the mate-
rial properties of the colliding bodies and on the other
hand on the probability distribution function of collision
velocities. Clearly, a complete description of this prob-
lem is given by the joint probability distribution function
(JPDF) of the separation R and relative velocity V of a
pair of particles. The clustering of the particles in space
and the collision kernel can be calculated from the zero-
th and first moment of this JPDF respectively. In its full
generality this is an extremely difficult problem to solve.
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Nevertheless, one can simplify the problem significantly
and still preserve the essence of it. A commonly used
model is that of heavy inertial particles, given by

Ẋ = v, (1a)

v̇ =
1

τp
[u(X)− v] . (1b)

Here the dot denotes time differentiation, X and v

are respectively the position and velocity of a particle,
τp is the characteristic relaxation time of the particle
and u is the flow velocity that is determined by solving
the Navier–Stokes equation with appropriate boundary
conditions. Although the particles are approximated as
points as far as the flow is concerned, they are assigned
finite sizes to calculate the collision kernel.

The dynamics of heavy inertial particles in turbulence
has been extensively studied, starting with the pioneer-
ing work by Saffman and Turner [6]. Since the turn of
this century this problem has seen significant progress.
For a detailed description we direct the reader to several
recent reviews [7–11]. Here we give a very brief sum-
mary of the results that are directly relevant to this pa-
per. The equations of motion for heavy inertial particles,
Eq. (1), are clearly dissipative even if the flow velocity
is incompressible. The stationary state of the system in
phase-space is characterized by an attractor with a cor-
relation dimensions D2 < 2d where d is the dimension
of space [12]. If D2 < d then the particles also show
clustering in real space [13] with a spatial correlation di-
mension d2 = D2. This gives rise to small-scale clustering
which has been studied extensively using direct numerical
simulations [see, e.g., 14]. There are two fundamentally
distinct mechanisms that brings particles to close con-
tact. One is driven by the flow gradients [6], in which
case the relative velocities of the particles goes to zero as
the particles smoothly approach each other. The second
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mechanism allows particles to have non-negligible rela-
tive velocities at small distances [15, 16]. From Eq. (1) it
follows that under quite general assumptions the gradient
of the velocity of the HIPs, σij ≡ δvi/δXj develops sin-
gularities, caustics, in finite time [16]. This implies that
the relative velocity of two particles does not go to zero as
their separation goes to zero but remains finite giving rise
to a high collision kernel. Most of the theoretical, numer-
ical, and experimental works have concentrated on calcu-
lating the clustering exponent d2 and the collision kernel
as a function of the Stokes number, St = τp/tη, where tη
is the characteristic time at the dissipative scales. The
clustering exponent, d2, can be obtained from the scal-
ing exponent of the zero-th moment of this JPDF and
the collision kernel is the first moment of the JPDF cal-
culated at | R |= 2a where a is the radius of a particle.
Our aim in this paper is to calculate this JPDF, partic-
ularly its scaling behavior from direct numerical simula-
tions (DNS) of identical heavy inertial particles in forced,
homogeneous, and isotropic, turbulent flows.

A significant amount of theoretical [1, 2], experi-
mental [17, 18], and numerical [19–23] work has gone
into studying the joint probability distribution function,
P(R,V ). Most of the numerical work has been limited
to calculating P for few values of R ≡| R |. Some of the
numerical works use either smooth random flows [1, 2] or
models of turbulence [e.g., a shell model, 21] instead of di-
rect numerical simulations (DNS). The earliest DNS [19]
already pointed out that P for a fixed R is not Gaus-
sian, but possesses exponential tails. Some of the later
studies [20–22] have confirmed the exponential tails and
have demonstrated clear asymmetry between positive –
a pair of particles moving away from each other – and
negative – a pair of particles moving towards each other
– side of P . Ref. [1] is the first paper to write down
the Fokker-Planck equations satisfied by P by virtue of
using a one-dimensional, random, smooth, white-in-time
model for the flow velocity. The scaling behavior of P is
obtained by solving the Fokker-Planck equation. Guided
by this model, Ref [2] has argued that the JPDF, P ,
possesses certain symmetries in quite general cases. A
recent paper [23] has used DNS to study the scaling be-
havior of the JPDF, P , for several different values of R
and have confirmed some of the conclusions of Ref. [2]
for St ≈ 1. Our aim in this paper is to calculate P ,
particularly its scaling behavior, from direct numerical
simulations of identical heavy inertial particles in forced,
homogeneous, and isotropic, turbulent flows.

