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Abstract. Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins
simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying
bidirectional motion. However, most mathematical and computational models ignore the details of the
motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including
elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological
forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically
coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external
applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy
of elastic stretching. With these assumptions, an (N + 1)− variable master equation is constructed for
dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in
motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the
average quantities are separated out and explicit analytical expressions are obtained for the mean velocity
and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by
an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors.
The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of
the stiffness. While increase in the number of motors N does not increase the velocity substantially, it
decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the
cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic
stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations
agree with our analytical results where expected. Interestingly, we find in simulations that the stall force
of a cargo elastically coupled to motors is independent of the stiffness of the linkers.

PACS. 05.40.Fb random walks – 05.40.-a stochastic processes – 87.16.Nn motor proteins – 05.10.Gg
Langevin method

1 Introduction

Motor-protein based cargo transport is a mechanism which
governs the spatial organisation of organelles like endo-
some, vesicles, mitochondria etc. inside a eukaryotic cell.
A few proteins belonging to dynein and kinesin families are
known to be involved in transporting the cargoes on mi-
crotubule filaments [1,2,3]. Using the structural polarity
of the microtubule, dyneins move toward the minus end of
a microtubule, while most kinesins move toward the plus
end [4]. In many cases, the cargo is driven by multiple
motor proteins leading to increased stall force and trans-
port over longer distances [5,6]. Due to the involvement
both dyneins and kinesins, motion of cargo is found to be
bidirectional in some cases [7,8]. Experiments have shown
evidence for tug-of-war mediated mechanical interaction
between two teams of opposing motors (dyneins and ki-
nesins) leading to bidirectional motion of cargoes [9,10].

a Present address: International Centre for Theoretical Sci-
ences, Survey No. 151, Shivakote, Hesaraghatta Hobli, Ben-
galuru North 560089, India (e-mail:deepak.bhat@icts.res.in)

Mechanical interaction between motors of the same polar-
ity is less understood.

A few experiments have given insights about the na-
ture of interaction between multiple motor proteins by
coupling them artificially through a DNA scaffold [11,12].
In [11], DNA coupled by two kinesins effectively behaved
as though the single motor attachment state dominated
the motility. This led to the conclusion that asynchronous
stepping of kinesins show dominant negative interference.
While the average velocity of the coupled system was al-
most same as that of single motor, the run length was
observed to be much larger for coupled motors. In an-
other interesting experiment reported in Furuta et al.[12],
multiple motors were made to attach on a DNA scaffold
with controlled separations between them. The velocity
and the stall force of the DNA scaffold was found to be
affected by changes in the spatial separation between the
motors. These observations clearly indicate the presence
of chemical or mechanical interaction between similar mo-
tors.
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Fig. 1. The figure shows a set of motor proteins are pulling
a cargo against an external load f. As each motor protein is
at a different spatial separation from the cargo, individual mo-
tors experiences different stretching forces. In particular, the
leading motor experiences a large force and a lagging motor
experience a smaller force.

Motor proteins and motor-drivenmembranous organelles
like endosomes, mitochondria etc. are soft molecules with
stiffness typically of the order of a few pNnm−1 [1,13,14]
Since motor proteins exert forces of a few pN on these
organelles, the elastic nature of motor-cargo assembly is
likely to be an influential factor in the transport process.
Early models on unidirectional and bidirectional trans-
port have generally ignored the details of interaction be-
tween similar motor proteins in a team [15,16,17,18]. In
these models, external force on the cargo is assumed to be
shared equally among the like motors, akin to a “mean-
field” approximation [19]. It is, however, plausible that
stretching of the elastic motor-cargo linkers generates ten-
sion on the motors even in the absence of any external
force on the cargo. Further, in the presence of external
force, the force experienced by an individual motor could
differ from the mean-field value. As depicted in fig.1, the
elastic stretching force experienced by a motor on a cargo
depends on its spatial location which changes with time,
and is, therefore, a fluctuating quantity.

Several studies have appeared in the last few years,
based (mostly) on Hookean spring-like interaction between
motor and the cargo [19,20,21,22,23,24,25,26,27,28,29].
In Kunwar et al. [20], along with elastic interaction among
the motors, non-linear force-velocity relations are assigned
to different motors. Average run length of multiple motor
driven cargo in the presence of external force is studied
computationally at different motor stiffnesses. A more sys-
tematic semi-analytic study done by Materassi et al.[21]
reproduced the results in [20]. It was shown by Kunwar et
al. [19] that, compared to the mean-field model in which
load is assumed to be shared equally among the motors
of same directionality, a stochastic load sharing model
based on elastic motor-cargo interaction can explain uni-
directional transport more reliably. They found, however,
that neither model is consistent with all the experimen-
tal observations of bidirectional transport. In a computa-
tional study, Bouzat and Falo [22] have shown that the
stall force of the cargo-motor assembly is larger for non-
interacting motors than motors interacting through elas-
tic strain force. In another study by Bouzat and Falo [23],
tug-of-war between multiple opposing motors is investi-

gated and it is shown that the mean velocity of the cargo
is independent of the stiffness, whereas the mean runtime
decreases with increase in stiffness. A discrete state tran-
sition rate model employed in [24] showed slight reduction
in two motor run length and velocity at larger stiffnesses,
due to increase in the strain force. In a more recent study,
Berger et al. [25] identified four distinct transport regimes
in a system of two elastically coupled motor proteins. In
[28], the dynamics of the cargo coupled to a single motor
protein was studied using a novel coarse-graining approach
based on separation of time-scales between the cargo and
motor. A very recent study by Bouzat[29] showed that
a model in which motors experience history-dependent
forces captures some of the experimental observations bet-
ter than the previously studied models.

Some of the formalisms developed in the above men-
tioned analytical studies were applied to simple cases with
at most two motor proteins driving a cargo [24,25,26,
28], while many other studies are by and large compu-
tational in nature [19,20,22,23,29]. A general theoretical
framework to study the motion of a cargo driven by ar-
bitrary number of elastically bound motors has not been
developed. We develop such a treatment in this paper. We
study the motion of a cargo pulled by N elastically cou-
pled motor proteins in a viscous medium, subject to ther-
mal noise and an external applied force. Starting from
the complete master equation, we extract deterministic
dynamical equations for the averages and a linear Fokker-
Planck equation(LFPE) for the fluctuations. We study the
effects of elastic stiffness and the number of motors on var-
ious statistical properties such as the drift and diffusion
of the cargo, force experienced by each motor protein and
its deviation from the mean field approximation. Finally,
we carry out computer simulations in order to verify our
analytical results and mostly observe good agreement be-
tween the two wherever expected. Among the limitations
of our study, spontaneous and load-induced detachment
of motors from the filament is completely neglected. Also,
truncation of the expansion of the master equation leads
to incorrect prediction on the variation of stall force with
stiffness. These limitations will be partially addressed in
a future publication.

