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Abstract

Boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis

parallel boxes in R
k. Cubicity is a variant of boxicity, where the axis parallel boxes in the intersection representation

are restricted to be of unit length sides. Deciding whether boxicity (resp. cubicity) of a graph is at most k is NP-hard,

even for k = 2 or 3. Computing these parameters is inapproximable within O(n1−ǫ)-factor, for any ǫ > 0 in polynomial

time unless NP = ZPP, even for many simple graph classes.

In this paper, we give a polynomial time κ(n) factor approximation algorithm for computing boxicity and a

κ(n)⌈log log n⌉ factor approximation algorithm for computing the cubicity, where κ(n) = 2

⌈

n
√

log log n√
log n

⌉

. These o(n)

factor approximation algorithms also produce the corresponding box (resp. cube) representations. As a special

case, this resolves the question posed by Spinrad [1] about polynomial time construction of o(n) dimensional box

representations for boxicity 2 graphs. Other consequences of our approximation algorithm include O(κ(n)) factor

approximation algorithms for computing the following parameters: the partial order dimension (poset dimension) of

finite posets, the interval dimension of finite posets, minimum chain cover of bipartite graphs, Ferrers dimension of

digraphs and threshold dimension of split graphs and co-bipartite graphs. Each of these parameters is inapproximable

within an O(n1−ǫ)-factor, for any ǫ > 0 in polynomial time unless NP = ZPP and the algorithms we derive seem to

be the first o(n) factor approximation algorithms known for all these problems. We note that obtaining a o(n) factor

approximation for poset dimension was also mentioned as an open problem by Felsner et al. [2].

Keywords: Boxicity, Approximation algorithm, Partial order dimension, Threshold dimension

1. Introduction

Let G(V , E) be a graph. If I1, I2, · · · , Ik are (unit) interval graphs on the vertex set V such that E(G) = E(I1) ∩
E(I2) ∩ · · · ∩ E(Ik), then {I1, I2, · · · , Ik} is called a box (cube) representation of G of dimension k. Boxicity (cubicity)

of a non-complete graph G, denoted by box(G) (respectively cub(G)), is defined as the minimum integer k such that G

has a box (cube) representation of dimension k. For a complete graph, it is defined to be zero. Equivalently, boxicity

(cubicity) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes

(cubes) in R
k. Boxicity was introduced by Roberts [3] in 1969 for modeling problems in social sciences and ecology.

Some well known NP-hard problems like the max-clique problem are polynomial time solvable, if low dimensional

box representations are known [4].

For any graph G on n vertices, box(G) ≤
⌊

n
2

⌋

and cub(G) ≤
⌊

2n
3

⌋

. Upper bounds of boxicity in terms of parameters

like maximum degree [5] and tree-width [6] are known. It was shown by Scheinerman [7] in 1984 that the boxicity of

outer planar graphs is at most two. In 1986, Thomassen [8] proved that the boxicity of planar graphs is at most 3.

1A preliminary version of this work appeared in IPEC 2012.
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Computation of boxicity is a notoriously hard problem. Even for k = 2 or 3, deciding whether boxicity (resp.

cubicity) of a graph is at most k is NP-complete [9, 10, 11]. Recently, Chalermsook et al. [12] proved that no

polynomial time algorithm for approximating boxicity of bipartite graphs with approximation factor within O(n1−ǫ)
for any ǫ > 0 is possible unless NP = ZPP. Same non-approximability holds in the case of split graphs and co-bipartite

graphs too. Since cubicity and boxicity are equal for co-bipartite graphs, these hardness results extend to cubicity as

well.

Boxicity is also closely related to other dimensional parameters like poset dimension, interval dimension, threshold

dimension, minimum chain cover number of bipartite graphs, Ferrers dimension of digraphs etc. [13, 9]. These

parameters also have O(n1−ǫ) approximation hardness results for ǫ > 0, assuming NP , ZPP. Further, unless NP ⊆
ZPTIME(npoly log n), for any γ > 0 there is no n

2(log n)3/4+γ
factor approximation algorithm for any of these problems

including boxicity and cubicity [12] (for more details, see Section 4.1).