The rest of this paper is organized as follows: in sec-
tion II we briefly recapitulate the main theoretical results
on scaling properties of P , followed by section III where
we describe in detail our direct numerical simulation; in
section IV we show that our DNS indeed confirms these
theoretical results, in particular, the symmetries and the
scaling nature of P ; we conclude in section V.

R

|VR|

z∗

1

|V
R
| =

z
∗ R

P
(|
V
R
|,
R
)
≡

R
d
−
1
f
2
(|
V
R
|)

P(|VR|, R) ≡ Rd−1f1(R)

2©

1©

FIG. 1. Schematic diagram of R − |VR| phase space. Light
blue (➁) region of the phase space corresponds to the re-
gion where |VR| ≫ R. In this region the contribution due to
caustics dominates and the joint probability density function
P(R, |VR|) becomes independent of R. The light green region
(➀) corresponds to the region where |VR| ≪ R. In this region
the relative velocity of the particles VR is a smooth function
of their separation R, and P(R, |VR|) is only a function of
R. Two functions are matched along the line |VR| = z∗R to
obtain the P(R, |VR|).

II. THEORETICAL BACKGROUND

We consider the flow to be forced at large length scales,
statistically stationary, homogeneous and isotropic. The
model of heavy inertial particles, Eq. (1), is applicable
if the size of the particles are smaller than the small-
est energy carrying length scale of the turbulence – the
Kolmogorov scale, η. The characteristic velocity at the
length scale is uη such that the scale-dependent Reynolds
number of the Kolmogorov scale is Reη = uηη/ν = 1
where ν is the kinematic viscosity of the fluid. As we
are primarily interested in particle collisions, we are in-
terested in relative velocities of particles at small separa-
tions – smaller than η. In what follows we use η and uη

as our characteristic scales of length and velocity respec-
tively.

As mentioned in the introduction two fundamentally
distinct mechanisms may bring particles into contact
at small separations in turbulent aerosols. In the first
case [6] the particles are brought together by the tur-
bulent flow velocity; they spend a long time together,
smoothly approaching each other towards small spatial
separations. Their phase-space separation approaches
zero as their relative distance goes to zero. The second
possibility [2, 15, 16] is that the particles detach from the
flow, allowing caustics to form, leading to a multi-valued
particle velocity field. If the detachment is large enough
compared to the distance between two particles they may
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move towards each other close to ballistically. The lat-
ter effect give rise to particle collisions with large relative
velocities – the phase-space separation remains finite as
the distance approaches zero. These observations were
used in Refs. [1, 2] to calculate the asymptotic behavior
of the joint probability distribution of separations and
relative velocities, P(R,V ), in a smooth, homogeneous
and isotropic flow.
The radial projection VR = (V · R)/R of V plays a

crucial role in the collision between the particles. As two
particles detach from the relative flow velocity at large
separations, their ballistic motion will bring them into
contact at small separations if their tangential velocity is
close to zero, i.e. if V ≈ VRR/R and if VR is negative.
In spherical coordinates, in d dimensions, we write the
joint distribution of R and |VR| as

P(R, |VR|) = Rd−1f(R, |VR|) , (2)

where the factor of Rd−1 comes from the spatial volume
element. This volume element corrects for the probability
of having a small tangential velocity, and we can think of
f(R, |VR|) to be the probability to have velocity |VR| at
distance R in the two-dimensional system formed by R
and |VR|. We summarize the theoretical predictions [2]
of P(R, |VR|) below.

1. The distribution P , reduces to two asymptotic
forms

P (R, |VR|) ∼ (3)

Rd−1

{

f1(R, |VR|) for |VR| ≤ Υ(R) ➀
f1(Υ

−1(|VR|), |VR|) for |VR| > Υ(R) ➁
.

These two asymptotic limits are illustrated as re-
gion ➁ and region ➀ respectively in Fig. (1), and
are matched along an curve |VR| = Υ(R) [The curve
Υ(R) = z∗R is shown in Fig. (1)].

2. For relative distances smaller than the dissipation
scale, i.e., R < 1, the flow velocity can be approxi-
mated by a smooth flow, in which case the matching
curve is found to be

Υ(R) = z∗R for R < 1, (4)

where z∗ is a constant.