The paper is organised as follows. In sec.2, we describe
our model and set up the compete master equation, which
is the separated into deterministic “macroscopic” equa-
tions for the averages and a LFPE for fluctuations. We
derive various properties of the cargo transport such as the
average cargo velocity and effective diffusion coefficient of
the motor-cargo complex in sec.2.1. One of the important
ingredients in the model, the elastic stretching energy de-
pendence of motor jumping rates, is discussed in sec.2.2.
In sec.2.3, we apply the formalism developed in sec.2.1 to
a cargo driven by N identical motors. In sec.2.4, we de-
scribe the computer simulations techniques employed in
our study and in sec.2.5 we verify all the results obtained
in sec.2.3 using computer simulations. We compare predic-
tions of our model with experiments in sec.3. Finally, in
sec.4 we summarize our results and discuss some of their
implications.



Deepak Bhat, Manoj Gopalakrishnan: Transport of organelles by elastically coupled motor proteins 3

  

(a)

  

W n
+(�n�1)

W n
+(�n)

W n
�(�n+1)

W n
�(�n)

xn� 1 xn xn+ 1

(b)

Fig. 2. (a) Cartoon of multiple elastic motor proteins (shown
as springs) coupled to a cargo performing one-dimensional
Brownian motion on a microtubule. (b) A motor at xn jumps
forward with a rate W+

n (∆n) and backward with a rate
W−

n (∆n). The corresponding reverse transition rates, with
starting points at xn + 1 and xn − 1 are, respectively, given
by W−

n (∆n + 1) and W+
n (∆n − 1).

2 A generic model for a cargo elastically

coupled to N motor proteins

A motor protein moving on a microtubule filament moves
in a sequence of jumps of fixed length (usually, although
dynein is known to take variable-sized jumps in response
to load [30,31]) from one monomer to the next . For a
single free motor protein, let ℓ be the jump length, wn

and vn be the forward and backward hopping rates re-
spectively. A motor protein is imagined to be bound to
the cargo using a spring of stiffness κn, which is an ap-
proximation to the motor-cargo linker in our model. We
consider a cargo pulled by N such motor proteins simul-
taneously, as depicted in fig.2(a). In reality, the stiffness
κn could also have contribution from the elastic nature of
membranous cargo, which we have not taken separately in
to account. Let x0 and xn (1 ≤ n ≤ N) be the positions of
the cargo and the n’th motor on the filament respectively,
expressed in units of jump length ℓ. For the sake of later
convenience, we use the convention x ≡ {x0, x1....xN}. If
∆n = xn − x0 is the instantaneous separation between
n’th motor and the cargo, then the instantaneous elastic
force on the n’th motor is fn = −ℓκn∆n and so the elas-
tic force on the cargo due to all the motors at different

locations on the filament is fc = ℓ
∑N

i=1 κi∆i. For a cargo
bound to N motor proteins and acted on by an external
force f , the over-damped Langevin equation is written as
[22,28]

ℓẋ0 = ℓ

N
∑

i=1

κi∆i

γ
+

f

γ
+ ζ(t), (1)

where γ is the drag coefficient, ζ(t) is Gaussian white
noise: 〈ζ(t)〉 = 0 and 〈ζ(t)ζ(t′)〉 = Dδ(t − t′), where
D = 2kBT/γ following the fluctuation-dissipation theo-
rem. Note that the sign of f is positive when the force
acts in the +x0 direction; hence an “opposing force” will
have − sign in this convention.

The hopping rates of the individual motors are modi-
fied by the presence of the elastic stretching energy. Let us
denote by W+

n (∆n) and W−
n (∆n) the single motor hop-

ping rates for the forward (xn → xn + 1) and backward
(xn → xn−1) transitions respectively, as shown in fig.2(b).
Then, the complete equation for the probability distribu-
tion P (x; t), that describes the stochastic dynamics of the
motor-cargo system is written as:

∂P (x; t)

∂t
=

N
∑

n=1

[

(E+
n − 1)W−

n P + (E−

n − 1)W+
n P

]

−
∂

∂x0

[(

N
∑

i=1

κi

γ
∆i +

f

ℓγ

)

P −

(

D

2ℓ2

)

∂P

∂x0

]

(2)

where E
+
n and E

−
n are a set of N raising and lowering

operators, defined through the relations E+
nP (x0, x1, .., xn, ..) =

P (x0, x1, .., xn+1, ..), and similarly, E−
nP (x0, x1, .., xn, ..) =

P (x0, x1, .., xn − 1, ..)[32].

2.1 Expansion of the master equation

In eq.2, we expand all the variables xn about their average

values xn(t) as follows:

xn = xn(t) + ηn 0 ≤ n ≤ N, (3)

where ηn are fluctuations about the averages, hence
〈ηn〉 = 0 by construction. The dynamics may be described
now in terms of the variables ηn, the probability distribu-
tion of which is defined as Π(η; t) ≡ P (x; t) so that

∂P (x; t)

∂t
=

∂Π(η; t)

∂t
−

N
∑

n=0

dxn

dt

∂Π

∂ηn
. (4)

With the shift of variables in eq.3, the operators E
+
n

and E
−
n in eq.2 admit the Taylor expansion [32]

E
±

n =

∞
∑

m=0

(±1)m

m!

∂m

∂ηmn
. (5)

Insertion of eq.5 along with eq.4 into eq.2 yields the
following Kramers-Moyal expansion in terms of the vari-
ables ηn:

∂Π

∂t
−

N
∑

n=0

ẋn

∂Π

∂ηn
=

N
∑

n=0

∞
∑

m=1

[

−
1

(2m− 1)!

∂2m−1

∂η2m−1
n

(VnΠ)

+
1

(2m)!

∂2m

∂η2mn
(DnΠ)

]

, (6)
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where

Vn = W+
n −W−

n ; Dn = W+
n +W−

n , (7)

for 1 ≤ n ≤ N , while

V0 =
N
∑

i=1

κi

γ
∆i +

f

ℓγ
; D0 =

D

ℓ2
. (8)

To proceed further, we carry out Taylor expansion of
Vn and Dn in powers of the fluctuations ηn, leading to

Vn(x) = V n +
∑

k

α
(1)
nk ηk +

∑

k,l

α
(2)
nklηkηl + ..

Dn(x) = Dn +
∑

k

β
(1)
nk ηk +

∑

k,l

β
(2)
nklηkηl + .. (9)

where we have defined (a) the “macroscopic” variables

Vn ≡ Vn(x) ; Dn ≡ Dn(x) (10)

and (b) Taylor coefficients of order r (r ≥ 1)

α
(r)
nkl.. =

1

r!

