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The closure dynamics of a pre-equilibrated DNA denaturation bubble is studied using both Brow-
nian dynamics simulations and an analytical approach. The numerical model consists of two semi-
flexible interacting single strands (ssDNA) and a bending modulus which depends on the base-pair
state, with double-strand DNA (dsDNA) segments being 50 times stiffer than ssDNA ones. For
DNA lengths from N = 20 to 100 base-pairs (bp) and initial bubble sizes of N − 6 bp, long closure
times of 0.1 to 4 µs are found, following a scaling law in N2.4. The bubble starts to close by a fast
zipping which stops when the bubble reaches a highly bent metastable state of length around 10 bp.
The limiting final step to complete closure is controlled by the dsDNA “arms” rotational diffusion,
with closure occurring once they are nearly aligned. The central role of chain bending, which cannot
be accounted for in one-dimensional models, is thus illuminated.

PACS numbers: 87.15.H-,87.15.A-,82.39.Pj

I. INTRODUCTION

Understanding the dynamics of biological processes
such as transcription, duplication or DNA translocation
by viruses is a challenge for biophysicists. By itself, the
dynamics of double-stranded DNA (dsDNA) is a complex
issue which has been tackled at two different scales : (i) at
the macromolecule scale, dsDNA is a model semi-flexible
polymer whose internal structure is ignored and whose
dynamics is controlled by thermal fluctuations and bend-
ing modes [1, 2]; (ii) at the base-pair scale, the dynam-
ics focuses either on the base-pair closure during DNA
renaturation at room temperature, the so-called DNA
zipping [3], or on the breathing dynamics, i.e. the fast
opening and subsequent closure of small bubbles, a lo-
cal opening of successive base-pairs, with very low prob-
ability [4–7]. Such studies do not consider the closure
dynamics of a thermalized or pre-equilibrated denatura-
tion bubble which couples both scales, i.e. local base-
pair closure and chain diffusion modes. The closure of
such a denaturation bubble occurs for instance at the fi-
nal stage of DNA transcription, when RNA-polymerase
leaves the locally open DNA [8], or is observed in vitro

in DNA solutions as a rare event with the largest time
scale. Altan-Bonnet et al. measured the closure dynam-
ics of denaturation bubbles of 18 base-pairs (bp) by fluo-
rescence correlation spectroscopy and found surprisingly
long closure time in the 20− 100 µs range [9]. Such long
times were also measured in bulk experiments on hairpin
formation in ssDNA and RNA oligomers, which are much
slower than theoretically estimated times of end-to-end
contacts for simple semi-flexible polymers [10]. Bubble
lifetimes of about 1 µs have also been observed for DNA
oligomers of 14 bp in NMR measurements of the imino
proton exchange [11].

Several models have been used for studying bubble
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breathing and in attempts to explain these large ex-
perimental bubble lifetimes. (i) The Poland-Scheraga
model [13] is a one-dimensional (1D) Ising model mod-
ified to account for the entropic penalty of creating
a closed flexible loop. This term leads to a non-
monotonic free energy landscape in which the typical
breathing time comes from a Kramer’s process [4, 5, 12].
(ii) The Peyrard-Bishop model is a non-linear phonon
1D model where bubbles emerge as soliton-like solu-
tions of undamped Newton’s equations in a Morse poten-
tial [7, 14, 15]. Although these models capture the short
time scale breathing dynamics, they are not adapted
to the issues of renaturation and “equilibrated” large
bubble closure since they miss DNA diffusion in solu-
tion. But strand dynamics is expected to be dominant
at least for long DNAs and large bubbles, since for a
flexible chain of length N the Rouse diffusion time scales
likeN2. (iii) Other models fit well the experimental auto-
correlation function [9, 16, 17], but with the relaxation
time as a fitting parameter, which does not shed light on
the origin of such large times.