3. The scaling function in the dissipation range is,

f1(R, |VR|) ∼ RD2−d−1 for R < 1 , (5)

whereD2 is the correlation dimension of the attrac-
tor of the long-time stationary state of the particles
in phase space.

We shall call the predictions 1 and 2 together the “asymp-
totic mirror symmetry” of P in the dissipation range.
This is because the distribution in region ➀ is effectively
mirrored in the curve |VR| = z∗R, giving the distribution
in region ➁. In this paper we show, from direct numerical
simulations, that all the above predictions hold.

III. DIRECT NUMERICAL SIMULATIONS

The flow velocity u is obtained by direct numerical
simulation (DNS) of the Navier–Stokes equation,

∂tρ+∇ · (ρu) = 0, (6a)

ρDtu = −∇p+ µ∇ · S + f , (6b)

under isothermal conditions, with an external force.
Here Dt ≡ ∂t + u · ∇ is the advective derivative, p,
and ρ are respectively the velocity, pressure, and den-
sity of the flow, µ is the dynamic viscosity, and S is a
second-rank tensor with components Skj ≡ ∂kuj+∂juk−
δjk(2/3)∂kuk. The simulations are performed in a three-
dimensional periodic box with sides Lx = Ly = Lz = 2π.
In addition we use the ideal gas equation of state with a
constant speed of sound cs = 1.
We use the Pencil-Code [24], which uses a sixth-

order finite-difference scheme for space derivatives and
a third-order Williamson-Runge-Kutta [25] scheme for
time derivatives. The external force f is a white-in-time
stochastic process that is integrated by using the Euler–
Marayuma scheme [26]. The same setup have been used
in studies of scaling and intermittency in fluid and mag-
netohydrodynamic turbulence [27–29]. We introduce the
particles into the DNS after the flow has reached statisti-
cally stationary state. Then we simultaneously solve the
equations of the flow, Eq. (6), and the heavy inertial par-
ticles, Eq. (1). To solve for the particles in the flow we
have to interpolate the flow velocity to typically off-grid
positions of the particles. We use a tri-linear method for
interpolation.
The flow attains a statistically stationary state when

the average energy dissipation by viscous forces is bal-
anced by the average energy injection by the external
force f which is concentrated on a shell of wavenum-
ber with radius kf in Fourier space [30]. We define the
Reynolds number by Re ≡ urms/(νkf), where urms is the
root-mean-square velocity of the flow averaged over the
whole domain and the kinematic viscosity ν = µ/〈ρ〉
where the symbol 〈·〉 denotes spatial and temporal av-
eraging over the statistically stationary state of the flow.
The mean energy dissipation rate is ε ≡ 2ν〈ω2〉, where
ω ≡ ∇ × u is the vorticity. The Kolmogorov scale or
the dissipation length scale is given by η ≡ (ν3/ε)1/4,
the characteristic time scale of dissipation is given by
tη =

√

ν/ε and uη ≡ η/tη is the characteristic veloc-
ity scale at the dissipation length scale. In our simu-
lations, unless otherwise stated, we use η, tη, and uη

to non-dimensionalize length, time, and velocity respec-
tively. The large eddy turnover time is given by Teddy ≡
1/kfurms. We define the Stokes number St ≡ τp/tη.
The amplitude of the external force is chosen such

that the Mach number, Ma ≡ urms/cs is always less
than 0.1, i.e., the flow is weakly compressible. If on
one hand we consider application of our DNS to un-
derstand rain-formation in Earth’s atmosphere it would
be appropriate to consider an incompressible flow. We
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FIG. 2. Phase-space correlation dimension D2 and real-space
correlation dimension d2 as functions of St. Black dashed
curve shows the data from Ref [14].

have checked that the weak compressibility in our DNS
does not have any significant effect in the following man-
ner: (a) The probability density of ∇ · u along particle
trajectories is found to be a Gaussian highly peaked at
zero, see Appendix A, Fig. (8). (b) We parametrise the
compressibility by calculating the dimensionless number
p = 〈| ∇ · u |2〉/〈| ∇ × u |2〉 = 8.6 × 10−3. Following
Ref. [10] we estimate that p = 8.6 × 10−3 implies that
the compressibility of the flow may have significant ef-
fect only on particles with St . 0.11 whereas the smallest
value of St used in our simulations is 0.17. (c) And finally
we calculate the correlation dimension, d2, of the cluster
formed by the particles to find that our results agree with
those obtained in incompressible flows [14]. On the other
hand, if we consider possible application of our work to
astrophysical problems, e.g., to protoplanetary disks [22]
then indeed the weakly compressible simulations are the
appropriate model.