Main results

1. If G is a graph on n vertices, containing a clique of size n − k or more, then box(G) and an optimal box

representation of G can be computed in time n22O(k2 log k).

2. Using the above result, we derive a polynomial time 2

⌈

n
√

log log n√
log n

⌉

factor approximation algorithm for computing

boxicity and a 2

⌈

n(log log n)
3
2√

log n

⌉

factor approximation algorithm for computing the cubicity. To our knowledge, no

approximation algorithms for approximating boxicity and cubicity of general graphs within o(n) factor were

known till now.

3. The above algorithms also give us the corresponding box (resp. cube) representations. As a special case,

this answers the question posed by Spinrad [1] about polynomial time construction of o(n) dimensional box

representations for boxicity 2 graphs in the affirmative.

4. As a consequence of our o(n) factor approximation algorithm for boxicity, we derive polynomial time o(n) fac-

tor approximation algorithms for computing several related parameters: poset dimension, interval dimension of

finite posets, minimum chain cover of bipartite graphs, Ferrers dimension of digraphs, and threshold dimension

of split graphs and co-bipartite graphs. These algorithms seem to be the first o(n) factor approximation algo-

rithms known for each of these problems. We note that obtaining an o(n) factor approximation algorithm for

poset dimension, is described as an open problem in Felsner et al. [2].

2. Prerequisites

In this section, we give some basic facts necessary for the later part of this paper. For a vertex v ∈ V of a graph

G, we use NG(v) to denote the set of neighbors of v in G. We use G[S ] to denote the induced subgraph of G(V, E) on

the vertex set S ⊆ V . If I is an interval representation of an interval graph G(V, E), we use lv(I) and rv(I) respectively

to denote the left and right end points of the interval corresponding to v ∈ V in I. The interval corresponding to v is

denoted as
[

lv(I), rv(I)
]

.

Lemma 1 (Roberts [3]). Let G(V, E) be any graph. For any x ∈ V, box(G) ≤ 1 + box(G \ {x}).

Lemma 2. Let G(V, E) be a graph on n vertices and let A ⊆ V. Let G1(V, E1) be a supergraph of G with E1 =

E ∪ {(x, y) | x, y ∈ A, x , y}. If a box representation B of G is known, then in O(n|B|) time we can construct a box

representation B1 of G1 of dimension 2|B|. In particular, box(G1) ≤ 2 box(G).

Proof. Let B = {I1, I2, . . ., Ib} be a box representation of G. For each 1 ≤ i ≤ b, let li = min
u∈V

lu(Ii) and ri = max
u∈V

ru(Ii).

For 1 ≤ i ≤ b, let Ii1 be the interval graph obtained from Ii by assigning the intervals

[

lv(Ii1), rv(Ii1)
]

=















[li, rv(Ii)] if v ∈ A,

[lv(Ii), rv(Ii)] if v ∈ V \ A.
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and let Ii2 be the interval graph obtained from Ii by assigning the intervals

[

lv(Ii2), rv(Ii2)
]

=















[lv(Ii), ri] if v ∈ A,

[lv(Ii), rv(Ii)] if v ∈ V \ A.

It is easy to see that this construction can be done in O(nb) time.

Note that, in constructing Ii1 and Ii2 we have only extended some of the intervals of Ii and therefore, Ii1 and Ii2 are

supergraphs of Ii and in turn of G. By construction, A induces cliques in both Ii1 and Ii2 , and thus they are supergraphs

of G1 too.

Now, consider (u, v) < E with u ∈ V \ A, v ∈ A. Then ∃i ∈ {1, 2, . . . , b} such that either rv(Ii) < lu(Ii) or ru(Ii) <

lv(Ii). If rv(Ii) < lu(Ii), then clearly the intervals [li, rv(Ii)] and [lu(Ii), ru(Ii)] do not intersect and thus (u, v) < E(Ii1 ).