∂rVn

∂xk∂xl...

∣

∣

∣

∣

x=x

; β
(r)
nkl.. =

1

r!

∂rDn

∂xk∂xl...

∣

∣

∣

∣

x=x

.

(11)

It can be shown that the coefficients α
(r)
nkl.. and β

(r)
nkl..

are proportional to (βκℓ2)r (see Appendix A), and there-
fore, if κ is sufficiently small, higher order terms may be
neglected in the expansion in eq.9. For ℓ = 8nm, this re-
quires κ ≪ 0.06pN/nm, far smaller than the estimated
value for kinesin (0.3 pN/nm) [13,14]. Nonetheless, for the
sake of making further analytic progress, we proceed with
this “weak coupling” approximation. When the expansion
in eq.9 is thus truncated at r = 1, we obtain the LFPE

∂Π

∂t
≃

N
∑

n=0

∂

∂ηn

[(

ẋn − V n −
∑

k

α
(1)
nk ηk

)

Π

]

+
1

2

N
∑

n=0

Dn

∂2Π

∂η2n
. (12)

The averages and the correlation functions of ηn are
defined as follows:

〈ηp〉 =

∫

ηpΠdη ; 〈ηpηq〉 =

∫

ηpηqΠdη. (13)

In order to satisfy the condition 〈ηp〉 = 0, we put the
convective term (corresponding to first order derivative
with respect to ηn) in eq.12 to zero (see Appendix B),
thereby arriving at the “macroscopic equations” [32]:

ẋn = Vn ; (0 ≤ n ≤ N). (14)

By using the definition of 〈ηpηq〉 given in eq.13, we
obtain the dynamics of the correlation 〈ηpηq〉 from eq.12
as follows (see Appendix B for the derivation):

d〈ηpηq〉

dt
=

N
∑

n=0

[

Dnδpnδqn + α(1)
pn 〈ηqηn〉+ α(1)

qn 〈ηpηn〉
]

. (15)

The results obtained in eqs.14 and 15 are very general
and valid for arbitrary number of motors of either direc-
tionality.

2.2 Energy-dependence of motor hopping rates

We will now make specific choices for the functional form
of motor hopping rates in the model. LetE(x) = (ℓ2/2)

∑

n κn∆
2
n

be the total energy of the system in a configuration x ≡
{x0, x1, ..xn, ..xN}. We define the local energy differences

ε±n = ±[E(..xn ± 1, ..)− E(..xn, ..)] =
κnℓ

2

2
[2∆n ± 1](16)

for a certain motor n at position xn, corresponding to
a single hop to its right or left. Then, we propose that the
energy-dependent forward and backward hopping rates in-
troduced earlier follow a local detailed balance condition,
i.e.,

W+
n (∆n)

W−
n (∆n + 1)

=
wn

vn
exp(−βε+n ). (17)

where β = (kBT )
−1. The dynamic quantities that char-

acterise the transport process, e.g. the instantaneous ve-
locity of the motor and its diffusion coefficient depend on
the difference and sum of the forward and backward rates
respectively (eq.7). Hence, our results for these quantities
will depend on the specific forms for the forward and back-
ward rates satisfying eq.17. We consider a set of rates of
the following form:

W+
n (∆n) = wn exp

[

−βε+n θn
]

W−

n (∆n) = vn exp
[

βε−n (1− θn)
]

(18)

with 0 ≤ θn ≤ 1. This model has been studied exten-
sively in the literature [28,33,34,35,36]. In some of these
studies [33,34], in the exponent, θn is accompanied by the
external force exerted on the motor, whereas in our model
(also in [35,36]) it is accompanied by the energy differ-
ence ε±. It is suggested in [34] that, θn determines the
location of the transition state in the periodic free-energy
landscape in which the motor takes steps.

In the next section, we will extract analytical expres-
sions for several quantities of interest for a cargo driven by
a set of identical motors (wn = w, vn = v, κn = κ, θn = θ)
using the formalism developed so far. When motors are
identical, the mean separation between motor and the
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∆

eq
. 2

0

LHS

(0,0)

RHS

Fig. 3. The functions on left hand side (LHS) and right hand
side (RHS) of the eq.20 are shown in this figure schematically.
The solution to eq.20 is the value of ∆ at which LHS cuts the
RHS in the figure (dashed line).

cargo, ∆ ≡ ∆n, is the same for all the motors. Also,
Vn = V1 and Dn = D1 ∀ n ≥ 2. Further, the rates
in eq.18 depends only on the separation ∆n = xn − x0,
therefore by the definition of Taylor coefficients in eq.11,

α
(1)
n0 = −α

(1)
nn ≡ α for all n ≥ 1. However α

(1)
nm = 0 if

n,m ≥ 1 and n 6= m. Finally, α
(1)
00 = −Nα

(1)
0n = −N κ

γ
. We

use these quantities in the next section to analytically de-
termine different properties characterising the dynamics
of the motor-cargo complex.

2.3 Results for a cargo driven by identical motor
proteins

(i) Average cargo velocity: For identical motors, since the
hopping rates and stiffness of all the motors are equal, the
mean separation between motor and the cargo is the same
for all motors: ∆ ≡ ∆n. Therefore, from eqs.1, 8 and 10,
the average cargo velocity is given by

Vavr ≡ ℓV0 =
Nκℓ

γ
∆+

f

γ
, (19)

In the steady state, both motors and cargo move es-
sentially with the same velocity and therefore Vn = V0

∀ n ≥ 1. Hence, from eqs.7, 8 and 10, we arrive at the
following transcendental equation for ∆:

Nκℓ

γ
∆+

f

γ
= ℓ

[

W+(∆)−W−(∆)
]

(20)

Solution to eq.20 is to be reinserted in eq.19 to find
the average cargo velocity.

Let us first understand the nature of solution to the
transcendental eq.20 for the simple case where the exter-
nal force on the cargo is zero (f = 0). The left hand
side is a straight line with slope equal to Nκℓ/γ pass-
ing through the origin. The right hand side is, in general,
a smooth monotonic function of ∆ which varies from ∞

to −∞ (see fig.3 for a schematic picture). Therefore, as
the slope Nκℓ/γ becomes larger and larger, the solution
to the equation ∆ becomes smaller in magnitude (sign is
positive if w > v and negative if w < v). It suggests three
different roles of κ, γ and N respectively in the transport
mechanism: (a) When γ becomes larger, cargo experiences
a large drag force while motors try to pull it away. This in-
creases the motor-cargo separation as γ increases. (b) As
κ is increased, the energy cost due to stretching increases,
larger separation between motor and cargo is energetically
unfavourable and this will enhance the backward hopping
rate of the motor. As a result, we see a reduction in mean
stretch ∆ with increase in κ. (c) Because all the motors
are of same directionality, the number of springs which
are connected in parallel increases (on an average) as N is
increased. Due to additive nature of the spring constant
in parallel springs, stretching of motors results in large
energy cost and hence the mean separation between mo-
tor and cargo decreases with N . We will refer to these
points again in subsequent sections where we use the spe-
cific rates given in eq.18 explicitly.

