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Abstract

In vitro experiments in which tumour cells are seeded in a gelatinous medium, or
hydrogel, show how mechanical interactions between tumour cells and the tissue in which
they are embedded, together with local levels of an externally-supplied, diffusible nu-
trient (e.g., oxygen), affect the tumour’s growth dynamics. In this article, we present
a mathematical model that describes these in vitro experiments. We use the model to
understand how tumour growth generates mechanical deformations in the hydrogel and
how these deformations in turn influence the tumour’s growth. The hydrogel is viewed
as a nonlinear hyperelastic material and the tumour is modelled as a two-phase mixture,
comprising a viscous tumour cell phase and an isotropic, inviscid interstitial fluid phase.
Using a combination of numerical and analytical techniques, we show how the tumour’s
growth dynamics change as the mechanical properties of the hydrogel vary. When the
hydrogel is soft, nutrient availability dominates the dynamics: the tumour evolves to a
large equilibrium configuration where the proliferation rate of nutrient-rich cells on the
tumour boundary balances the death rate of nutrient-starved cells in the central, necrotic
core. As the hydrogel stiffness increases, mechanical resistance to growth increases and
the tumour’s equilibrium size decreases. Indeed, for small tumours embedded in stiff
hydrogels, the inhibitory force experienced by the tumour cells may be so large that the
tumour is eliminated. Analysis of the model identifies parameter regimes in which the
presence of the hydrogel drives tumour elimination.
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1 Introduction

During its earliest stage of avascular growth, a tumour consists of proliferating cells and lacks
a vascular network. External nutrients that diffuse into the tumour provide the energy that
the cells need to proliferate [1]. When the tumour reaches a size at which diffusive transport
of nutrients can no longer sustain its energy requirements, the tumour acquires a blood supply
from the surrounding tissue vasculature via a process known as angiogenesis [2]. Once the
tumour has acquired its own network of blood vessels, its nutrient supply increases, enabling
continued growth, expansion and the onset of malignancy [3]. For these reasons, it is important
to understand the mechanisms that control the avascular tumour growth and, in particular, to
identify strategies for its inihibition.

In addition to nutrient availability, many other phenomena are known to influence avascu-
lar tumour growth. These include interactions with immune cells and stromal cells [4, 5] and
mechanical effects [6, 7]. Of particular interest in this paper is the impact that mechanical
effects have on tumour growth; the in vitro experimental work performed by Helmlinger et al.
providing our primary motivation [8]. By embedding small clusters of tumour cells in hydrogels
of different stiffnesses, they showed how mechanical resistance can inhibit a tumour’s growth
dynamics. As the tumour cells proliferate, the tumour increases in size and deforms the sur-
rounding hydrogel. The hydrogel, in turn, exerts a compressive stress on the tumour cells, which
inhibits their net rate of cell proliferation and, thereby, reduces the equilibrium size to which
the tumour grows. Subsequent studies have shown how externally imposed compressive stresses
can affect cell proliferation and death rates within multicellular tumour spheroids [9, 10]. Takao
et al. showed that short periods of oscillatory compressive stress can also stimulate extensive
cell death in breast cancer cell lines [11]. Mechanical stress drives other behavioural changes: it
may activate tumour cells to become more motile and to model their tissue environment (e.g.,
the stiffness and fibrillar structure of the extracellular matrix [12]). Recent studies also indicate
that mechanical stress has a critical influence in promoting metastasis and tumour progres-
sion [13]. Taken together, these studies illustrate the need for increased understanding of the
mechanisms by which mechanical stimuli inhibit tumour growth and the clinical potential for
exploiting tumour responses to mechanical stress to improve cancer treatment. Mathematical
modelling represents a natural framework within which to address such questions.

There is a vast literature devoted to mathematical models of the growth and response to
treatment of solid tumours (see [14–18] for recent reviews). For example, a variety of mathemat-
ical frameworks have been used to study the growth of multicellular tumour spheroids, ranging
from agent-based models [19], to time-dependent systems of ordinary differential equations [20],
and partial differential equations [21], including novel classes of free boundary problems [22–26].
The majority of these mathematical models have focussed on the impact that nutrient avail-
ability has on tumour growth and responses to treatment with radiotherapy and chemotherapy.
However, a small number of models have studied the impact of mechanical stimuli on tumour
growth [27–29], including several specialised to understand the experimental results obtained
by Helminger et al. [8, 30–32]. A common feature of the latter models is their treatment of
the hydrogel as a hyperelastic material that restrains the tumour’s growth. The models differ
in the constitutive assumptions that they use to model the tumour: both Chen et al. [30] and
Roose et al. [31] view the tumour as a two-phase mixture while Yan et al. [32] view it as a
neo-Hookean elastic material. In [30] the tumour is viewed as a mixture of two inviscid fluids,
cell proliferation and death are limited by local nutrient levels and necrosis is initiated when
the pressures in the cell and fluid phases are equal. By contrast, in [31] the tumour is viewed as
a poroelastic material with a solid, cellular phase and an inviscid fluid phase, cell proliferation
and death are regulated by nutrient availability and also the local cell stress, and necrosis is
neglected.
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In this paper, we introduce a new model to describe Helmlinger et al.’s experiments, aiming
to strike a balance between the phenomenological approach used in [30] and the more detailed,
poroelastic approach used in [31]. Following [33], we view the tumour as a two-phase mixture,
consisting of a viscous tumour cell phase and an inviscid fluid phase. Our approach is flexible
and builds naturally on the existing literature on multiphase models of solid tumour growth [27,
29, 31, 34]. As such, it is readily extendable in that the assumptions that underpin both the
tumour and hydrogel sub-models can be changed while maintaining the same general model
framework.

The remainder of the paper is organised as follows. The mathematical model is derived
and cast in dimensionless form in Section 2. Numerical solutions are presented in Section 3
In Section 4 we derive a simplified version of the model which we use to investigate how the
mechanical properties of the hydrogel impact the tumour’s growth dynamics and, in particular,
to identify a critical value of the hydrogel stiffness above which tumour elimination is predicted
and below which the tumour evolves to a non-trivial steady state. The paper concludes in
Section 5 where we discuss our findings and identify possible directions for future work.

2 Model development

We view the tumour and hydrogel as two continuous materials, separated by a dynamic inter-
face, referred to as the tumour boundary (see Figure 1). In what follows, we derive equations
that describe how the tumour’s size, composition, and the position of the tumour boundary
evolve over time and how these changes are coupled to the deformation of the hydrogel. For
simplicity, we consider the 1D Cartesian geometry shown in Figure 1. The equations for the
hydrogel and tumour are presented in Subsections 2.1 and 2.2, respectively, while the initial
and boundary conditions are presented in Subsection 2.3. We non-dimensionalise the governing
equations and discuss the parameter values used for numerical simulations in Subsection 2.4.
For reference, lists of the dependent variables and model parameters that appear in the gov-
erning equations are presented in Tables 1 and 2, respectively.
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Figure 1: Schematic of the tumour and hydrogel. Here, 0 ≤ x = ℓ(t) ≤ ℓm denotes the position
of the tumour-hydrogel interface at time t and ℓm is the length of the domain in which the
tumour and hydrogel are located.