Similarly, if ru(Ii) < lv(Ii), then (u, v) < E(Ii2). If both u, v ∈ V \ A and (u, v) < E, then ∃i such that (u, v) < E(Ii) for

some 1 ≤ i ≤ b and clearly by construction, (u, v) < E(Ii1 ) and (u, v) < E(Ii2).

It follows that G1 =
⋂

1≤i≤b Ii1 ∩ Ii2 and B1 = {I11
, I12

, I21
, I22

, . . ., Ib1
, Ib2
} is a box representation of G1 of

dimension 2b. If |B| = box(G) to start with, then we get |B′| ≤ 2 box(G). Therefore, box(G1) ≤ 2 box(G). 2

We know that there are at most 2O(nb log n) distinct b-dimensional box representations of a graph G on n vertices and

all these can be enumerated in time 2O(nb log n) [14, Proposition 1]. In linear time, it is also possible to check whether a

given graph is a unit interval graph and if so, generate a unit interval representation of it [15]. Hence, a similar result

holds for cubicity as well.

Proposition 1. Let G(V, E) be a graph on n vertices of boxicity (resp. cubicity) b. Then an optimal box (resp. cube)

representation of G can be computed in 2O(nb log n) time.

If S ⊆ V induces a clique in G, then it is easy to see that the intersection of all the intervals in I corresponding to

vertices of S is nonempty. This property is referred to as the Helly property of intervals and we refer to this common

region of intervals as the Helly region of the clique S .

Definition 1. Let G(V, E) be a graph in which S ⊆ V induces a clique in G. Let H(V, E′) be an interval supergraph of

G. Let p be a point on the real line. If H has an interval representation I satisfying the following conditions:

(1) p belongs to the Helly region of S in I.

(2) The end points of intervals corresponding to vertices of V \ S are all distinct in I.

(3) For each v ∈ S ,

lv(I) = min

(

p, min
u∈NG(v)∩(V\S )

ru(I)

)

and

rv(I) = max

(

p, max
u∈NG(v)∩(V\S )

lu(I)

)

then we call I a nice interval representation of H with respect to S and p. If H has a nice interval representation with

respect to clique S and some point p, then H is called a nice interval supergraph of G with respect to clique S .

Lemma 3. Let G(V, E) be a graph in which S ⊆ V induces a clique in G. For every interval supergraph I of G, we

can derive a graph I′ such that I ⊇ I′ ⊇ G and I′ a nice interval supergraph of G with respect to S .

Proof. Without loss of generality, we can assume that all 2|V | interval end points are distinct in I. (Otherwise, we

can always alter the end points locally and make them distinct.) Let p ∈ R be a point belonging to the Helly region

corresponding to S in I. Let I′ be the interval graph defined by the interval assignments given below.

[

lv(I′), rv(I
′)
]

=















[lv(I), rv(I)] if v ∈ V \ S ,

[l′v, r
′
v] if v ∈ S .

where l′v = min

(

p, min
u∈NG(v)∩(V\S )

ru(I)

)

and r′v = max

(

p, max
u∈NG(v)∩(V\S )

lu(I)

)

.

3



We claim that I ⊇ I′ ⊇ G. Since for any vertex v ∈ V , the interval of v in I contains the interval of v in I, we have

I ⊇ I′. It directly follows from the definition of I′
i

that I′
i
[V \ S ] = Ii[V \ S ]. For any (u, v) ∈ E(G), with u ∈ V \ S and

v ∈ S , the interval of v intersects the interval of u in Ii, by the definition of [l′v, r
′
v]. Vertices of S share the common

point p. Thus, I ⊇ I′ ⊇ G. Now, from the definition of I′ it follows that it is a nice interval supergraph of G with

respect to the clique S and point p. 2

Corollary 1. If G(V, E) has a box representation B of dimension b and S ⊆ V(G) induces a clique in G, then G also

has a box representation B′ of the same dimension, in which ∀I′ ∈ B′, I′ is a nice interval supergraph of G with

respect to S .