In an attempt to explain the mechanism behind these
large bubble lifetimes, we focus on the out-of-equilibrium
closure of a thermalized denaturation bubble using both
Brownian Dynamics (BD) simulations and analytical ap-
proaches. We implement two numerical models where
the different bending rigidities of dsDNA segments with
a persistence length of roughly ℓds = 150 bp and ssDNA
ones with ℓss = 3 bp are explicitly included, and whose
coupling with base pairing has been central to under-
standing equilibrium properties [18, 19]. We show that
the denaturation bubble closure occurs in two steps (Fig-
ure 1). The first step consists in a fast zipping of the
initial bubble until a metastable bubble state of length
∼ 10 bp is reached. The driving force for this fast ki-
netics is the energetic gain in base-pair closure at room
temperature. At some point, the metastable bubble is so
bent that zipping becomes forbidden by the large bending
energy cost to close the bubble. The second step of the
closure is then controlled by the relaxation of the bent
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FIG. 1: Snapshots of a typical Brownian dynamics simulation
showing (a) the initial equilibrated bubble, (b) the metastable
state, and (c) the bubble just before closure (N = 40 bp).
(d) Sketch of the metastable state.

state through the diffusion of the two stiff dsDNA arms.
Once the two rigid strands are aligned, bubble closure
occurs almost instantaneously. The first mean passage
closure time is found to scale with the DNA length N (in
bp units) as τclosure ∼ N2.4±0.1 for 20 ≤ N ≤ 100 and
mesoscopic parameters typical of real DNA.

II. MODELS

We simulated the closure of a large bubble of initial
length L0 = N − 6 in the middle of an homopolymer
DNA. We used both BD simulations of two interact-
ing semi-flexible strands, and the Kinetic Monte Carlo
(KMC) algorithm which simulates the mean semi-flexible
chain with an internal Ising spin dynamics corresponding
to the bp state (broken or unbroken) [18, 19].

A. Brownian dynamics simulations

The DNA is modeled by two interacting bead-spring
chains each made of N beads located at ri. The Hamil-

tonian, H = H
(1)
el + H

(2)
el + Hint, has three terms. The

elastic energy of strands i = 1, 2 is

H
(i)
el =

N−1
∑

j=1

[κs

2
(|tj | − a)2 + κb,j (1− t̂j · t̂j+1)

]

(1)

where tj = rj+1 − rj and t̂j = tj/|tj |. The first term of
the rhs. of Eq. (1) is the stretching energy with stretch-
ing modulus βκs = 100 (β−1 = kBT where T is room
temperature) and a = 0.34 nm is the equilibrium dis-
tance between two beads in each strand. The second
term is the usual bending energy with a bending mod-
ulus κb,j that depends on the local chain configuration
(ℓp = βκb,j). The interaction energy between the two

strands (the Hydrogen bonding between two complemen-
tary bases) is modeled via a Morse potential [14] of width
λ and depth A:

Hint =

N
∑

j=1

A
(

e−2
ρj−ρ0

λ − 2e−
ρj−ρ0

λ

)

(2)

where ρj = |r
(1)
j − r

(2)
j | is the distance between comple-

mentary bases at position j along the chain and ρ0 =
1 nm is the equilibrium distance. The stacking interac-
tion is modeled by a bending modulus κb which depends
on ρ, interpolating from κds/2 = 75 kBT for dsDNA state
to κss = 3 kBT for single stranded one, according to [6]

κb,j =
κds

2
−
(κds

2
− κss

)

f(ρj−1)f(ρj)f(ρj+1) (3)

where f(ρj) = [1 + erf(
ρj−ρb

λ′
)]/2, λ′ is the width of the

transition and ρb = 1.5ρ0. The variable bending mod-
ulus depends on three consecutive base-pair distances,
which provides cooperativity. We chose λ = 0.2 nm,
λ′ = 0.15 nm, ρ0 = 1 nm, and βA = 8.[30] The thresh-
old value for ρ, discriminating between open and closed
states, is fixed at 1.13 nm (a slightly different value does
not change the results).
The evolution of ri(t) is governed by the overdamped

Langevin equation

ζ
dri
dt

= −∇ri
H({rj}) + ξi(t) (4)

where ζ = 3πηa is the friction coefficient for each bead of
diameter a (η = 10−3 Pa.s is the water viscosity), ξi(t) is
the random force (with zero mean), which mimics the ac-
tion of the thermal heat bath and obeys the fluctuation-
dissipation relation 〈ξi(t) · ξj(t

′)〉 = 6kBTζ δij δ(t − t′).