2.1 The hydrogel model

The hydrogel surrounding the tumour is viewed as a hyperelastic material which deforms as the
tumour expands. The mechanical stress that develops within the hydrogel acts on the tumour,
inhibiting its growth. The dynamics of the tumour and hydrogel are coupled by imposing
continuity of stress on the tumour boundary, x = ℓ(t) (see Subsection 2.3).

In what follows, it is convenient to introduce X ∈ (ℓ(0), ℓm) and x ∈ (ℓ(t), ℓm) to represent
the spatial coordinates within the undeformed (at t = 0) and deformed (t > 0) hydrogel. The
deformation map χ(t, X) maps points X ∈ (ℓ(0), ℓm) in the undeformed configuration to points
x ∈ (ℓ(t), ℓm) in the deformed configuration.
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Parameter
Description Dimension

Cell phase Fluid phase

Tumour

α β Volume fraction 1
uα uβ Velocity cm · s−1

pα pβ Pressure g · cm−1 · s−2

σα σβ Stress g · cm−1 · s−2

c Nutrient concentration g · cm−1

Hydrogel σH Hydrogel stress g · cm−1 · s−2

Table 1: Summary of the dependent variables used to describe the tumour and hydrogel.

Parameter Description Dimension

Tumour

α∗ Cell packing density 1
µα Cell viscosity g · cm−1 · s−1

γ Intracellular force coefficient g · cm−1 · s−2

k, k1 Traction coefficients g · cm−3 · s−1

Hydrogel ϑ, ν Compressibility parameters g · cm−1 · s−2

Table 2: Summary of the model parameters used to describe the mechanical properties of the
tumour and hydrogel.

When describing the deformation of the hydrogel, we neglect inertial effects and assume
that there are no external body forces. If we denote by σH the first Piola–Kirchoff stress tensor
of the hydrogel, then the force balance on the hydrogel supplies:

∂σH

∂X
(t, X) = 0 for X ∈ (ℓ(0), ℓm); and t > 0. (2.1)

We denote by G(t, X) the deformation gradient where G(t, X) = ∂χ
∂X

(t, X) for X ∈ (ℓ(0), ℓm)
and t > 0. The first Piola-Kirchoff stress tensor is defined in terms of the strain energy density
WG via σH = ∂WG/∂G, where WG is the work done per unit volume in deforming the hydrogel.
A wide range of strain energy density functionals have been proposed in the literature [35, 36].
We follow Flory [37, 38] and consider the following strain energy density:

WG =
ν

2
G2 −

3

2
NkBTabs − ϑ log (G) . (2.2)

In Equation (2.2), ν and ϑ are nonnegative constants with the dimension of stress (g·cm−1 ·s−2),
N is the ratio of the number of hydrogel polymer chains to the volume of the hydrogel in a dry
state, kB is the Boltzmann constant, and Tabs is the absolute temperature which is assumed
constant. With σH := ∂WG

∂G
and WG defined by Equation (2.2), it follows that

σH = ν G − ϑG−1. (2.3)

In what follows, for physically realistic solutions, we assume that ϑ ≥ ν. Under this
assumption, σH < 0 and the hydrogel always exerts a compressive stress on the tumour (see

Figure 2(b) where ϑ ≥ ν and σH < 0). If ν > ϑ, then σH > 0 for ℓ(t) < ℓm −(ℓm −ℓ0)
√

ϑ/ν = ℓ∗

(see Figure 2(a)), and the hydrogel exerts a physically unrealistic, tensile stress on the tumour
for 0 < ℓ(t) < ℓ∗.
Using Equation (2.3) to substitute for σH in Equation (2.1), we obtain

ν
∂2χ

∂X2
+ ϑ

(
∂χ

∂X

)−2
∂2χ

∂X2
= 0. (2.4)
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Figure 2: Variation of σH with ℓ(t) ∈ (0, 1). In (a), ϑ < ν (ϑ = 2.0, ν = 5.0) and σH is
positive (physically unrealistic) at values of ℓ(t) to the left of the vertical dotted line, on which

ℓ(t) = ℓm − (ℓm − ℓ0)
√

ϑ/ν. In (b), ϑ > ν (ϑ = 2.0, ν = 0.1) and σH < 0 for all values of ℓ(t).

Since ∂χ
∂X

is the ratio of two infinitesimal lengths and the linear ordering of the material in the
hydrogel is preserved under any admissible transformations (compression and stretching), we
impose the auxiliary condition ∂χ

∂X
> 0. At each time t > 0, the boundary points X = ℓ0 and

X = ℓm are mapped to x = ℓ(t) and x = ℓm. Therefore, we impose the following boundary
conditions to close Equation (2.4):

χ(t, ℓ0) = ℓ(t) and χ(t, 1) = ℓm. (2.5)

With
∂χ

∂X
> 0, Equations (2.4) and (2.5) admit a unique, linear solution of the form:

χ(t, X) =

(
ℓm − ℓ(t)

ℓm − ℓ0

)
X +

(
ℓ(t) − ℓ0

ℓm − ℓ0

)
. (2.6)

Recalling that G = ∂χ
∂X

(t, X), we now substitute Equation (2.6) in Equation (2.3) to obtain the
following expression for σH, the stress in the hydrogel:

σH(t, X) = ν

(
ℓm − ℓ(t)

ℓm − ℓ0

)
− ϑ

(
ℓm − ℓ0

ℓm − ℓ(t)

)
, for X ∈ (ℓ(0), ℓm). (2.7)

Remark 2.1 (Spatial variation of the stress in the hydrogel). From Equation (2.7), it is clear
that the stress σH depends implicitly on time, via the tumour length ℓ(t). The stress σH is
independent of spatial position X because the deformation in the hydrogel depends linearly on
X (see Equation (2.6)). In Sections 3 and 4 we show that when the stress in the hydrogel is
defined by Equation (2.7), the analysis and numerical solution of the model simplify greatly.