Proof. Let B = {I1, I2, . . ., Ib} be a box representation of G. For each 1 ≤ i ≤ b, let I′
i

be the nice interval supergraph

of G with respect to S , derived from Ii, as stated in Lemma 3. Since, by Lemma 3 we have Ii ⊇ I′
i
⊇ G, for each

1 ≤ i ≤ b, it follows thatB′ = {I′
1
, I′

2
, . . ., I′

b
} is also a box representation of G. Notice that B′ satisfies our requirement.

2

Lemma 4. Let G be a graph on n vertices, with its vertices arbitrarily labeled as 1, 2, . . . , n. If G contains a clique of

size n − k or more, then :

(a) A subset A ⊆ V such that |A| ≤ k and G[V \ A] is a clique, can be computed in O(n2k
+ n2) time.

(b) There are at most 2O(k log k) nice interval supergraphs of G with respect to the clique V \ A. These can be

enumerated in n22O(k log k) time.

(c) By construction, vertices of the nice interval supergraphs obtained in (b) retain their original labels as in G.

Proof. (a) We know that, if G contains a clique of size n − k or more, then the complement graph G has a vertex

cover of size at most k. We can compute G in O(n2) time and a minimum vertex cover A of G in O(n2k) time

[16]. We have |A| ≤ k and G[V \ A] is a clique because V \ A is an independent set in G.

(b) Let H be any nice interval supergraph of G with respect to V \ A. Let I be a nice interval representation of

H with respect to V \ A and a point p. Let P be the set of end points (both left and right) of the intervals

corresponding to vertices of A in H. Clearly |P| = 2|A| ≤ 2k. The order of end points of vertices of A in I from

left to right corresponds to a permutation of elements of P and therefore, there are at most (2k)! possibilities for

this ordering. Moreover, note that the points of P divide the real line into |P| + 1 regions and that p can belong

to any of these regions. From the definition of nice interval representation, it is clear that, once the point p and

the end points of vertices of A are fixed, the end points of vertices in V \ A get automatically decided.

Thus, to enumerate every nice interval supergraph H of G with respect to clique V \A, it is enough to enumerate

all the (2k)! = 2O(k log k) permutations of elements of P and consider |P| + 1 ≤ 2k + 1 possible placements of p

in each of them. Some of these orderings may not produce an interval supergraph of G though. In O(n2) time,

we can check whether the resultant graph is an interval supergraph of G and output the interval representation.

The number of supergraphs enumerated is only (2k + 1)2O(k log k)
= 2O(k log k).

(c) Since vertices of G are labeled initially, we just need to retain the same labeling during the definition and

construction of nice interval supergraphs of G. (We have included this obvious fact in the statement of the

lemma, just to give better clarity in later proofs.)

2

3. Boxicity of graphs with large cliques

One of the central ideas in this paper is the following theorem about computing the boxicity of graphs which

contain very large cliques. Using this theorem, in Section 4 we derive o(n) factor approximation algorithms for

computing the boxicity and cubicity of graphs.

4



Theorem 1. Let G be a graph on n vertices, containing a clique of size n − k or more. Then, box(G) ≤ k and an

optimal box representation of G can be found in time n22O(k2 log k).

Proof. Let G(V, E) be a graph on n vertices containing a clique of size n − k or more. We can assume that G is not a

complete graph; otherwise, the problem becomes trivial. Arbitrarily label the vertices of G as 1, 2, . . . , n. Using part

(a) of Lemma 4, we can compute in O(n2k
+ n2) time, A ⊆ V such that |A| ≤ k and G[V \ A] is a clique. It is easy to

infer from Lemma 1 that box(G) ≤ box(G \ A) + |A| = k, since box(G \ A) = 0 by definition.