In the presence of external force (f 6= 0), the solution
to the transcendental eq.20 depends on the directionality
of the motor bound to the cargo. If the net motion of the
cargo is towards plus direction (i.e. w > v) on the micro-
tubule, then f < 0 corresponds to a resisting force and
decrease in f would increase the magnitude of ∆. On the
other hand if the net motion of the cargo is towards minus
direction (i.e. w < v), then f < 0 corresponds to assisting
force and decrease in f would decrease the magnitude of
∆.

(ii) Effective diffusion coefficient: Starting from eq.15,
the long time behaviour of the variance 〈η2i 〉 can be cal-
culated exactly for simple cases like N = 1, 2, results for
which are given in Appendix B. Based on these results, we
conjecture that for a cargo pulled by N motor proteins,
the effective diffusion coefficient is

Deff(N) = ℓ2







α2 D0 + N(κ
γ
)2 D1

2
(

α+N κ
γ

)2






. (21)

Interestingly, eq.21 implies that Deff ∝ N−1 as N → ∞.
N -dependence of Vavr and Deff : The asymptotic re-

sult obtained above may be understood using an intu-
itive argument in the following way. For a free motor on
the filament, w and v are forward and backward hopping
rates respectively, with a fixed jump length ℓ. The aver-
age velocity and diffusion coefficient for this are given by
Vf = ℓ(w − v) and Df = ℓ2(w + v)/2 respectively. How-
ever, when multiple motor proteins are coupled through
cargo, one may naively visualise whole system of motors
as an effectual random walker pulling a cargo with mod-
ified hopping rates we ∼ Nw, ve ∼ Nv and jump length
ℓe ∼ ℓ/N . Then, the effective velocity Ve = ℓe(we−ve) be-
comes independent of N while the effective diffusion coef-
ficient De = ℓ2e(we+ve)/2 ∼ N−1 as N → ∞. The scaling
holds for a large range of stiffness, particularly when N
is large. However, as discussed already, the exact effective



6 Deepak Bhat, Manoj Gopalakrishnan: Transport of organelles by elastically coupled motor proteins

velocity and diffusion coefficient depend on the effective
stiffness (κe = Nκ) in a highly non-linear manner. This
gives an additional weak N dependence to Vavr and Deff

at small N .
(iii) Average force on the motor and force-fluctuations:
The instantaneous force fn on the n’th motor is de-

termined by the separation between the motor and cargo
at that instant, i.e., fn = −κℓ(xn − x0) = −κℓ∆n. Be-
cause motor-cargo separation ∆n changes randomly with
time, fn is also varies stochastically. The present formal-
ism allows us to systematically determine the statistics of
force experienced by the motor proteins and its load shar-
ing properties. By the transformation of variables given in
eq.3, we write the average force experienced by the motor
as 〈fn〉 = −κℓ∆ for identical motors. 〈fn〉 has two con-
tributions: one is due to the external force f and other
is due to the viscous drag force. To quantify the contri-
bution by the viscous drag, we evaluated the difference
between force experienced by the motor from f/N , i.e.,
define δf = fn − (f/N). From eq.19, we notice a relation
between the average deviation in the force 〈δf〉 and the
average cargo velocity Vavr, i.e.,

〈δf〉 = −γ
Vavr

N
, (22)

which suggests that the contribution due to the viscous
drag is negligible (〈fn〉 = f/N) when Vavr = 0 i.e. when
cargo is stalled or when the motors are large in number
(N ≫ 1).

It must be noted that equal [15] and stochastic [19,20]
load-sharing models of motor-driven transport have been
discussed in the literature. However, a meticulous study
of force experienced by the motor and its deviation from
mean field limit in stochastic load sharing model is still
missing. The present formalism allows us to systemati-
cally determine the statistics of force experienced by the
motor proteins and its load sharing properties. To investi-
gate the deviation of force experienced by the motor from
the mean field approximation, we study the standard de-
viation in the force experienced by the motor defined as
σ

f
(N) =

√

〈f2
n〉 − 〈fn〉2. In particular, note that if the

force per motor is always the same, σf (N) would vanish:
this limiting behaviour is achieved when stiffness κ is suffi-
ciently small, that is when motor-cargo interaction is neg-
ligible. With increase in the stiffness, fluctuations in the
instantaneous force fn relative to its mean value increases.
As a result, σf (N) is an increasing function of κ. It may
be easily shown that σ2

f
= κ2ℓ2[〈η2

n
〉+ 〈η2

0
〉 − 2〈η0ηn〉] for

n ≥ 1. From the expressions for 〈ηpηp〉 in Appendix B,
specific results for N = 1 and N = 2 are obtained:

σ
f
(1) = κℓ

√

√

√

√

√





D0 +D1

2
(

α+ κ
γ

)



,

σ
f
(2) = κℓ

√

√

√

√

[

αD0 + (α + κ
γ
)D1

2α(α+ 2κ
γ
)

]

. (23)

Because D1 is a function of κ, the nature of the depen-
dence of σf on κ is not obvious from eq.23. However, as
we will see later from numerical simulation that, σf (N) is
an increasing function of κ and N .

(iv) Stall force: To determine the expression for stall
force fN

s (force corresponding to vanishing cargo velocity,
i.e., Vavr = 0) within this formalism, we put the RHS
of eq.20 to zero, the solution of which may be denoted
∆s(κ). Then, from the LHS, the stall force is given by
fs(κ) = −Nκℓ∆s(κ): after substitution of ∆s(κ) we find
the stall force to be

fN
s = N

[

1

βℓ
log
( v

w

)

− κℓ

(

1

2
− θ

)]

(24)

Eq.24 completes the set of results we obtained from our
approximate analytical treatment of the problem. We now
proceed to discuss the results from numerical simulations.