2.2 The two-phase model of tumour growth

The tumour is viewed as a two-phase mixture of viscous tumour cells and inviscid fluid, embed-
ded within a deformable hydrogel that acts as an external source of vital nutrients, here taken
to be oxygen. As indicated in Table 1, we associate with the tumour cell and fluid phases,
volume fractions α and β (dimensionless), velocities uα and uβ (cm · s−1), pressures pα and pβ,
and stress tensors σα and σβ (g · cm−1 · s−2). We note that, for 1D Cartesian geometry consid-
ered here, the dependent variables are scalars which depend on spatial position 0 ≤ x ≤ ℓ(t)
and time t > 0.
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Conservation of mass applied to the tumour cell and fluid phases supplies

∂α

∂t
+

∂

∂x
(uαα) = Fα(α, c) and

∂β

∂t
+

∂

∂x
(uββ) = −Fα(α, c), (2.8)

where Fα and Fβ are the net production rates of tumour cells and fluid respectively and c
(g · cm−1 · s−1) is the concentration of an externally supplied nutrient, here taken to be oxygen.
We assume that there are no external sources or sinks of mass within the tumour, so that mass
is converted from one phase to the other (i.e., Fα = −Fβ). We assume further that there are
no voids within the tumour so that

α + β = 1 for 0 ≤ x ≤ ℓ(t).

Following [33], we implement the following functional form for Fα:

Fα(α, c) =
S0c

1 + S1c)
︸ ︷︷ ︸

≡ b(c)

α(1 − α) −
(S2 + S3c)

(1 + S4c)
︸ ︷︷ ︸

≡ d(c)

α,

where b(c) and d(c) represent the birth and death rates of the tumour cells, and S0 (g−1 · cm),
S1 (g−1 · cm · s), S2 (s−1), S3 (g−1 · cm) and S4 (g−1 · cm · s) are positive parameters whose de-
fault values are presented in Table 4. We assume that the oxygen concentration satisfies a
reaction-diffusion equation of the form

∂c

∂t
= η

∂2c

∂x2
−

Q0αc

1 + Q1c
, (2.9)

where the positive constant η represents the oxygen diffusion coefficient, and the positive
constants Q0 and Q1 describe how the rate at which tumour cells consume oxygen increases
as oxygen levels increase. Since the time–scale of tumour cell proliferation is typically much
larger that that of oxygen diffusion, henceforth, we make a quasi-steady state approximation,
wherein ∂c/∂t ≈ 0 [27, 33, 39, 40] and Equation (2.9) reduces to give

0 = η
∂2c

∂x2
−

Q0αc

1 + Q1c
.

Applying momentum balances to the tumour cell and fluid phases, and neglecting inertial
effects, we have

∂(ασα)

∂x
+ Fαβ = 0 and

∂(βσβ)

∂x
+ Fβα = 0, (2.10)

where Fαβ and Fβα represent the forces exerted by the fluid phase on the cells, and vice versa
and, in the absence of external forces, Fαβ = −Fβα. We assume that Fαβ comprises two terms:
a drag term due to relative motion of the two phases, of the form k1αβ(uβ − uα), where k1

(g · cm−3 · s−1) is a positive constant; and, an interfacial force of the form pβ∂α/∂x. Combining
these assumptions, we have that

Fαβ ≡ −Fβα = k1αβ(uβ − uα) + pβ
∂α

∂x
. (2.11)

Since the fluid phase is inviscid and the cell phase is viscous, the stresses σα and σβ are

σα = −pα + 2µα
∂uα

∂x
and σβ = −pβ, (2.12)
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where µα (g · cm−1 · s−1) is the coefficient of viscosity.
Adding the two equations in (2.10), and substituting for σα and σβ from (2.12), it follows

that

2µα
∂

∂x

(
α

∂uα

∂x

)
=

∂

∂x
(αpα + βpβ) . (2.13)

Following [41], we view the cells as bags of water, with an additional pressure to account for
cell–cell interactions. Under these assumptions, we have that

pα = pβ + γ
(α − α∗)+

(1 − α)2

︸ ︷︷ ︸
≡ Σ(α)

, (2.14)

where, Σ(α) (g ·cm−1 · s−2) quantifies the pressure due to cell–cell interactions, and γ (g ·cm−1 ·
s−2) and 0 < α∗ < 1 (dimensionless) are positive constants and x+ := max(x, 0) for x ∈ R.
If 0 < α < α∗, then the cells are too sparse to experience any interactions and Σ(α) = 0; if
α∗ < α < 1, then the cells are densely packed and repel each other, and Σ(α) > 0. Additional
mechanisms, including chemotaxis [34, 42], can be incorporated into the functional form of Σ.
Here, for simplicity, we focus on cell-cell interactions.

If we substitute pα = pβ +Σ(α) in Equation (2.13), and use the no voids relation (α+β = 1),
then we obtain the following partial differential equation for uα:

2µα
∂

∂x

(
α

∂uα

∂x

)
=

∂pβ

∂x
+

∂

∂x
(αΣ(α)). (2.15)

In order to arrive at our final model, it remains to derive expressions for pβ and uβ in terms of α
and uα. Adding Equations (2.8), we deduce that ∂

∂x
(αuα + βuβ) = 0. Integrating this identity

with respect to x, and assuming that the tumour is symmetric about the tumour centre, x = 0,
so that uα(0, t) = 0 = uβ(0, t), we have that

uβ = −
αuα

(1 − α)
. (2.16)

Using Equations (2.11) and (2.16) to substitute for Fβα and uβ, and noting that σβ = −pβ,
Equation (2.10) reduces to give the following expression for pβ:

∂pβ

∂x
=

k1α

1 − α
uα. (2.17)

We substitute from Equation (2.17) into Equation (2.15) to obtain the following partial differ-
ential equation for uα:

2µα
∂

∂x

(
α

∂uα

∂x

)
=

k1α

1 − α
uα +

∂

∂x
(αΣ(α)).

The tumour boundary x = ℓ(t) marks the interface between the tumour and the hydrogel. We
assume that it moves with the local cell velocity there so that

dℓ(t)

dt
= uα(t, ℓ(t)).

Reduced model: Our two-phase model of tumour growth reduces to three partial differential
equations for the cell volume fraction (α), cell velocity (uα), nutrient concentration (c), and an
ordinary differential equation for the tumour length (ℓ(t)):

∂α

∂t
+

∂

∂x
(uαα) = b(c)α(1 − α) − d(c)α, (2.18)
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2µα
∂

∂x

(
α

∂uα

∂x

)
=

k1α

1 − α
uα +

∂

∂x
(αΣ(α)), (2.19)

η
∂2c

∂x2
=

Q0αc

1 + Q1c
, and (2.20)

dℓ(t)

dt
= uα(t, ℓ(t)).

The variables β and uβ are obtained from the relations α + β = 1 and uβ = −αuα/(1 − α),
while pα and pβ are defined by Equations (2.14) and (2.17), and σα and σβ are defined by
Equation (2.12).