Let F be the family of all nice interval supergraphs of G with respect to the clique V \ A. By Corollary 1, if

box(G) = b, then there exists a b-dimensional nice box representation of G, i.e., a box representation B′ = {I′
1
, I′

2
, . . .,

I′
b
} of G in which I′

i
∈ F , for each 1 ≤ i ≤ b. By part (b) of Lemma 4, |F | = 2O(k log k) and all graphs in F can be

enumerated in n22O(k log k) time. Given an integer d, 1 ≤ d ≤ b, verifying whether there exists a d-dimensional nice box

representation of G, and producing if one exists, can be done in n22O(k·d log k) time, as follows: consider every subfamily

F ′ ⊆ F with |F ′| = d and check if F ′ gives a valid box representation of G (this validation is straightforward because

vertices of supergraphs in F ′ retain their original labels as explained in G by part (c) of Lemma 4). We might have to

repeat this process for 1 ≤ d ≤ b in that order, to identify the optimum dimension b. Hence the total time required to

compute an optimal box representation of G is bn22O(k·b log k), which is n22O(k2 log k), because b ≤ k by the first part of

this theorem. 2

4. Approximation algorithms for computing boxicity and cubicity

In this section, we use Theorem 1 and derive an o(n) factor approximation algorithms for boxicity and cubicity.

Let G(V, E) be the given graph with |V | = n. Without loss of generality, we can assume that G is connected. Let

k =

⌈ √
log n√

log log n

⌉

and t =

⌈

n
√

log log n√
log n

⌉

≥
⌈

n
k

⌉

. The algorithm proceeds by defining t supergraphs of G and computing their

optimal box representations. Let the vertex set V be partitioned arbitrarily into t sets V1,V2, . . . ,Vt where |Vi| ≤ k, for

each 1 ≤ i ≤ t. We define supergraphs G1,G2, . . . ,Gt of G with Gi(V, Ei) defined by setting Ei = E ∪ {(x, y) | x, y ∈
V \ Vi and x , y}, for 1 ≤ i ≤ t.

Lemma 5. Let Gi be as defined above, for 1 ≤ i ≤ t. An optimal box representation Bi of Gi can be computed in nO(1)

time, where n = |V |.

Proof. Noting that G[V \ Vi] is a clique and |Vi| ≤ k =

⌈ √
log n√

log log n

⌉

, by Theorem 1, we can compute an optimal box

representation Bi of Gi in n22O(k2 log k)
= nO(1) time, where n = |V |. 2

Lemma 6. Let Bi be as computed above, for 1 ≤ i ≤ t. Then, B =
⋃

1≤i≤t

Bi is a valid box representation of G such that

|B| ≤ t′ box(G), where t′ is 2

⌈

n
√

log log n√
log n

⌉

. The box representation B is computable in nO(1) time.

Proof. We can compute optimal box representationsBi of Gi, for 1 ≤ i ≤ t =

⌈

n
√

log log n√
log n

⌉

as explained in Lemma 5 in

total nO(1) time. Observe that E(G) = E(G1)∩ E(G2)∩ · · · ∩ E(Gt). Therefore, it is a trivial observation that the union

B =
⋃

1≤i≤t

Bi gives us a valid box representation of G.

We will prove that this representation gives the approximation ratio as required. By Lemma 2 we have, |Bi| =
box(Gi) ≤ 2 box(G). Hence, |B| = ∑t

i=1 |Bi| ≤ 2t box(G). 2

The box representation B obtained from Lemma 6 can be extended to a cube representation C of G as stated in the

following lemma.

Lemma 7. A cube representation C of G, such that |C| ≤ t′ cub(G), where t′ is 2

⌈

n(log log n)
3
2√

log n

⌉

, can be computed in

nO(1) time.

5



Proof. We can compute optimal box representationsBi of Gi, for 1 ≤ i ≤ t =

⌈

n
√

log log n√
log n

⌉

as explained in Lemma 5 in

O(n4) time. By [17, Corollary 2.1] we know that, from the optimal box representationBi of Gi, in O(n2) time, we can

construct a cube representation Ci of Gi of dimension box(Gi)⌈logα(Gi)⌉, where α(Gi) is the independence number of

Gi which is at most |Vi|. (Recall the assumption that G is connected.)

It is easy to see that C =
⋃

1≤i≤t

Ci gives us a valid cube representation of G. We will prove that this cube represen-

tation gives the approximation ratio as required. We have,

|C| =
t

∑

i=1

|Ci| ≤
t

∑

i=1

|Bi|⌈logα(Gi)⌉ ≤
t

∑

i=1

|Bi|⌈log k⌉ ≤ 2t box(G) log log n ≤ 2t log log n cub(G)

2

Combining Lemma 6 and Lemma 7, we get the following theorem which gives o(n) factor approximation algorithms

for computing boxicity and cubicity.