2.4 Numerical simulations

In numerical simulations, we used Brownian dynamics for
cargo motion, along with fixed time-step kinetic Monte-
Carlo scheme for motor dynamics. All the motors and the
cargo are initialised at xn = 0 (0 ≤ n ≤ N) at t = 0 and
their locations are updated in each time step δt = 10−5s.
From the noted locations of the cargo and all the mo-
tors (x0, x1...xN ) in the present time t, the separation be-
tween n’th motor and the cargo ∆n = xn − x0 is used

to determine the force on the cargo fc = κℓ
∑N

n=1 ∆n

and the energy cost for forward/backward jump ε±n =
(κnℓ

2/2)[2∆n±1]. In the next time step t+δt, the location
of the cargo is estimated according to the over-damped
Langevin equation (eq.1) and motor locations are updated
using the rates given in eq.18. Position of the cargo and
all the individual motors are recorded for a long time (this
time scale depends on the number of motors N and stiff-
ness κ; the time required to reach steady state is different
in each cases, but typically varies from 5s to 25s), which
enabled us to determine various averaged quantities of in-
terest in the steady state. In particular, the average veloc-
ity is estimated from the relation 〈δx〉/δτ where, 〈δx〉 is
the average distance covered in the observation time δτ .
The averaging is carried out over several identical copies
(typically 50000) of the system. Similarly the effective dif-
fusion coefficient is evaluated as [〈δx2〉 − 〈δx〉2]/2δτ .

2.5 Comparing theory and simulations

Velocity versus κ: We have chosen the set of parameters
given in Table 1, and found the solution for ∆ from the
transcendental equation 20 numerically. Then the average
cargo velocity Vavr is evaluated from eq.19. As explained
earlier, due to increase in energy cost for the movement of
motors on the filament, average separation ∆ is reduced
at larger κ. Therefore, the average velocity of the cargo
decreases with κ. Increase in the number of motors results
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β γ w v ℓ θ
pN−1nm−1 pNs nm−1 s−1 s−1 nm

0.2433 9.42× 10−4 125.0028 0.0028 8 0.1

Table 1. A list of parameters used in our calculations and
numerical simulations are shown here. The value for γ is chosen
from [22]. For kinesin, ℓ = 8nm is observed [37] and θ = 0.1 is
the typical value used for the same motor in [24]. Rates w and
v are chosen in such a way that the free motor velocity Vf =
ℓ(w−v) and the stall force of the free motor f1

s = ln(v/w)/(βℓ)
are equal to 1µms−1 and −5.5pN respectively.
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Fig. 4. Average cargo velocity Vavr is shown as a function of
stiffness at zero external force (f = 0), for various numbers of
cargo-bound motors. In inset, Vavr is shown as a function of
number of motors N , at two different values of the stiffness.
The dashed line is the analytical result obtained from eq.19
and the symbols are computer simulation results.

in a very small increase in the velocity at small κ, but the
enhancement is negligibly small at large κ and large N .
We can see these effects in fig.4 where analytical results
(lines) show good agreement with simulations (symbols).

Diffusion coefficient versus κ: Because both forward
and backward hopping rates decrease with increase in κ,
the overall movement itself is hindered. Fluctuations about
the mean are suppressed by the increase in stretching en-
ergy cost at large stiffness. Therefore, the effective dif-
fusion coefficient Deff (see eq.21) of the motor-cargo as-
sembly, as predicted by theory, decreases with κ and van-
ishes asymptotically. Results for Deff as a function of κ are
shown in fig.5(a). Simulation results [symbols in fig.5(a)]
also show good agreement with these observations. We
see in fig.5(b) that, Deff decreases with N and the depen-
dence becomes proportional to 1/N asymptotically, which
is confirmed by the slope in the inset. We have seen in fig.4
that the velocity remains constant at larger motor num-
bers although it increases initially with N . Therefore, as
N increases, multiple motor-mediated transport becomes
more deterministic.

Mean force experienced by a motor and its load shar-
ing features: In fig.6, the average force experienced by each
motor 〈fn〉 = −κℓ∆n is shown as a function of κ. Even
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Fig. 5. The effective diffusion coefficient (Deff) of the cargo
as a function of stiffness is shown in (a) for various numbers
of cargo-bound motors. Deff decreases with stiffness as well as
number of motors on the cargo. In (b), Deff is shown on a
logarithmic scale against number of motors in for three dif-
ferent κ. The slope of this line, equal to [lnDeff(N + 1) −
lnDeff (N)]/[ln(N+1)− ln(N)], approaches −1 as N increases,
indicating that Deff decreases as 1/N asymptotically (see in-
set). In both (a) and (b), dashed lines correspond to eq.21 and
symbols are simulation results.

in the absence of external load on the cargo (f = 0),
due to the competition between viscous drag and elas-
tic stretching, a motor experiences a net opposing force,
whose average is 〈fn〉 = −γVavr/N . The decrease of 〈fn〉
as a function of κ is related to the reduction in Vavr with
increasing stiffness. With increase in number of motors
N , Vavr becomes independent of N (see fig.4 insets) and
therefore, the force experienced by each motor decreases
as 1/N asymptotically.

We have looked at the dependence of 〈δf〉 (the average
force on the motor due to viscous drag) on the stiffness,
in the presence of external force f = −3pN. The ana-
lytical expression (eq.22), in comparison with simulation
results, is shown in fig.7 insets. Notably, the average force
on the motor due to viscous drag in the absence of ex-
ternal force, shown in fig.6, is slightly larger than that in
the presence of force f = −3pN , as shown in fig.6 insets.
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Fig. 6. The figure show the mean force experienced by each
motor 〈fn〉 = −κℓ∆ as a function of stiffness at f = 0. Inset
shows the force experienced by the motor due to the viscous
drag in the medium 〈δf〉 = 〈fn〉 − (f/N) at force f = −3pN .
Symbols correspond to results obtained in computer simula-
tions.

This is expected because the opposing force reduces the
average velocity of the motor-cargo complex, thereby re-
ducing the viscous drag force on it. Further, with increase
in stiffness, the average velocity of the motor decreases,
and hence the force experienced due to the drag force also
reduces accordingly.

The mean squared fluctuation σf (N) which quantifies
the load sharing properties is shown in fig.7 for N = 1
and 2. From both simulations (symbols) as well as the
analytical expression (eq.23, lines), we see that σf (N) is
an increasing function of κ, i.e., when motors are weakly
interacting, they share load equally. For typical κ and N ,
the deviation is not small- almost 1pN for N = 1 and
2pN for N = 2, when κ = 0.5pNnm−1; the numbers be-
come 2.5pN for N = 1 and 4pN for N = 2 when the
stiffness is 1.5pNnm−1. The inset of fig.7 shows the coeffi-
cient of variation r = σf (N)/〈fn〉 for N = 1, 2. Note that
while r is less than (but comparable to) 1 for N = 1 (for
κ <1.5pN/nm), it is typically greater than one for N = 2.
Force experienced by an individual motor in an assembly
is subject to large relative fluctuations when N is large.