2.3 Initial and boundary conditions

The model is closed by imposing appropriate initial and boundary conditions. The initial
tumour length and volume fraction are

ℓ(0) = ℓin and α(0, x) = αin(x) for x ∈ (0, ℓin), (2.21)

where 0 < ℓin < ℓm and 0 < αin(x) < 1. To ensure symmetry about the tumour centre, we
impose the following boundary conditions:

uα(t, 0) = 0 and
∂c

∂x
(t, 0) = 0. (2.22)

We assume that the fluid flows freely across the tumour boundary and, hence, fix pβ(t, ℓ(t)) = 0.
With σH defined by Equation (2.7) and pβ(t, ℓ(t)) = 0, continuity of stress at the tumour–
hydrogel interface then supplies,

σα(t, ℓ(t)) = 2µα
∂uα

∂x
(t, ℓ(t)) − Σ(α(t, ℓ(t))) = σH(t, ℓ(t)) for t > 0. (2.23)

We suppose that the nutrient concentration is maintained at a constant value of cout > 0 on
the tumour boundary so that

c(t, ℓ(t)) = cout for t > 0. (2.24)

Figure 3: Schematic diagram showing how the stress in the hydrogel, σH(t), the tumour cell
velocity, uα(t, ℓ(t)), and the tumour size, ℓ(t), are coupled.

Model summary. The tumour dynamics are governed by Equations (2.18), (2.19), and (2.20).
The initial conditions are specified by Equation (2.21) and the boundary conditions are given
by Equations (2.22), (2.23), and (2.24). The boundary condition (2.23) couples the tumour
dynamics to σH, the stress in the hydrogel, which is defined via Equation (2.7).
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2.4 Dimensionless model

Before proceeding, it is convenient to recast our model in dimensionless form. We rescale time t
with tdim, a typical timescale for tumour cell proliferation; here we fix tdim = (1+S1cout)/S0cout,
which is the timescale for cell proliferation when the nutrient concentration is at its maximum
value. We map the spatial domain onto the unit interval by rescaling the spatial coordinate, x,
and the position of the tumour-hyrdogel interface, ℓ(t), with ℓdim = ℓm, the size of the domain.
For completeness, in Table 3 we state the dimensionless variables induced by this rescaling,
using primes to denote dimensionless quantities.

Dimensional quantities Dimensionless quantities

Space, x, and time, t x′ = x/ℓdim, t′ = t/tdim

Cell volume fraction, α α′ = α

Cell velocity, uα u′
α =

tdim

ℓd

uα.

Nutrient concentration, c c′ = c/cout

Tumour length, ℓ ℓ′ = ℓ/ℓdim

Cell and fluid stresses, σα and σβ σ′
α = σα/γ and σ′

β = σβ/γ

Cell and fluid pressures, pα and pβ p′
α = pα/γ and p′

β = pβ/γ

Hydrogel stress, σH σH′

= σH/γ

Table 3: Summary of the dimensionless model variables.

Under this rescaling, the equations governing the tumour-hydrogel dynamics transform as
follows:

∂α′

∂t′
+

∂

∂x′
(u′

αα′) = α′(1 − α′)
(1 + s′

1)c
′

1 + s′
1c

′
− α′ s

′
2 + s′

3c
′

1 + s′
4c

′
, (2.25a)

−µ
∂

∂x′

(
α′ ∂u′

α

∂x′

)
+

kα′u′

1 − α′
= −

∂

∂x′

(
α′ (α

′ − α∗)+

(1 − α′)2

)
, (2.25b)

η′ ∂
2c′

∂x′2
=

Qα′c′

1 + Q̂1c′
, and (2.25c)

dℓ′

dt′
= uα′(t′, ℓ′(t′)), (2.25d)

subject to the initial and boundary conditions

α′(0, x′) = α′
in(x′) ∀x′ ∈ (0, ℓ′

in), ℓ′(0) = ℓ′
in, (2.25e)

u′
α(t′, 0) = 0,

∂c′

∂x′
(t′, 0) = 0, (2.25f)

µ
∂u′

α

∂x′
(t′, ℓ′(t′)) −

(α′(t′, ℓ′(t′)) − α∗)+

(1 − α′(t′, ℓ′(t′)))2
= σH and c′(t′, ℓ′(t′)) = 1, (2.25g)

where

σH = ν

(
1 − ℓ′(t′)

1 − ℓ′
0

)
− ϑ

(
1 − ℓ′

0

1 − ℓ′(t′)

)
. (2.25h)

In Equations (2.25), we have introduced the following dimensionless parameter groupings:

s′
1 = S1cout, s′

2 = tdimS2, s′
3 = tdimS3/cout, s′

4 = S4cout,
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k =
k1ℓ

2
dim

γtdim

, µ =
2µα

γtdim

,

Q = Q0tdim, Q̂1 = Q1cout, η′ = tdimη/ℓ2
dim,

ν ′ = ν/γ, ϑ′ = ϑ/γ, ℓ′
m = ℓm/ℓdim and ℓ′

in = ℓin/ℓdim.

For notational ease, the prime symbols are dropped in the sequel.

2.5 Numerical Method

Equations (2.25a)–(2.25c) are defined on a time–dependent domain, with 0 ≤ x ≤ ℓ(t). In order
to construct numerical solutions to the governing equations, we use the scaling ξ = x/ℓ(t)
to map the time-dependent domain [0, ℓ(t)] to the unit interval, [0, 1]. Similar coordinate
transformations have been used by other authors to solve similar free boundary problems
numerically (see [39, 43] and the references therein). Under this scaling, the model equations
become

∂α

∂t
−

ξ

ℓ

dℓ

dt

∂α

∂ξ
+

1

ℓ

∂(uαα)

∂ξ
= α(1 − α)

(1 + s1)c

1 + s1c
−

s2 + s3c

1 + s4c
α, (2.26a)

−µ
∂

∂ξ

(
α

∂uα

∂ξ

)
+

ℓ2kαuα

1 − α
= − ℓ

∂

∂ξ

(
(α − α∗)+

(1 − α)2

)
, (2.26b)

η
∂2c

∂ξ2
=

Qℓ2αc

1 + Q̂1c
, and (2.26c)

dℓ

dt
= u(t, 1), (2.26d)

and the initial and boundary conditions are transformed to give

α(0, ξ) = αin(ξ) ∀ξ ∈ (0, 1), ℓ(0) = ℓin, (2.26e)

uα(t, 0) = 0,
∂c

∂ξ
(t, 0) = 0, (2.26f)

µ
∂uα

∂ξ
(t, 1) = ℓ(t)

(
(α(t, 1) − α∗)+

(1 − α(t, 1))2
+ σH

)
, and c(t, 1) = 1 ∀t ∈ (0, T ), (2.26g)

where

σH = ν

(
1 − ℓ(t)

1 − ℓin

)
− ϑ

(
1 − ℓm

1 − ℓ(t)

)
. (2.26h)

We employ an upwind finite volume method to solve the hyperbolic partial differential equation
for the cell volume fraction, α, Equation (2.26a); finite volume methods are appropriate here as
they conserve mass at the discrete level [44]. Lagrange P1 finite element methods [45, 46] are
used to solve the elliptic equations for the cell velocity, uα, and the nutrient, c, Equation (2.26a)
and Equation (2.26c). A backward Euler method is used to integrate the time-dependent
ordinary differential for the tumour length, ℓ(t), Equation (2.26d). Further details of the
numerical discretisation are omitted here. For formal definitions of the numerical methods and
further justification of the above choices, we refer the interested reader to [47, 48].