IV. RESULTS

To calculate the JPDF we need to look at all pairs of
particles within a separation of η. Naively speaking this
process scales quadratically with the number of parti-
cles, N2

p , but using the standard technique of construct-
ing linked-lists – commonly used in molecular dynamics
simulations [see, e.g., 31, Chapter 5], we can reduce num-
ber of computations to be proportional to Np. The same
technique has been used before in Refs. [19, 23].

A. Correlation dimensions

To calculate the phase-space correlation dimension we
evaluate the P(w) which is the probability distribution
function (PDF) of w, where w2 =| R |2 + | V |2. We

calculate D2 by the scaling behavior:

P(w) ∼ wD2−1 as w → 0 (7)

In Fig. (2) we plot D2 as a function of St for the run
R2. In the range of St we have calculated, D2 is non-
monotonic function of St with a minimum near St ≈
0.7 and does not change significantly as a function of
Re. Next we calculate the real-space radial distribution
function (RDF), g(R), which is the PDF of R. At small
R, the RDF show scaling behavior:

g(R) ∼ Rd2−1 as R → 0 (8)

The small scale clustering of HIPs in real space is
parametrised by d2 which is plotted for the run R2. The
values of d2 we obtain is equal to (within error bars) the
earlier value of d2 obtained in Ref [14]. Note that a cru-
cial component of the theory described in Ref. [2] is not
d2 but D2 – the phase-space correlation dimension. Un-
der fairly general conditions, it can be shown that [13] if
the particles cluster on a fractal set in phase-space with
correlation dimension D2 then their real space correla-
tion dimension d2 = min(D2, d) where d = 3 is the di-
mension of space. To the best of our knowledge, D2 has
never been calculated before for HIPs in turbulent flows,
although they have been calculated for smooth random
flows.

B. Joint PDFs of R and |VR|

Before we present our results on the JPDF, P(R, |VR|)
let us note that the scaling theory of Ref. [1] does not dis-
tinguish between the positive and negative components of
VR, i.e., it does not distinguish between two particles ap-
proaching each other and moving away from each other.
In the same spirit, unless otherwise stated, we present
below the numerical data on P(R, |VR|).
We plot in Fig. (3) contour plots of the joint PDF,

P(R, |VR|) for four different values of St. Let us first
consider the top figures in the left column, St = 0.17.
Looking at the region ➀ of these figures we find that the
contour lines are vertical, i.e., in region ➀ P(R, |VR|) is
a function of R alone. But we have practically no data
in the region corresponding to ➁ in this figure. This
is expected because in region ➁ the contribution due
to caustics dominate P , but caustics are exponentially
suppressed with St for small values of St [16]. Note also
that for a fixed but small St we should always be able to
find the contribution from the caustics if we can probe
small enough R. But at small St there are few particle
pairs whose separation is very small. This is because
the real-space clustering exponent d2 is quite close to
d = 3 for small R. These two factors explain why we have
difficulty observing the contribution from the caustics at
small St. Looking at the higher values of St in Fig. (3),
we indeed find that the contour lines of P in region ➁
become horizontal, i.e., P(R, |VR|) becomes a function of
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TABLE I. Table of parameters for our DNS runs with N3 collocation points: ν the coefficient of kinematic viscosity, Np is the

number of particles, ǫ in the mean rate of energy dissipation, η ≡ (ν3/ǫ)1/4 and tη =
√

(ν/ǫ) are the dissipation length and
time scales, respectively, Re is the Reynolds number based on forcing length scale, and Teddy is large eddy turn-over time scale
of the flow.

Run N ν Np Re ε η tη Teddy

R1 256 1.0 × 10−3 107 41 3.02× 10−3 2.4 × 10−2 0.56 0.93

R2 512 5.0 × 10−4 107 89 3.25× 10−3 1.4 × 10−2 0.39 0.86
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FIG. 3. (color online) Contour plots of joint PDFs, P(R, |VR|), divided by R2, for four representative values of St plotted in
logarithmic scales. The joint PDF for R < 1 and R > 1 are calculated separately and then patched together.

|VR| alone. We estimate the matching scale z∗ from left
column of Fig. (3) by fitting a line through the points
where contours change from vertical to horizontal. This
line is the matching curve Υ(R). It is clear from the figure
that this matching line continues beyond its theoretically
predicted regime, R < 1 to at least up to R & 10 for all
the St values we have studied.