The average force experienced by the motor in the
presence of elastic motor-cargo coupling has been studied
numerically by Kunwar et al.[20] and it has been shown
that, the force experienced by the motor decreases with
the stiffness, similar to what we have seen in fig.6. More-
over, in their work, broadening of the distribution of force
experienced by the motor with increases in the stiffness
was also observed, which is captured by σf (N) in fig.7 in
our study.

Velocity versus f : We studied the force-velocity curve
for a cargo driven by a single motor (N = 1) at various
stiffnesses, results of which are shown in fig.8. We see that,
for the chosen set of parameters in Table 1, the force-
velocity curve is convex-up. The comparison with com-
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Fig. 7. The standard deviation σf (N) (eq.23) of force ex-
perienced by a single motor is shown here as a function of
stiffness at f = −3pN. Inset shows, the fluctuation to mean
ratio r = σf (N)/|〈fn〉| at f = −3pN. The symbols are results
obtained in computer simulations while the line corresponds to
analytical result.
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Fig. 8. The force-velocity curve is shown for a cargo driven
by a motor protein (N = 1) at different stiffnesses κ of the
motor-cargo linker(dashed line, eq.19). The computer simula-
tion results are shown as symbols.

puter simulations (symbols) show nice agreement with the
theoretical results at small opposing forces (f < 0), while
significant deviation is observed at larger opposing forces,
particularly close to the regime where velocity becomes
zero. Interestingly, in simulations, the velocity appears to
cross zero at the same force for all κ values, indicating
that the stall-force is independent of κ; a more detailed
discussion on the same is given in the next paragraph.

Stall force versus κ: We looked at stall-force fN
s (κ) as

a function of κ for a cargo driven by varying numbers of
motor proteins. For fast convergence in simulations, we
replaced the constant force f with a harmonic trap force
f = −κtx where κt is the trap stiffness, whose value was
chosen as 0.5pNnm−1 (we have performed some simula-
tions in the constant force ensemble also, and verified that
the results are not affected). The results for stall force as a
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Fig. 9. The results for stall force as a function of stiffness κ is
shown here different N . The computer simulation results are
shown as symbols. The dashed line corresponds to the analyt-
ical expression given in eq.24.

function of stiffness is shown in fig.9 for different numbers
of cargo bound motors. In numerical simulations (symbols
in the figure), the stall force is found to be independent of
κ. However, the expression for the stall force given in eq.24
disagree with simulations, except in the limit κ → 0. The
underlying reason is presumably the neglect of higher or-
der terms in the expansion of the master equation (eq.12),
not captured in the first order perturbation approxima-
tion. To justify this argument, in Appendix A, we have
given the Taylor coefficients (eq.11) of different orders in
the presence of the stall force of the motor proteins and
show that higher order terms are not negligible when κ is
large.

It is also pertinent to point out that force-velocity be-
haviour of two elastically coupled motor proteins has been
studied in [27], where stall force is found to be dependent
on the stiffness. However, there are two key differences
between our model and that in [27]. (i) In [27], forward
hopping rate of the individual motor is linearly dependent
on the force (which is derived from linear force-velocity re-
lation), while backward hopping is absent. In our model,
more general, thermodynamically consistent rates (eq.18)
are used. (ii) Detachment of motors from the filament with
load-dependent detachment rates is included in [27], while
it is ignored on our study. We are presently developing an
extended version of our model, which also include motor
detachment from the filament.

3 Comparison with experiments

In order to check how well our model describes the ob-
served features of real motors, we study the force-velocity
behaviour of kinesins reported in [37]. In the experiment,
the velocity of a motor protein attached to a silica bead
was studied by exerting controlled loads using an optical
trap, in the presence of different ATP concentrations. The
force-velocity behaviour found in Visscher et al. (1999) at
5µM and 2mM ATP concentration is displayed as squares
in fig.10(a) and (b) respectively. We managed to reproduce
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Fig. 10. In (a) and (b), the force-velocity behaviour predicted
from our theory and simulation is compared with the force-
velocity behaviour of kinesin observed by Visscher et al. [37]
at 5µM and 2 mM ATP concentrations respectively. In both
(a) and (b), experimental data (used with the permission of the
publishers) are given as squares, analytical results as dashed
lines and numerical simulations in circles.

these results by tuning a few parameters in our model.
The values of ℓ, β and γ are same as that in Table 1.
The forward and backward hopping rates of the motor
(w and v) are determined in such a way that the sin-
gle free motor velocity [Vf = ℓ(w − v)] and stall force
[f1

s = ln(v/w)/βℓ] are consistent with experimental obser-
vations in [37]. Specifically, at 5µM ATP concentrations,
velocity and stall force of the motor are close to 70nms−1

and −5.5pN respectively, from which we get w ≈ 8.745s−1

and v ≈ 1.96× 10−4s−1. Similarly, at 2mM ATP concen-
tration velocity and stall force are respectively 1000nms−1

and −7pN, using which we get w ≈ 125s−1 and v ≈
1.52×10−4s−1. The value of θ is reduced slightly (from 0.1
to 0.05) in order to get more accurate behaviour for 2mM
ATP concentration case. The force-velocity behaviour ob-
tained mathematically (dashed line) and computationally
(circles) at stiffness κ = 0.2pNnm−1 is shown in fig.10(a)
and (b) at 5µM and 2mM ATP concentrations respec-
tively. However, at larger values of κ, the results do not
seem to show good agreement with experimental obser-
vations. Further, as the external force on the motor ap-
proaches the stall force, analytical results show a slight de-
viation from computer simulation results, suggesting the
relevance of higher order corrections.

4 Summary and Conclusions

In this paper, we explored the effects of elastic coupling
between a cargo and the attached molecular motors on
the statistical properties of transport. In our model, we re-
garded motor domains of these proteins as biased random
walkers with fixed jump length, while the cargo is sub-
jected to thermal noise and an external applied force, in
addition to elastic forces from the motors. To capture the
elastic energy dependence of motor hopping rates, asym-
metric exponential forms given in eq.18 were used. The
stochastic hopping dynamics for N motor proteins, along
with the over-damped Langevin equation for cargo mo-
tion (eq.1) leads to a (N + 1)-variable composite master
equation for the dynamics of the motor-cargo assembly.
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Employing a transformation of variables and first order
perturbation expansion in the master equation govern-
ing the motor-cargo dynamics, the dynamics of the av-
erage quantities was systematically separated from that
of fluctuations. The former satisfies a set of determinis-
tic “macroscopic” equations, while the latter are governed
by a LFPE, which yields equations for the various mo-
ments and correlation functions. Both sets of equations
were solved numerically to determine quantities of inter-
est such as the average velocity and mean force experi-
enced by the motor, effective diffusion coefficient of the
motor-cargo complex and information on load sharing be-
tween the motors. Using our model, we also reproduced
the force-velocity behaviour of kinesin observed in an ex-
periment [37] by minimal tuning of parameters.