2.6 Parameter Values

In the absence of suitable experimental data with which to estimate the model parameters,
values have been chosen to illustrate the range of behaviours that the model exhibits. Unless
otherwise stated, we use the dimensionless parameter values in Table 4 to generate numerical
simulations of the governing equations.
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Parameter Value Parameter Value

k 1600 µ 1

Q 0.5 Q̂1 0
s1, s4 10 s2, s3 0.5

α∗ 0.8 η 1/1600
α0 0.8 c0 1
ℓin 1/40 - -

Table 4: Summary of the default values of the dimensionless parameters used to generate
numerical simulations of Equations (2.26).

3 Numerical results

In this section we present numerical simulations which show how the tumour’s growth dynamics
change as the stiffness of the hydrogel increases. First, in Subsection 3.1, we consider tumour
growth in free suspension, wherein the effects of the hydrogel are absent. In Subsection 3.2,
we show how embedding the tumour in a deformable hydrogel influences its growth dynamics.

3.1 Tumour growth in free suspension

We simulate growth in free suspension by setting ϑ = 0 = ν in Equation (2.26). In this
case, σH = 0 so that the tumour does not experience any mechanical resistance to its growth;
its growth is limited by nutrient availability and the domain size (scaled to unity for the
dimensionless model). Unless otherwise stated, all numerical results are generated using the
dimensionless parameter values stated in Table 4, with simulations performed for 0 < t ≤ T =
100. Plots showing the time evolution of the nutrient concentration, cell volume fraction, cell
velocity, and cell stress are presented in Figure 4 while the corresponding time evolution of the
outer tumour boundary, x = ℓ(t) is presented in Figure 6.

At early times, the tumour is small and nutrient levels are everywhere sufficiently highly
to enable cell proliferation. As a result, for 0 < t < 15, the tumour cell velocity increases
monotonically with x, driving net tumour growth. At the same time, since the cells are
viscous, they are resistant to movement. Consequently, the stress in the cell phase becomes
more compressive, especially near the tumour centre.

As the tumour increases in size, nutrient levels at its centre, x = 0, decrease until eventually
they are so low that that cells start to die (t > 20). Cell death in the central necrotic core
leads to a reduction in the tumour cell volume fraction there (dead cells are converted to fluid),
relieving the compressive stress experienced by the tumour cells. By contrast, in the outer,
nutrient-rich region, tumour cells continue to proliferate and drive tumour growth. Since
the tumour’s net proliferation rate decreases when the necrotic core forms, the cell velocity
on x = ℓ(t) and, hence, the tumour’s overall growth rate decrease slightly, although both
remain positive. At long times, the outer proliferating rim attains a fixed width, at which the
rate at which nutrient is supplied by diffusion balances the rate at which it is consumed by
proliferating tumour cells. At the same time, the size of the central necrotic core increases,
and the cell velocity and stress there are negligible. Between the central necrotic core and the
outer proliferating rim, an intermediate region forms in which the cells proliferate. As a result
of their resistance to movement, the cells in the intermediate region experience a compressive
stress. Since the tumour is growing in free suspension, there is no mechanical resistance to its
expansion and, so, the magnitude of the compressive stress decreases from its minimum value,
which is attained in the intermediate region, towards the outer tumour boundary.

As mentioned above, at long times, the cell velocity on the tumour boundary x = ℓ(t)
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(a) (b)

(c) (d)

Figure 4: Tumour growth in free suspension: The numerical results show how the nutrient
concentration (c(t, x)), cell volume fraction (α(t, x)), cell velocity (uα(t, x)), and cell stress
(σα(t, x)) evolve over time when the tumour is grown in free suspension. Simulation results are
plotted at times t ∈ {5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100} and were generated using the
default parameter values stated in Table 4.
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evolves to a constant, positive value, indicating sustained and constant rate of tumour growth.
This is consistent with the plot in Figure 6 which shows that when ϑ = ν = 0 (i.e., when the
tumour is grown in free suspension) the tumour boundary increases at a constant rate.

Taken together, the simulations results presented in Figure 4 and Figure 6 show that the
tumour’s growth is limited by nutrient availability when it is cultured in free suspension.

3.2 Tumour growth limited by mechanical stress

We simulate tumour growth in a hydrogel by fixing the values of ϑ and ν so that the tumour
experiences mechanical resistance to its growth (i.e., σH < 0). In what follows, we fix ν = 0
and vary ϑ between ϑ = 0.5 and ϑ = 20. The numerical results presented in Figure 5 show how
the tumour cell volume fraction, α(t, x), the tumour cell velocity, uα(t, x), and the mechanical
stresses in the tumour and hydrogel, σTG(t, x) change over time, where

σTG =





σα if 0 ≤ x ≤ ℓ(t),

σH if ℓ(t) ≤ x ≤ 1.

The time evolution of the nutrient concentration is not plotted since it is similar to that shown
in Figure 4(a). Figure 6 shows how the tumour length evolves over time. We note that the
tumour and hydrogel stresses are continuous at the tumour boundary, as indicated by the
coloured circles on the line plots in Figures 5(c), 5(f), and 5(i). We note also that since σα < 0
at x = ℓ(t), cells on the tumour boundary are mechanically compressed by the hydrogel. By
contrast, when the tumour is grown in free suspension, σα = 0 at x = ℓ(t) (see Figure 4(d)).
We remark that axes in each sub-plots in Figure 5 are scaled differently to resolve evolution of
the corresponding variables more clearly.