The adimensional time step, δτ = δtkBT/(a
2ζ), was

fixed, for sufficient accuracy, at 5× 10−4 (δt = 0.045 ps).
The initial bubble is created by turning off Hint and then
equilibrated for 2µs. Output values are then calculated
every 103 steps once Hint is turned on, and total simula-
tion times range between 107 to 108 steps (0.4 to 4µs).
Samples are made of 200 trajectories and error bars are
standard deviations.

B. Kinetic Monte Carlo simulations

Out-of-equilibrium dynamics of the mean DNA chain
(the center of mass of the two strands) has also been
explored numerically by KMC simulations. We imple-
mented the coupled model defined in Refs. [18, 19] where
the mean chain is composed of N identical beads rep-
resenting the base-pairs. Simulation details are given
in Ref. [20] (each bead now represents one base-pair
and has the mobility of a pair of beads in BD simula-
tions). At each Monte Carlo Sweep of physical duration
δt = 0.019 ps, a bead is chosen at random and a random
move is attempted for this bead. In addition, at each
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FIG. 2: Top: melting map (position of open base-pairs in
DNA as a function of time). Bottom: time evolution of the
bubble length, L(t)/L0, in red, the bubble end-to-end dis-
tance, R(t)/(aL(t)), in purple, and the tangent-tangent prod-
uct C(t) in blue (N = 60, time is in units of 104 BD steps
= 0.4 ns).

Monte Carlo step, we also attempt to flip the sign of one
Ising spin variable σi, according to a standard Metropolis
procedure. However, it might be that, in a real DNA, the
frequency of change of internal degrees of freedom is dif-
ferent from this arbitrarily chosen one. To rule out this
possibility, we simulated various systems where 10−3 to
100 spin-flips are attempted per δt. The average closure
times then changed by at most ±20% as compared to
1 spin-flip, thus proving that this is not a critical issue.
The good matching between the KMC and BD results
below supports this observation.

III. CLOSURE DYNAMICS

The evolution of the bubble size (normalized by the ini-
tial bubble size L0), L(t)/L0, is plotted as a function of
time in Figure 2 for a typical simulation (N = 60). Two
regimes appear clearly: at short times, L(t) decreases
rapidly which corresponds to a zipping dynamics, un-
til it reaches a metastable state characterized by a small
bubble of constant size L̄ ≃ 10, the center of which dif-
fuses slowly (cf. Fig. 2 top). The simulation is stopped
when the bubble closes, which defines the Mean First
Passage Time (MFPT) for closure. The dimensionless
bubble end-to-end distance R(t)/aL(t) and the tangent-
tangent product C(t) ≡ tinit ·tend, where tinit (resp. tend)
is the mean value of the two strand tangent vectors at the
beginning (resp. end) of the bubble (see Fig. 1), are also
plotted. First, R(t) < aL(t) during the entire simulation
run, except at closure when R(t) ≃ aL(t) which favors
the formation of dsDNA which is stiff at this length scale.
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FIG. 3: Log-log plot of the total closure time, τclosure, vs total
DNA length N . Dots corresponds to BD simulations results
and triangles to KMC ones. The solid line is a fit between
N = 50 and 100 yielding τclosure ∼ N2.43.

Likewise, C(t) starts here from a positive value and then
decreases to a negative value in the metastable state close
to −1, which corresponds to anti-correlated tangent vec-
tors. It then undergoes large fluctuations, and the bub-
ble closure corresponds to a value of C(τclosure) ≈ 1, i.e.
when the two stiff arms are aligned. This type of be-
haviour is observed whatever the initial condition C(0).
The zipping is faster than the diffusion time of the small
arms so that the distance between both DNA extremities
remains almost constant while the bubble “pushes” in the
direction parallel to the arms such that C(τzip) ≃ −1.
The DNA adopts an “hairpin” configuration as observed
in Fig. 1b. The correlation between C(t) and L(t) is a
clear indication that the spatial configuration of DNA
plays a central role in bubble closure.