We made the following important observations in course
of our study. (i) The average velocity and the effective
diffusion coefficient of the motor cargo assembly reduces
with increase of the elastic coupling constant κ. Our re-
sults are consistent with some of the observations made in
earlier studies [25,26] where it was reported that, the aver-
age cargo velocity reduces as a function of stiffness of the
motor-cargo linker. (ii) Asymptotically, the average veloc-
ity becomes independent of motor number N while the
effective diffusion constant decreases as 1/N . (iii) Even
in the absence of external force, all the motors experi-
ence a load due to viscous drag of the cytoplasm. The
average force experienced by a motor decreases with κ,
and this observation is consistent with earlier study by
Kunwar et al.[20]. In the presence of opposing external
force on the cargo, the average velocity of the cargo de-
creases and hence the force due to the viscous drag also
reduces accordingly. (iv) When κ is very small, motors
are almost non-interacting and the force on the cargo is
shared equally among the motors. On the other hand, as
κ becomes larger, the deviation from this “mean field”
behaviour becomes significant. Kunwar et al.[20] too have
reported large fluctuations in the force experienced by in-
dividual motor in a team of two motors pulling a cargo.
(iv) The stall force is found to be independent of the stiff-
ness κ in simulations, but this behaviour is not captured
by the analytical results due to the neglect of relevant
higher order terms in the Kramers-Moyal expansion.

The complete absence of κ-dependence in the stall
force is an important observation in our study, something
which our analytical treatment failed to reproduce. This
has important implications; for instance, this result guar-
antees that the stall force measured for a motor using a
glass bead as cargo in an in vitro optical trap experiment
may be expected to be valid for a more flexible intracellu-
lar cargo also. Recent experiments on transport of DNA-
scaffold by motors having controlled separation between
them, have opened possibility of studying directly motor-
motor interaction between like motors during transport
[12]. In such experiments, it may be possible to verify some
of our predictions. We hope that the formalism developed
here and its possible future extensions will be found use-
ful in quantitative modelling of cargo transport involving
multiple motor proteins.
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Computing Resources, IIT Madras for computational support.
DB thanks Udo Seifert for stimulating discussions during the
Non-equilibrium Statistical Physics Workshop (2015) held at
ICTS, Bengaluru. DB also acknowledges Sumesh Thampi, Raghu-
nath Chelakkot and Amitabha Nandi for useful conversations.

A On the relevance of higher order terms in

the Kramers-Moyal expansion

The Taylor coefficients α
(r)
nkl... and β

(r)
nkl.. given in eq.11 are

derivatives of Vn and Dn respectively, evaluated at x = x. As
we see from eq.8, V0 is function of all the variables (x0, x1...xN ),
but depends only linearly on them. So corresponding coeffi-
cients of order larger than one in the Taylor expansion are zero

identically, i.e. α
(r)
0kl... = 0 for r ≥ 2.D0 = D/ℓ2 is a constant, so

all β
(r)
0kl... for r ≥ 1 are zero. However, from eqs.7 and 18, we can

see that the higher order coefficients in Taylor expansion of Vn

andDn are non-zero for n ≥ 1. But, Vn and Dn are functions of
only xn and x0 through ∆n = xn − x0. Therefore, those terms

involving cross derivatives i.e. α
(r)
nkl... and β

(r)
nkl.. with k, l.. 6= n

and k, l.. 6= 0 are zero [only for k, l.... = n, 0, α
(r)
nkl... and β

(r)
nkl..

survive]. Further, the coefficients with k = n corresponding to
derivative with respect to xn and those with k = 0 correspond-
ing to derivative with respect to x0 (keeping rest of the suffices
same), differ only by sign. Therefore, it is enough to study the

coefficients corresponding to k = l = .. = n i.e. α
(r)
nnn... and

β
(r)
nnn.. for n ≥ 1. From eqs.7, 11 and 18, these are given by

α(r)
nnn.. =

(

βκnℓ
2
)r

r!

[

(−θn)
rW+

n (∆n)− (1− θn)
rW−

n (∆n)
]

,

β(r)
nnn.. =

(

βκnℓ
2
)r

r!

[

(−θn)
rW+

n (∆n) + (1− θn)
rW−

n (∆n)
]

.(25)

Further, for identical motors, ∆n = ∆, θn = θ, wn = w,

vn = v and therefore, at fixed N , α
(r)
nnn.. = α

(r)
111.. and β

(r)
nnn.. =

β
(r)
111.. for all N ≥ n ≥ 2. In fig.11, Taylor coefficients α

(r)
111.. and

β
(r)
111.. shown (up to r = 5) for N = 1 at different κ and θ values.

For the chosen set of parameters given in Table 1, when θ = 0.1
the terms corresponding to r = 1 are predominant in the range
of stiffness we considered in this study (0− 2pNnm−1). There-
fore, the formalism developed here shows overall agreement
with computer simulations. On the other hand, at θ = 0.5 and
θ = 0.9, higher order terms become important and so the for-
malism developed here is not appropriate at these θ values.
But, at very small κ values such that βκℓ2 ≪ 1, we see from
eq.25 that the higher order Taylor coefficients are small, and
so the formalism is valid in this regime.

In fig.12 and fig.13, we have shown results for Vavr and
Deff as a function of κ obtained in computer simulations at
θ = 0.5 and θ = 0.9. The variation in the velocity and diffusion
coefficient as a function of stiffness κ is qualitatively similar
to that of θ = 0.1. However, now a large deviation from the
analytical results is seen, which highlights the inaccuracy of
our approximation for these parameter values.

For the set of parameters in Table 1, the Taylor coefficients

α
(r)
11.. and β

(r)
11.. evaluated at f = −5.5pN are also shown for N =

1 in the fig.14. We saw in fig.11 (for θ = 0.1 column) that, when
f = 0, only the first order coefficients are important within the
range of stiffness considered. However at f = −5.5pN, all the
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Fig. 11. Taylor coefficients α
(r)
11.. and β

(r)
11.. given in eq.25 are

shown here (up to r = 5) as function of κ at θ = 0.1, θ = 0.5
and θ = 0.9. For θ = 0.1 higher order terms are much smaller
compare to first order terms. On the other hand for θ = 0.5
and θ = 0.9, higher order terms are significant.
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Fig. 12. Average velocity of the cargo as a function of stiffness
is shown here for θ = 0.5 in (a) and θ = 0.9 in (b). All the other
parameters are chosen from Table 1. The deviation of analyt-
ical results (lines) from simulation (symbols) is significant in
these cases, compared to that in θ = 0.1 case (fig.4).

higher order terms are large compared to first order terms.
This results in the deviation of analytical results for stall force
from the computer simulations in fig.9.