The simulation results presented in Figure 5 show that, when ν = 0, the tumour exhibits
three qualitatively different behaviours as the hydrogel stiffness parameter ϑ varies:

Small ϑ (0 ≤ ϑ ≤ 1): the tumour grows to an equilibrium size that supports the formation of
a necrotic core. The profiles for the tumour cell volume fraction, α(t, x), and velocity, uα(t, x),
are qualitatively similar to those for tumour growth in free suspension (compare Figure 5(a,b)
and Figure 4). However, the stress profiles are different. When the tumour is embedded in
hydrogel, the entire tumour is under compressive stress (σα(t, x) < 0 for 0 ≤ x ≤ ℓ(t)). In
the necrotic core, the stress is spatially uniform and increases in magnitude over time; this
contrasts with the behaviour in free suspension, where the cell stress is zero in the necrotic
core. The mechanical stress is most compressive on the tumour boundary. As the tumour
increases in size and the hydrogel becomes more compressed, the stress that it exerts on the
tumour boundary increases in magnitude, causing the tumour cell velocity there to decrease.
At long times, the cell velocity on x = ℓ(t) approaches zero and the tumour evolves to a steady
state, with 0 < ℓin = ℓ(t = 0) < ℓ(∞) < 1 (see Figure 6). In this case, the tumour’s growth is
limited by the combined effects of nutrient availability and the compressive forces it experiences
from the hydrogel.

Intermediate ϑ (1 ≤ ϑ ≤ 11): the tumour grows but, with increased compressive stress
from the surrounding hydrogel, it rapidly evolves to a non-trivial equilibrium whose small size
precludes the formation of a necrotic core because the nutrient concentration throughout the
tumour exceeds the threshold for necrotic cell death (see the second row of Figure 5). In this
case, the tumour’s growth dynamics are dominated by inhibitory mechanical feedback from
the hydrogel.

Large ϑ (ϑ > 11): in this case, the stress in the hydrogel is extremely large in magnitude
and compressive in nature. The compressive stress is so large that it prevents growth-induced
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ϑ
=

0.
5

(a) (b) (c)

ϑ
=

2

(d) (e) (f)

ϑ
=

20

(g) (h) (i)

Time values:

Figure 5: Tumour growth limited by mechanical stress: Numerical results showing how the
growth dynamics of a tumour embedded in a hydrogel change as the material properties of the
hydrogel vary (all other model parameters are fixed at the default values stated in Table 4). For
fixed values of ϑ (ϑ = 0.5, 2.0 and 20), we show how the spatial distribution of the cell volume
fraction (α(t, x)) (Figures 5(a), 5(d), 5(g)), cell velocity (uα(t, x)) (Figures 5(b), 5(e), 5(h)),
and mechanical stress (σTG(t, x)) (Figures 5(c), 5(f), 5(i)) evolve over time. Note that the axes
in each sub-plot is scaled differently.
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Figure 6: Tumour lengths over time for growth under mechanical stress: In all simulations,
ν = 0 and ϑ varies as indicated (ϑ = 0.0, 0.5, 2, 20.)

tumour expansion and leads to to its eventual elimination (ℓ(t) → 0 as t → ∞) (see Figure 6).
Here, the tumour’s growth dynamics are dominated by inhibitory mechanical effects from the
hydrogel.

We now investigate how the tumour’s growth dynamics change as the hydrogel stiffness
parameters vary. In Figures 7(a) and 7(b), we show how the evolution of the tumour’s outer
boundary x = ℓ(t), changes when the parameters ϑ and ν are varied. As ϑ increases, the
tumour’s equilibrium size decreases but the timescale on which it attains its steady state
remains constant, to leading order. By contrast, increasing ν has a dual effect: the tumour
evolves more slowly to a larger steady state configuration.

For completeness, Figure 7(c) shows how the equilibrium tumour size, x = ℓs = limt→∞ ℓ(t),
changes when both ν and ϑ are varied, with ϑ ≥ ν ≥ 0. We estimate ℓs by solving the governing
equations for 0 < t ≤ T = 1000, and fixing ℓs = ℓ(t = T ). For (ϑ, ν) combinations that lie
above the red line, the tumour attains an equilibrium size with ℓs ≥ 0.01. In such cases,
insufficient nutrient reaches the central tumour region and a necrotic core forms. For (ϑ, ν)
combinations below the red line, the equilibrium tumour size is sufficiently small that nutrient
levels throughout the tumour exceed the threshold for necrotic cell death. We note also that
the tumour only attains an equilibrium size with ℓs = 0.9 for very small values of ϑ (towards
the bottom–left corner in Figure 7(c)). Otherwise, the tumour attains an equilibrium size less
than ℓs ≈ 0.4, indicating the influence of external compressive stress in controlling the final
tumour size. In Figure 7(c), parameter values for which tumour elimination occurs are not
shown, in order to better resolve values of (ϑ, ν) for which a necrotic core forms. However,
extensive numerical simulations indicate that tumour elimination occurs for ϑ > 11.

4 Model analysis

In this section we use asymptotic analysis to study the long time behaviour of our model and to
identify distinct parameter regimes in which the tumour is eliminated or attains a non-trivial
steady state.

The numerical results presented in Figures 5(g) and 5(h) show that, when the hydrogel is
very stiff, spatial variation in the cell volume is negligible, and the cell velocity is small and
negative, and decreases linearly with distance from the tumour centre. Further, the tumour
length is small. In order to investigate this behaviour, we define ǫ = ℓin and, guided by the
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Figure 7: Series of plots showing how the tumour’s growth dynamics, notably its length x =
ℓ(t), change as parameters governing the mechanical properties of the hydrogel in which it is
embedded are varied. (a) When ν = 0.1, the tumour’s equilibrium size decreases as ϑ increases
but the timescale over which it attains its equilibrium remains approximately constant. (b)
When ϑ = 1, the tumour’s equilibrium size increases and the timescale on which it relaxes to
its equilibrium also increases. (c) Diagram showing how the equilibrium tumour length changes
as ϑ and ν vary (with 0 ≤ ν ≤ ϑ). For parameter values above the red line, the equilibrium
tumour possesses a central necrotic core while for parameter values below the red line it does
not.

parameter values stated in Table 4, we assume that

0 < ℓin = ǫ ≪ 1 and 0 < ǫ2 k

µ
≪ 1.

We seek approximate solutions of the governing equations which are regular power series ex-
pansions in the small parameter ǫ:

α(t, x) = α0(t) + ǫα1(t, ρ) + O(ǫ2),

uα(t, x) = ǫu1(t, ρ) + O(ǫ2),

c(t, x) = 1 + O(ǫ2),
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ℓ(t) = ǫℓ1(t) + O(ǫ2).

In the above expansions, we rescale the spatial coordinates so that ρ = x/ǫ. We substitute the
above expansions in Equations (2.25a)–(2.25d) and equate terms of O(ǫn) (n = 0, 1) to arrive
at the following equations for α0, u1 and ℓ1:

dα0

dt
+ α0

∂u1

∂ρ
= α0(1 − κ − α0), (4.1)

∂2u1

∂ρ2
= 0, (4.2)

dℓ1

dt
= u1(t, ℓ1(t)). (4.3)

Here, we recall that κ = (s2 + s3)/(1 + s4), where s2, s3 and s4 are non-negative parameters
that control the death rate of the tumour cells (see Equation (2.25b)). It is straightforward
to show that, at leading order, Equations (2.25e)–(2.25f) supply the following boundary and
initial conditions for α0, u1 and ℓ1:

α0(0) = αini,

u1(t, 0) = 0, (4.4)

µ
∂u1

∂ρ
(t, ℓ1(t)) = (ν − ϑ) +

(α0(t) − α∗)+

(1 − α0(t))2
, (4.5)

ℓ1(0) = 1.