Closure times simulated using both BD and KMC are
shown in Figure 3. For one, the two types of simula-
tions yield almost the same closure times and variation
with N , showing that this quantity does not depend on
the specific model. Since in KMC simulations the two
strands are not simulated explicitly, this indicates that
closure dynamics is dominated by the whole chain dy-
namics, which is the slowest process. For another, the
fit of numerical data yields τclosure ∼ Nα with an ap-
parent exponent α = 2.4 ± 0.1 for the largest values of
N and almost α = 3 for small N values. In any case
an exponent α > 2 is found which is larger than α = 1
found in breathing dynamics using the Poland Scheraga
model [4, 5], α = 0.52 in thermal renaturation [3], or
α = 1.37 in anomalous zipping dynamics [21]. We argue
below that this apparent exponent is the signature of a
complex dynamics governed by the rotational friction of
the (almost) rigid arms in the metastable state. We now
discuss in details the two regimes.
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FIG. 4: Log-log plot of the zipping time (circles) and the
metastable (MS) residence time (triangles) vs the zipped ss-
DNA length P = 3(L0− L̄)/5 and the arm’s length M respec-
tively. Fits lead to τzip ≃ P 1.4 and τmet ∼ M2 to M2.4.

A. Fast zipping process

In Figure 4 it is shown that the fast zipping process
is characterized by an anomalous exponent for L(t) and
the zipping time

L0 − L(t) ∼ t1/1.4, τzip ∼ P 1.4 (5)

required to zip P ≡ 3
5 (L0 − L̄) bp. We also simulated

DNA renaturation with an open end (data not shown)
and found a zipping regime alone, with the same expo-
nent. A similar “anomalous” exponent (α ≃ 1.37) has
been found in a numerical study of the zipping dynamics
of two polymers connected at one end [21]. This anoma-
lous dynamics is interpreted, by analogy with polymer
translocation [21, 22], as an out-of-equilibrium propaga-
tion of the tensile force located at bubble ends, f ≃ A/a,
along the bubble backbone (the analog of the force ap-
plied on the monomer located at the tiny pore in polymer
translocation) [23]. The dynamics of L(t) is governed
by the equilibrium between friction, driving and bending
forces along the chain

η b(t)
d(aL)

dt
= −f −

∂Ebend

∂(aL)
(6)

where b(t) is the bubble segment size involved in the fric-
tion, and Ebend is the bending energy stored in the bub-
ble. Since the initial bubble is pre-equilibrated, Ebend

can be neglected and the initial zipping is governed by
the two first terms of Eq. (6). For a fully flexible bubble,
it has been proposed [23–25] that b(t) ≃ aL(t)ν (where
ν is the Flory exponent) which yields τzip ≃ P 1+ν/f ,
an exponent value slightly larger than 1.4. Note that
(i) as the tensile force straightens the bubble, the bending
force increases thus defining a moderate forcing regime.
In this regime (a/R0 < βaf < 1), Sakaue found, for
the translocation case [23], an exponent value of 1.43

which agrees well with Eq. (5). (ii) Moreover, at the
end of zipping, the ssDNA is not fully flexible since
L̄ ≈ 2ℓss, which slightly increases the friction and thus
the anomalous exponent. Finally, the bubble geometry
imposes that the zipping process stop when the bubble is
highly bent. From Eq. (6) the metastable state is reached
when Ebend(L̄) ≃ faL̄. For a (circular) bent bubble,

Ebend(L) = 2π22κss/L which leads to L̄ ≃
√

4π2κss/A,
i.e. a few base-pairs. In other words, when L(t) = L̄,
the bending energy cost for closing one more bp becomes
larger than the base-pairing gain.

B. Diffusion limited closure of the metastable state

The metastable residence time τmet is plotted in Fig-
ure 4 as a function of the arm size, M . Clearly a scaling
law τmet ≃ M2 appears for the longest arms. For shorter
(and thus stiffer arms), the exponent is larger, around
2.4. This law might be surprising since βκds/M ≃ 3− 10
and one would expect the arms to be stiff. A scaling esti-
mate for two stiff arms connected by a flexible joint yields
a time inversely proportional to the rotational diffusion
coefficient of a rodlike polymer of length M (neglecting
prefactors and logarithmic terms coming from hydrody-
namics) [26]

τR ≃ D−1
R ≃

η(aM)3

kBT
(7)