Next, to test the asymptotic mirror symmetry of P , we
plot in Fig. (4), P along a horizontal line as a function
of R, for R < 1, for a small value of |VR|. Then we
reflect this line about the matching curve Υ(R) to obtain
a vertical line and then plot P along this vertical line in
the same plot, Fig. (4). Thus we confirm the asymptotic
mirror symmetry of P .

Continuing with our quantitative tests we plot in the
four panels of Fig. (5), P(R, |VR|)/R

2 as a function of
R for four different values of St. On each panel we plot
three different values of |VR|. According to the theoreti-
cal prediction, Eq. (3), we expect to find scaling with an
exponent of D2 − 4 which is indeed confirmed.

Next let us consider the PDF of |VR| for a fixed

10−2 10−1 100 101

x

10−7

10−6

10−5

P
(|
V
R
|,
R
)/
R

2

x = R; VR = 0.01

x = VR/z
∗; R = 0.01/z∗

FIG. 4. (color online) The joint PDF, P , for St = 3.13, as
a function of R for a fixed |VR| plotted with symbols ∗. The
same PDF plotted along a vertical line, which is the mirror
image of the horizontal line about the line Υ(R) = z∗R is
plotted with the symbol ·.
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FIG. 5. (color online) log-log plots of P(R, |VR|)/R
2 versus

R, for four representative values of St. For each value of St
we plot the curves for three fixed values of |VR|. The solid
black line in each plot has slope D2 − 4, where D2 depends
on St as shown in Fig. (2)

10−2 10−1 100

|VR|/R

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

P
(|
V
R
|,
R
)/
R

D
2
−
2

St = 0.17

R

0.50

0.10

0.05

10−2 10−1 100 101

|VR|/R

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

P
(|
V
R
|,
R
)/
R

D
2
−
2

St = 0.98

R

0.50

0.10

0.05

10−2 10−1 100 101 102

|VR|/R

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

P
(|
V
R
|,
R
)/
R

D
2
−
2

St = 3.13

R

0.50

0.10

0.05

10−2 10−1 100 101 102

|VR|/R

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

P
(|
V
R
|,
R
)/
R

D
2
−
2

St = 7.00

R

0.50

0.10

0.05

FIG. 6. (color online) log-log plots of ρ(VR, R)/RD2−4 versus
VR/R, for four representative values of St. For each value of
St we plot the curves for three different values of R. The solid
line in each plot has slope D2 − 4, where D2 depends on St.
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FIG. 7. (color online) log-log plot of P(R, Vn)/R
D2−2 versus

Vn/R, for St = 3.13 and three values of R. Here Vn is the
negative relative longitudinal velocity between two particles
separated by a distance R. The solid black line has slope
D2 − 4. Comparing this figure with Fig. (6) we find that the
distributions of Vn and |VR| has the same scaling behavior.

R, PR(|VR|) = P(R, |VR|). The scaling prediction for
P as given in Eq. (5) would imply that P(R, |VR|) ∼
|VR|

D2−d−1 ∼ |VR|
D2−4 for a fixed R. Looking back at

the contour plot of P in Fig. (3) for, e.g., St = 0.69 we
realize that PR can be obtained by taking a vertical cut
through this figure. As the contour is almost horizon-
tal until it reaches the matching line, we expect PR to
be independent of |VR|, for |VR| < z∗R and proportional
to RD2−2 until it reaches the upper cutoff at |VR| ≈ z∗.
Hence we expect that if we plot PR(|VR|)/R