Integrating Equation (4.2), subject to boundary conditions (4.4) and (4.5), yields the following
expression for u1(t, ρ):

u1(t, ρ) =
1

µ

(
(ν − ϑ) +

(α0(t) − α∗)+

(1 − α0(t))2

)
ρ.

Substituting for u1 in Equations (4.1) and (4.3), we obtain the following differential equations
for α0 and ℓ1:

dα0

dt
= α0

(
αc − α0 −

(α0 − α∗)+

µ(1 − α0)2

)
, (4.6)

µ

ℓ1

dℓ1

dt
= (ν − ϑ) +

(α0 − α∗)+

(1 − α0)2
, (4.7)

where the critical volume fraction αc is defined as follows:

αc := 1 − κ +
(ϑ − ν)

µ
.

Recall that we have assumed ϑ > ν so that the hydrogel exerts a compressive force on the
tumour. Since κ ∈ (0, 1), this ensures that αc > 0. For a given value of αc, we denote the
steady state values of α0(t) and ℓ1(t) by α0∞ := limt→∞ α(t) and ℓ1∞ := limt→∞ ℓ(t).

By setting d
dt

= 0 in Equation (4.6), it is straightforward to show that there are two possible
steady state solutions for α0(t).
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The trivial steady state. If α0∞ = 0, then Equation (4.7) yields

lim
t→∞

µ

ℓ1

dℓ1

dt
= ν − ϑ < 0,

since ν < ϑ. We conclude that, in this case, ℓ1(t) decays to zero at long times. In practice,
however, this case is physically unrealistic. Since, nutrient levels inside a small tumour will be
high (and approximately equal to the nutrient levels in the hydrogel), the tumour cells will
proliferate rapidly and their volume fraction will be non-zero. Henceforth, we reject further
consideration of this case.

The non-trivial steady state. The non-trivial steady state tumour cell volume fraction,
α0∞ satisfies the following condition:

αc − α0∞ =
(α0∞ − α∗)+

µ(1 − α0∞)2
≡

H (α0∞)

µ
≥ 0. (4.8)

There are two cases to consider, depending on whether α0∞ ≤ α∗ or α0∞ > α∗.

Case 1: If α0∞ ≤ α∗, then H (α0∞) = 0 and Equation (4.6) supplies α0∞ = αc. Further, by
referring to Equation (4.7), we deduce that the tumour will be eliminated at rate −(ϑ − ν). In
this case, αc ≤ α∗ is a necessary condition for α0∞ = αc (see, also, Figure 8(a)).
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−

α
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Figure 8: Pair of plots showing how the non-trivial steady state value of the tumour cell volume
fraction α0∞ changes as the parameter αc = 1 − κ + (ϑ − ν)/µ varies (see Equation (4.8)). (a)
The intersection of the curves y = H (α0)/µ and y = αc − α0 shows the steady state volume
fraction α0∞(αc) for αc ≤ α∗ (cyan) and for αc > α∗ (red). (b) The steady state volume
fraction α0∞ increases as αc increases. In Figure 8(b) we use Equation (4.8) to show that α0∞

increases monotonically with αc ∈ (α∗, 1) when α∗ = 0.8.

Case 2: If α0∞ > α∗, then the non-trivial steady state is the unique positive solution of

αc − α0∞ =
α0∞ − α∗

µ(1 − α0∞)2
.

As shown in Figure 8(a) for αc > α∗, the steady state volume fraction satisfies α∗ < α0∞ <
min(αc, 1) and Equation (4.7) supplies

lim
t→∞

1

ℓ1

dℓ1

dt
= αc − α0∞ −

(ϑ − ν)

µ
< αc − α∗ −

(ϑ − ν)

µ
.
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Recalling that ϑ > ν, we deduce that if αc < α∗ + (ϑ − ν)/µ, then the tumour decays.

In Figure 8(b) we show that the non-trivial steady state α0∞ = α0∞(αc) is a monotonically
increasing function of αc. To understand this behaviour, we proceed as follows. Choose αc1

and αc2
so that αc1

≥ αc2
and suppose that α0∞(αc1

) < α0∞(αc2
). Rearranging Equation (4.8)

we have that

αc1
= α0∞(αc1

) +
(α0∞(αc1

) − α∗)

µ(1 − α0∞(αc1
))2

< α0∞(αc2
) +

(α0∞(αc2
) − α∗)

µ(1 − α0∞(αc2
))2

= αc2
,

which contradicts our assumption that αc1
≥ αc2

and, so, we conclude that α0∞ increases
monotonically with αc.

With αc = 1 − κ + (ϑ − ν)/µ, it is now clear that both αc and α0∞ are increasing functions
of the hydrogel stiffness parameter ϑ. Recall that the tumour is a two-phase mixture of viscous
cells and inviscid fluid. Since the fluid is less resistant to flow than the cells, as αc (or equiva-
lently ϑ) increases, the compressive force acting on the tumour increases, fluid is squeezed out
of the tumour and the tumour cell volume fraction increases (see Figure 5).

We end this section with a remark on the tumour’s long-time growth rate. If uα(t, ℓ(t)) ≤ 0
for all t ≥ 0, then the tumour is eventually eliminated. By contrast, if uα(t, ℓ(t)) ≥ 0 for all
t ≥ 0, it is possible to prove that uα(t, ℓ(t)) → 0 when ℓ(t) → 1 (see Appendix A). As the
tumour expands, the polymer and water molecules in the hydrogel become increasingly packed
until, eventually, the short-range repulsive forces between them cause the hydrogel to become
effectively incompressible. Since the hydrogel and tumour occupy a finite, one-dimensional
domain, incompressibility eventually leads to length invariance of the hydrogel and, hence, the
tumour. In practice, and as the numerical results in Figure 7 indicate, the tumour becomes
mechanically inhibited from growth when ℓ(t) ≈ 0.9 (i.e., before the tumour reaches the domain
boundary, at x = 1).

5 Discussion

We have presented a new mathematical model that describes the one-dimensional growth of
an avascular tumour spheroid embedded within a deformable hydrogel. The tumour is viewed
as a two-phase mixture of cells and fluid and the hydrogel is modelled as a compressible,
hyperelastic material. Following the approach outlined in [33], the principles of mass and
momentum conservation are used to derive partial differential equations that describe the time
evolution of the volume fractions and velocities of the cell and fluid phases. Following [49]
and generalising the approaches in [33] and [30], the tumour and cell phases are viewed as
viscous and inviscid fluids, respectively. Further, local levels of an externally-supplied, diffusible
nutrient regulate local rates of tumour cell proliferation and death. As the tumour increases
in size, it deforms the hydrogel which, in turn, exerts a compressive stress on the tumour. The
balance between the expansive pressure caused by tumour growth and the resistance caused
by hydrogel deformation determines the tumour’s growth dynamics.