Theorem 2. Let G(V, E) be a graph on n vertices. Then a box representationB of G, such that |B| ≤ t box(G), where t

is 2

⌈

n
√

log log n√
log n

⌉

, can be computed in polynomial time. Further, a cube representation C of G, such that |C| ≤ t′ cub(G),

where t′ is 2

⌈

n(log log n)
3
2√

log n

⌉

, can also be computed in polynomial time.

4.1. Consequences of Theorem 2

Now, we describe how Theorem 2 can be used to derive sublinear approximation algorithms for some well-known

problems whose computational complexity is closely related to that of boxicity.

Chain cover of bipartite graphs. A bipartite graph is a chain graph, if it does not contain an induced matching of size

2. Given a bipartite graph G(V, E), the minimum chain cover number of G, denoted by ch(G) is the smallest number of

chain graphs on the vertex set V such that the union of their edge sets is E(G). It is well-known that ch(G) = box(G)

[9].

Corollary 2. There is a polynomial time 2

⌈

n
√

log log n√
log n

⌉

factor approximation algorithm to compute the minimum chain

cover number of an n-vertex bipartite graph.

Threshold dimension of split graphs. The concept of threshold graphs and threshold dimension was introduced by

Chvátal and Hammer [18] while studying some set-packing problems. A graph G(V, E) is called a threshold graph

if there exists s ∈ R and a labeling of vertices w : V 7→ R such that ∀u, v ∈ V, (u, v) ∈ E ⇔ w(u) + w(v) ≥ s. The

threshold dimension of G, denoted by t(G) is the minimum number of threshold subgraphs required to cover E(G).

Even for split graphs, threshold dimension is hard to approximate within an O(n1−ǫ) factor for any ǫ > 0, unless

NP = ZPP [12, 13].

Corollary 3. There is a polynomial time 2

⌈

n
√

log log n√
log n

⌉

factor approximation algorithm to compute the threshold di-

mension of any split graph on n vertices.

Proof. Given any split graph G, there is a polynomial time method to construct a bipartite graph H on the same vertex

set such that t(G) = ch(H) [13]. From the approximation algorithm for computing ch(H), the result follows. 2

Threshold dimension of co-bipartite graphs. Cozzens et al. [19] showed that if G is a co-bipartite graph, an associated

split graph G′ on the same vertex set can be constructed in polynomial time, such that for any k ≥ 2, t(G) ≤ k if and

only if t(G′) ≤ k. This reduction shows that the hardness result of threshold dimension of split graphs is also applicable

for the threshold dimension of co-bipartite graphs. Moreover, we get the following.

Corollary 4. There is a polynomial time 2

⌈

n
√

log log n√
log n

⌉

factor approximation algorithm to compute the threshold di-

mension of any co-bipartite graph on n vertices.

6



Partial order dimension. This concept was introduced by Dushnik and Miller in 1941 [20]. A partially ordered set

(poset) P = (X, P) consists of a nonempty set X and a binary relation P on X that is reflexive, antisymmetric and

transitive. If every pair of distinct elements of X are comparable under the relation P, then (X, P) is called a total

order or a linear order. A linear extension of a partial order (X, P) is a linear order (X, P′) such that ∀x, y ∈ X,

(x, y) ∈ P ⇒ (x, y) ∈ P′. The dimension of a poset P = (X, P), denoted by dim(P) is defined as the smallest integer

k such that P can be expressed as the intersection of k linear extensions (X, P1), (X, P2), . . . , (X, Pk) of P: i.e., if

∀x, y ∈ X, (x, y) ∈ P⇔ (x, y) ∈ Pi, for each 1 ≤ i ≤ k.