To check this law numerically and since we are limited in
M due to computational cost, we performed BD simula-
tions with a larger dsDNA persistent length, βκds = 400.
Figure 5 shows that both the metastable residence time
and the closure time now scale like τmet ≃ M3 and
τclosure ∼ N3 respectively. This thus demonstrates that
the closure process is limited by the rotational diffusion
of the arms. The reason why the exponent deviates from
3 to 2 when we consider a real DNA with βκds = 150
is twofold. First, the arms being semi-flexible, bending
modes enter into play which decrease slightly the friction
and accelerate the dynamics. Second, the rotational dif-
fusion law Eq. (7) is only valid at long time scales and the
closure may occur before the diffusive regime is reached.
To clarify this behaviour, we model the system as fol-

lows. The dynamics of closure is characterized by two
coordinates, namely the end-to-end distance of the two
single strands forming the bubble of length L̄, R(t), and
the angle between the tangent vectors located at bubble
ends, θ(t) = arccosC(t) (see Fig. 1). The metastable res-
idence time, τmet(r) [where r = (R, θ)], is defined as the
MFPT needed to go from this metastable state to the
state where R ≃ 2aL and θ ≃ θc ≪ 1. It is solution of a
backward Smoluchowski diffusion equation in a potential
U(r) [27]

− β∇U · ∇[Dτmet(r)] + ∆[Dτmet(r)] = −1 (8)

and scales like τmet ∼ D−1
R and τmet ∼ R2/DT for ro-

tational and translational diffusion, respectively. Solv-
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FIG. 5: Log-log plot of (i) the metastable residence time and
the closure time vs the arm’s length M (circles) and chain
length N (triangles) respectively for βκds = 400. Fits lead to
τmet ≃ M3 and τclosure ∼ N3. (ii) The metastable residence
time vs M for βκds = 30 (squares) showing a saturation for
M > 2βκds.

ing Eq. (8) is out of reach, and we first concentrate
only on rotational diffusion. The potential U(θ) =
κss(1 − cos θ)/L̄, which favors the θ = 0 state, is the
effective bending free energy of the bubble. We find

τmet(θc|θ) =
L̄

2ℓssDR

[

t

(

cos θ,
ℓss
L̄

)

− t

(

cos θc,
ℓss
L̄

)]

t(x, y) = ln

(

1− x

1 + x

)

+ Ei[−y(1 + x)]− e−2yEi[y(1− x)](9)

where Ei[z] = −
∫∞

z
e−t

t dt. In the limit of an infinitely

flexible bubble, L̄/ℓss → ∞, Eq. (9) simplifies into

τ∞met(θc|θ0) =
2

DR
ln

[

sin(θ0/2)

sin(θc/2)

]

(10)

Simulation data show that, in the metastable state, the
probability distribution of θ0 has a maximum around
2.5 rad. By choosing a small value such as θc = π/10 as
observed and L̄ ≃ 2ℓss, one finds τmet ≃ τ∞met/2. Eq. (9)
reproduces qualitatively the decrease of τmet when κss

increases, as observed in Fig. 6 for βκss = 1, 3 and 7.
However, the inset shows that the argument leading to
Eq. (9) does not reproduces quantitatively this variation.

The diffusion of the bubble should also be taken into
account. We discuss two limiting cases: (i) a stiff bent
bubble which corresponds to a maximal correlation be-
tween bubble and arm rotational diffusion. For a circu-
lar bubble, one has geometrically R = 2aL sin(θ/2)/θ
and the metastable residence time is still given by
Eq. (9). (ii) The opposite, fully flexible bubble (ℓss ≪ L̄)
where the two diffusion processes are uncorrelated. The
metastable residence time is roughly the longest time of
(i) τ∞met defined in Eq. (10) and (ii) the MFPT necessary
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FIG. 6: Closure time probability for βκss = 1, 3 and 7 (300,
600 and 400 samples respectively) and N = 100. The average
value, τmet, is plotted in the inset and clearly decreases with
increasing κss. The solid line corresponds to Eq. (9).

to go from the initial size R(τzip) to an almost extended
configuration R ≃ aL̄, which for an entropic spring with
βU(R) = R2/(Na2), is the Kramers-like result [27]:

τ ≃ ηβa3L̄(4L̄+M)