B Evaluation of effective diffusion coefficient

Π(η) in eq.12 is function of fluctuations η ≡ {η0, η1, ...ηN}. We
define the Fourier transform of Π with respect the variables η
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Fig. 13. Effective diffusion coefficient of the motor-cargo as-
sembly is shown as a function of stiffness here for θ = 0.5 in
(a) and θ = 0.9 in (b). Here, rest of the parameters are cho-
sen from Table 1. The deviation of analytical results (lines)
from simulation (symbols) is significant here due to prominent
higher order corrections.
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Fig. 14. The coefficients α
(r)
11.. and β

(r)
11.. given in eq.25 are

shown as function of κ at f = −5.5pN for N = 1. Rest of the
parameters are chose from Table 1.

as:

F [Π(η)] ≡ Φ(g) =

∫

exp[ig · η]Π(η)dη0dη1..

Using properties of the Fourier transform,

F

[

∂mΠ(η)

∂ηm
n

]

= (−ign)
mΦ(g) ; F [ηnΠ(η)] =

∂Φ(g)

∂(ign)

eq.12 may be rewritten as follows:
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∂Φ

∂t
=

N
∑

n=0

(−ign)

[

(

ẋn − V n

)

Φ−
∑

k

α
(1)
nk

∂Φ

∂(igk)

]

−
1

2

N
∑

n=0

Dng
2
nΦ (26)

Some useful properties of Φ here are:

〈ηp〉 =
∂Φ

∂(igp)

∣

∣

∣

∣

g=0

and 〈ηpηq〉 =
∂2Φ

∂(igp)∂(igq)

∣

∣

∣

∣

g=0

(27)

From eq.26 and the definition of 〈ηp〉 in eq.27, we arrive at:

d

dt
〈ηp〉 =

N
∑

n=0

α(1)
pn 〈ηn〉 − (ẋp − Vp) (28)

As {ηp} are defined as fluctuations about averages xp, we
require that 〈ηp〉 = 0, which is realized by putting the non-
homogeneous term in eq.28 to zero, thereby arriving at eq.14.

Further, using the condition 〈ηp〉 = 0, from eq.26 and the
definition of 〈ηpηq〉 in eq.27, we obtain:

d〈ηpηq〉

dt
=

N
∑

n=0

[

Dnδpnδqn + α(1)
pn 〈ηqηn〉+ α(1)

qn 〈ηpηn〉
]

. (29)

For N = 1, second moments and correlation functions are
found explicitly as follows:

d

dt
〈η2

0
〉 = D0 +

κ

γ

[

〈η0η1〉 − 〈η2
0
〉
]

d

dt
〈η2

1
〉 = D1 + α

[

〈η0η1〉 − 〈η2
1
〉
]

d

dt
〈η0η1〉 = α〈η2

0
〉+

κ

γ
〈η2

1
〉 −

(

α+
κ

γ

)

〈η0η1〉 (30)

To solve the above equations, we define the Laplace transforms
〈ηpηq〉s =

∫

∞

0
exp(−st)〈ηpηq〉dt. eq.30 is now expressed in ma-

trix form and solved for the moments in Laplace space. For
N = 1, the complete solution is

〈η2
0
〉s =

[

D0s
2 +D0(3α+ κ

γ
)s+ 2α2D0 + 2(κ

γ
)2D1

]

s2(s+ α+ κ
γ
)(s+ 2α+ 2κ

γ
)

〈η2
1
〉s =

[

D1s
2 +D1(α+ 3κ

γ
)s+ 2α2D0 + 2(κ

γ
)2D1

]

s2(s+ α+ κ
γ
)(s+ 2α+ 2κ

γ
)

〈η0η1〉s =

[

(D0α+D1
κ
γ
)s+ 2α2D0 + 2(κ

γ
)2D1

]

s2(s+ α+ κ
γ
)(s+ 2α+ 2κ

γ
)

. (31)

We observe that as s → 0, 〈η2
0
〉s = 〈η2

1
〉s ≈ 2(Deff/ℓ

2s2), and
hence 〈η2

0
〉 = 〈η2

1
〉 ≈ 2(Deff/ℓ

2)t where Deff is the effective one-
dimensional diffusion coefficient of the cargo on the filament,
given by

Deff(1) = ℓ2
[

α2D0 + (κ
γ
)2D1

2(α+ κ
γ
)2

]

. (32)

For N = 2, a similar analysis gives the moment-transforms

〈η2
0
〉s =

D0s
2 +D0(3α+ 2κ

γ
)s+ 2α2D0 + 4D1(

κ
γ
)2

s2(s+ α+ 2κ
γ
)(s+ 2α+ 4κ

γ
)

〈η2
1
〉s = 〈η2

2
〉s =

D1s
3 + D1

2
(2κ

γ
+ α)s2

s2(s+ 2α)(s+ α+ 2κ
γ
)(s+ 2α+ 4κ

γ
)
+

2[α2(D0 +D1) + 4(κ
γ
)2D1 + 3α(κ

γ
)D1]s + 4α3D0 + 8αD1(

κ
γ
)2

s2(s+ 2α)(s + α+ 2κ
γ
)(s+ 2α+ 4κ

γ
)

〈η0η1〉s = 〈η0η2〉s =

[

(αD0 +D1
κ
γ
)s+ 2α2D0 + 4(κ

γ
)2D1

]

s2(s+ α+ 2κ
γ
)(s+ 2α+ 4κ

γ
)

〈η1η2〉s =
2α

[

(αD0 +D1
κ
γ
)s+ 2α2D0 + 4(κ

γ
)2D1

]

s2(s+ 2α)(s + α+ 2κ
γ
)(s+ 2α+ 4κ

γ
)

. (33)

Similar to the previous case, it is easily shown that 〈η2
0
〉 =

〈η2
1
〉 = 〈η2

2〉 ≈ 2(Deff/ℓ
2)t in the large t limit where

Deff(2) = ℓ2
[

α2D0 + 2(κ
γ
)2D1

2(α+ 2κ
γ
)2

]

. (34)

For both N = 1 andN = 2, the variance shows diffusive be-
haviour in the long-time limit. For a general N motor system,
we therefore expect 〈η2

i 〉 ∼ 2(Deff/ℓ
2)t, where Deff is the effec-

tive diffusion coefficient of the motor-cargo assembly. Based on
a simple extrapolation of the analytical results for N = 1 and
N = 2, we conjecture eq.21 as the effective diffusion coefficient
for arbitrary N .
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