A height-two poset is a poset (X, P) in which all elements of X are either minimal elements or maximal elements

under the relation P. Even in the case of height-two posets, partial order dimension is hard to approximate within an

O(n1−ǫ) factor for any ǫ > 0, unless NP = ZPP [12]. A height-two poset P = (X, P) in which X1 is the set of minimal

elements and X2 is the set of maximal elements can be associated with a bipartite graph B(P) with vertex set X and

edge set given by {(x, y) : x ∈ X1, y ∈ X2, (x, y) < P} [9].

Corollary 5. There is a polynomial time O

(

n
√

log log n√
log n

)

factor approximation algorithm to compute the partial order

dimension of a poset P = (X, P) defined on an n-element set X.

Proof. Let P = (X, P) be a poset with |X| = n. By a construction given by R. Kimble [21], given a poset P = (X, P)

of arbitrary height, we can construct a height-two poset P′ = (Y, P′) from P = (X, P) in polynomial time so that

dim(P) ≤ dim(P′) ≤ 1 + dim(P) and |Y | = 2|X|. It is also known that dim(P) = ch(B(P′)) [9]. Therefore, by

computing ch(B(P′)) using the algorithm given by Corollary 2, we can compute a O

(

n
√

log log n√
log n

)

approximation of

dim(P). 2

Interval dimension of posets. A poset (X, P) is an interval order, if each x ∈ X can be assigned an open interval (lx, rx)

of the real line such that (x, y) ∈ P if and only if rx ≤ ly. An interval order extension of a partial order (X, P) is an

interval order (X, P′) such that ∀x, y ∈ X, (x, y) ∈ P ⇒ (x, y) ∈ P′. The interval dimension of a poset P = (X, P),

denoted by idim(P), is defined as the smallest integer k such that P can be expressed as the intersection of k interval

order extensions of P. Since linear orders are interval orders, it follows that idim(P) ≤ dim(P). On the other hand,

the poset dimension of an interval order can be large.

Since the height-two poset P′ given by Kimble’s construction [21, 9] from an arbitrary finite poset P satisfies

dim(P)′ = ch(B(P′)) and ch(B(P′)) = idim(P′) [9], from the approximation hardness of poset-dimension [12], we

can see that interval dimension is hard to approximate within an O(n1−ǫ) factor for any ǫ > 0, unless NP = ZPP.

Felsner et al. [22] showed that given a poset (X, P), it is possible to construct another poset (Y, P′) in polynomial time,

such that |Y | = 2|X| and idim(P) = dim(P′).

Corollary 6. There is a polynomial time O

(

n
√

log log n√
log n

)

factor approximation algorithm for computing the interval

dimension of any poset P = (X, P) defined on a set X of n elements.

Ferrers dimension of digraphs. Ferrers relations were introduced by Riguet in 1950’s [23]. A digraph G(V, E) is

called a Ferrers digraph when there exists a linear order (V, L) such that, for every x, y, z ∈ V , if (x, y) ∈ L and

(y, z) ∈ E then (x, z) ∈ E. The Ferrers dimension [24] of a digraph G is the smallest number of Ferrers digraphs whose

intersection is G. Since a partial order P has dim(P) equal to the Ferrers dimension of its underlying digraph [24],

Ferrers dimension is also hard to approximate within an O(n1−ǫ) factor for any ǫ > 0, unless NP = ZPP. Cogis [24]

showed that given a digraph G(V, E), a poset P = (X, P) can be constructed in polynomial time, such that |X| ≤ 2|V |
and the poset dimension of P is equal to the Ferrers dimension of G.

Corollary 7. There is a polynomial time O

(

n
√

log log n√
log n

)

factor approximation algorithm for computing the Ferrers

dimension of a digraph on n vertices.
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5. Conclusion

We have presented o(n) factor approximation algorithms for computing the boxicity and cubicity of graphs. Us-

ing these algorithms, we also derived o(n) factor approximation algorithms for some related well-known problems,

including poset dimension and Ferrers dimension. To the best of our knowledge, for none of these problems polyno-

mial time sublinear factor approximation algorithms were known previously. Since polynomial time approximations

within an O(n1−ǫ) factor for any ǫ > 0 is considered unlikely for any of these problems, no significant improvement

in the approximation factor can be expected.
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