∫ L̄1/2

1

dx

∫ x

0

dy
(y

x

)2

ex
2
−y2

(11)

where both bubble and arm translational frictions come
into play. As soon as L̄ ≃ 10 < M this MFPT is
smaller than τ∞met. In the real case of a semi-flexible bub-
ble (L̄ ≃ ℓss), the two diffusive processes are entangled,
which yields larger closure times in N2.4, as observed in
the simulations.
Finally, although simulations were done for stiff arms

with M ≤ βκds, we have checked by decreasing βκds

from 75 to 30, that for long semi-flexible arms, τmet(M)
saturates for M ≥ 2βκds, as shown in Fig. 5. Indeed, to
close the bubble it is sufficient that the two segments of
length ≃ ℓds adjacent to the bubble align since the rest
of the dsDNA chain is decorrelated. This yields an upper
limit for the diffusion time of τmax

met ≃ ηβ(2aℓds)
3 ≃ 20 µs

for ℓds = 150 bp.

IV. DISCUSSION

Using Brownian dynamics simulations of a coarse-
grained model of DNA, we show that the closure of a
pre-equilibrated denaturation bubble of size larger than
10 bp is dominated by the rotational diffusion of the stiff
dsDNA arms. The first stage consists in a fast zipping,
the driving force of which is the base pairing energy on
the order of 8 kBT [18], leading to an average growth
rate of 107 bp/s (even though the time dependence of
the bubble size is not linear). This fast zipping regime
stops when the bending energy stored in the small bubble
is measured to be roughly 20 kBT . The closure is then
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diffusion-controlled with a small driving force due to the
bending torque applied by the bubble. We numerically
find closure times τclosure ∼ N2.4 for DNA lengths smaller
than the dsDNA persistence length of 150 bp. For larger
DNA lengths, we show that the closure time saturates at
20 µs.
Our key conclusion is that DNA closure dynamics is

governed by chain bending, which is a 3 dimensional ef-
fect that cannot be accounted for by 1D models (such as
Poland-Scheraga [4, 5, 13] or Peyrard-Bishop [14] mod-
els). Aside from small time scales, much smaller than the
Rouse time of the DNA chain (where DNA breathing dy-
namics is governed by the opening/closure of base pairs),
DNA bubble dynamics involves several intertwined in-
gredients such as base-pair closure, DNA chain diffusion,
and elastic forces.
Taking into account hydrodynamic interactions would

slightly decrease the apparent exponent of the scaling
laws. For instance, the rotational diffusion time of a
rigid rod, given in Eq. (7), would be divided by a term
in lnM [26]. Hence as soon as small and thus stiff DNAs
are considered, the correction to the free draining case re-
mains small. We did not consider the helical structure of
DNA in this work. In recent numerical work [28], Baiesi
et al. show that the unwinding dynamics of a helical
polymer made of two interwound strands (without any
attractive interaction) leads to a unwinding time which

scales as N2.57. One might expect that the closure of a
denaturation bubble would include both winding of the
bubble plus rotational diffusion of the two arms in or-
der to relax the superhelical stress [29]. The precise role
of the axial rotational dynamics of the two interwound
strands is currently under study. A lower bound for the
closure time can be estimated by considering the winding
of an initial bubble of length L0. The stochastic evolu-
tion of a winding angle φ(t) = 2πL(t)/p (where the DNA
pitch is p = 10.5 bp) is given by ζrot(t)dφ/dt = n(t)
where n(t) is a random torque along the DNA axis with
〈n(t)n(t′)〉 = 2kBTζrot(t)δ(t − t′). Since ζrot ∼ L(t)zν

where zν = 2, 3
2 ,

9
5 (Rouse, Zimm models in theta and

good solvent respectively [26]), one finds after integra-
tion

τclosure ∼ L2+zν
0 ∼ N2+zν (12)

where 3.5 ≤ 2 + zν ≤ 4. Hence, DNA winding might be
the missing mechanism explaining the quantitative gap
between our estimate of the closure time of 0.04 µs for
a 30 bp long DNA (see Fig. 3) and values of 1 − 100 µs
measured experimentally [9, 11].

The authors acknowledge Clément Chatelain who per-
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[1] Goldstein R. and Langer S. A., Phys. Rev. Lett., 75

(1995) 1094.
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