D2−2 versus
(|VR|/R) for different values of R we would obtain a data
collapse to an universal function with a scaling exponent
of D2 − 4. This we do for four different values of St in
four panels of Fig. (6). On each panel we plot the data
for three different values of R < 1. For the smallest St,
St = 0.17, we do see a collapse of the data but no scaling
behavior. This happens because the scaling appears due
to the contribution from the caustics and at small St we
have not been able to probe small enough distances R
to see scaling. Indeed the scaling behavior appears for
the next two values of St, St = 0.98 and 3.13 with the
values of D2 obtained from Fig. (2). At large |VR| we
find departure from the data collapse. This is what one
would expect because the cutoff to the scaling behavior
is set by z∗ which is independent of R.
Next we consider the scale z∗. The scaling theory has

no way of determining this, we calculate this as the best
fit to our data and plot it as a function of St in Ap-
pendix B, Fig. (9). We find that z∗ varies very little
– within a factor of two – as St changes by two orders
of magnitudes. In principle z∗ can also depend on Re,
within the range of Re studied in our simulations, it does
not have any significant dependence on Re.
Note finally that so far we have presented all our nu-

merical results for the absolute value of VR ignoring its
sign. But the sign of VR is crucial as it sets the collision
kernel. We have checked that the statistics of negative
side of VR, defined by Vn, follows exactly the same scaling
behavior as that of |VR|. To demonstrate this we plot in
Fig. (7) the scaling collapse of the joint PDF of R and
Vn for St = 3.13. Comparing this figure with Fig. (6) we
find that the distributions of Vn and |VR| has the same
scaling behavior.

V. CONCLUSIONS

To summarize, the joint PDF, P , gives a complete de-
scription of the statistics of relative velocities and dis-
tances of a pair of heavy inertial particles in homogeneous
and turbulent flows. Quantities of more practical inter-
est, for example, the spatial clustering and the collision
kernel follows from this joint PDF. Our simulations con-
firms the theoretically predicted asymptotic mirror sym-
metry of P about a matching line Υ(R) = z∗R. Further-
more, our DNS confirms the scaling behavior predicted
in Ref. [1]. The scale z∗ sets the cutoff to the scaling be-
havior of PDF of |VR|, hence it sets the maximum possi-
ble relative velocities; as we have non-dimensionalized all
velocities using uη. This implies that the maximum col-
lision speed of heavy inertial particles in turbulent flows
is of the order of z∗uη. In our DNS we find that z∗ de-
pends very weakly on St in contradiction to the results
of white-noise model in Ref [1], who found z∗ ∼ St.

To the best of our knowledge, the joint PDF and its
scaling properties have never been calculated from DNS
of homogeneous and isotropic turbulent flows, although it
has been calculated numerically for two-dimensional ran-
dom smooth flows and analytically for a one-dimensional
white-noise model [1]. Other than Ref. [1], Ref. [22] has
presented theoretical arguments and DNS results on PDF
of |VR| for a given R. However Ref. [22] did not elucidate
the scaling nature of the PDF instead concentrated on
the large-|VR| cutoff of the PDF. Ref. [23] have obtained
PDF of VR for several values of R from DNS and had
confirmed the scaling behavior for St ≈ 1, but they did
not study the asymptotic mirror symmetry. There are
also limited experimental data [17, 18] available for VR

but most of it is limited to R ≃ η hence is not sufficient
to study the scaling behavior as we do.
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FIG. 8. (color online) PDFs of ∇ · u calculated along the
trajectories of particles for three values of St, from the run R2

Appendix A: ∇ · u along the particle tracks

In our simulations the flow velocity field u is weakly
compressible. To test the effect of this weak compress-
ibility on the dynamics of heavy inertial particles, we cal-
culate ∇ · u at the position of particles. This is done by
first calculating ∇ ·u at the grid points and then interpo-
lating it to the positions of particles. We plot the PDFs
of ∇ · u along the trajectories of particles having three
different values of St in Fig. (8). We non-dimensionalize
∇ · u by the inverse of tη, which gives an idea of shear
at the Kolmogorov scale η. In Fig. (8), we see that the
PDFs are Gaussian with a high peak at zero and have
a small width compared to 1/tη. We also observe that
these distributions does not depend on the value of St.
These observations suggest that ∇ · u does not attain
very high values along the trajectories of particles and
effects of compressibility are weak.

Appendix B: Matching scale z∗

We show in Fig. (3) that the joint PDFs in regions

➀ and ➁ can be matched along a straight line |VR| =
z∗R, for R < 1. We find the matching scale z∗ by fitting
a straight line through the points where contour lines
in Fig. (3) turns from vertical to horizontal. We show
the plot of z∗ as a function of St if Fig. (9). We find
that z∗ weakly depends on St. Its value remains close to
10−1. Values of z∗ for small values of St are not reliable
because for small St [c.f. Fig. (3) (a)] we do not see the
asymptotic regime in region ➁.
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FIG. 9. (color online) Matching scale z∗ as a function of St
from the run R2