We presented numerical results which show how the tumour’s growth dynamics change as
the material parameters of the hydrogel are varied. For soft hydrogels, the tumour grows to a
large size, and its dynamics are similar to those associated with growth in free suspension, where
nutrient availability is growth-rate limiting. For stiffer hydrogels, the tumour evolves to a non-
trivial equilibrium whose size is limited by both nutrient availability and mechanical effects.
For very stiff hydrogels, mechanical effects are dominant and the compressive forces exerted
by the hydrogel on the tumour are so large that it is eliminated. The asymptotic analysis
presented in Section 4 confirms the numerical results and enables us to identify parameter
regimes in which tumour elimination is predicted.
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There are many ways in which the model presented in this paper could be extended. In
the in vitro context, possible directions for future research include: extension of the governing
equations to describe tumour growth in two and three spatial dimensions, and treatment of
the hydrogel as a two-phase, poroelastic material to enable explicit consideration of fluid flow
between the tumour and hydrogel. We could also account for behavioural changes in the tumour
cells caused by mechanotransduction. For example, tumour cells may respond to compressive
mechanical stress by reducing their rate of cell proliferation and increasing their rate of cell
death [10, 31]. They may also release protein-digesting enzymes (proteases) that remodel the
extracellular matrix in which they are embedded, reducing the mechanical stress that they
experience, and creating space into which they can expand [50–52]. Such model extensions
would enable investigation of the interplay between tumour growth, hydrogel compression, and
tumour-induced remodelling of the hydrogel.

It would also be interesting to specialise the model to study tumour growth in vivo: this
could be achieved by including additional phases to account for the vasculature [53], differ-
ent types of immune cells (e.g., macrophages and T cells) [54, 55] and stromal cells (e.g.,
fibroblasts), their cross talk with each other and the tumour cells, and also remodelling of
the vasculature and extracellular matrix in which the tumour is located [56]. By simulating
these effects, we aim to increase understanding of the ways in which changes in the extracel-
luar matrix impact tumour growth and responses to existing treatments such as radiotherapy,
chemotherapy and immunotherapy [57–59] while also identifying those that could be used to
inhibit tumour progression [60].

Other directions that merit further consideration relate to validation and parameterisation
of the model against experimental data, and also its comparison with the earlier models pro-
posed by [30–32]. At present, the available experimental data are limited to measurements of
tumour volume [8], spatial staining for cell proliferation and cell death and measurements of
stress distribution in the hydrogel [9]. In the numerical simulations presented in this paper, we
have used parameter values from previous literature [33, 41] and several interesting qualitative
features of the model variables are illustrated. However, rigorous parameter estimation for this
model is not yet undertaken and would be an exciting avenue for further work including data
integration methods for incorporating multiple sources of data and model selection, both of
which have become common in other data-driven areas of mathematical biology [61].

Acknowledgements. GCR acknowledges Monash University for funding. He also thanks N
Nataraj and J Droniou for support during his PhD studies. We also thank Avner Friedman for
his many, seminal contributions to mathematical biology and for being an inspirational role
model to us and so many other researchers in the field.

References

[1] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-
Schughart. Multicellular tumor spheroids: an underestimated tool is catching up again. J.
Biotec., 148(1):3–15, 2010. URL https://doi.org/10.1016/j.jbiotec.2010.01.012.

[2] N. Ferrara. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer, 2
(10):795–803, 2002. URL https://doi.org/10.1038/nrc909.

[3] M. J. Duffy, P. M. McGowan, and W. M. Gallagher. Cancer invasion and metastasis:
changing views. J. Pathol., 214(3):283–293, 2008. URL https://doi.org/doi:10.1002/

path.2282.

[4] M. J. Bissell and D. Radisky. Putting tumours in context. Nat. Rev. Cancer, 1(1):46–54,
2001. URL https://doi.org/10.1038/35094059.

20



[5] H. Gonzalez, C. Hagerling, and Z. Werb. Roles of the immune system in cancer: from
tumor initiation to metastatic progression. Genes Dev., 32(19-20):1267–1284, 2018. URL
https://doi.org/10.1101/gad.314617.118.

[6] P. K. Chaudhuri, B. C. Low, and C. T. Lim. Mechanobiology of tumor growth. Chem.
Rev., 118(14):6499–6515, 2018. URL https://doi.otg/10.1021/acs.chemrev.8b00042.

[7] R. K. Jain, J. D. Martin, and T. Stylianopoulos. The role of mechanical forces in tumor
growth and therapy. Annu. Rev. Biomed. Eng., 16:321, 2014. URL https://doi.org/

10.1146/annurev-bioeng-071813-105259.

[8] G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K. Jain. Solid stress
inhibits the growth of multicellular tumor spheroids. Nat. Biotec., 15(8):778–783, 1997.
URL https://doi.org/10.1038/nbt0897-778.

[9] G. Cheng, J. Tse, R. K. Jain, and L. L. Munn. Micro-environmental mechanical stress
controls tumor spheroid size and morphology by suppressing proliferation and inducing
apoptosis in cancer cells. PLoS ONE, 4(2):17, 2009. URL https://doi.org/10.1371/

journal.pone.0004632.

[10] M. Delarue, F. Montel, D. Vignjevic, J. Prost, J. F. Joanny, and G. Cappello. Compressive
stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys. J.,
107(8):1821–1828, 2014. URL https://doi.org/10.1016/j.bpj.2014.08.031.

[11] S. Takao, M. Taya, and C. Chiew. Mechanical stress–induced cell death in breast cancer
cells. Biol. Open., 8(8), 2019. URL https://doi.org/10.1242/bio.043133.

[12] J. M. Northcott, I. S. Dean, J. K. Mouw, and V. M. Weaver. Feeling stress: the mechanics
of cancer progression and aggression. Front. Cell Dev. Biol., 6:17, 2018. URL https:

//doi.org/10.3389/fcell.2018.00017.

[13] Q. Liu, Q. Luo, Y. Ju, and G. Song. Role of the mechanical microenvironment in cancer
development and progression. Cancer Biol. Med., 17(2):282–292, 2020. URL https:

//doi.org/10.20892/j.issn.2095-3941.2019.0437.

[14] J. A. Bull and H. M. Byrne. The hallmarks of mathematical oncology. Proceedings of the
IEEE, 110(5):523–540, 2022. URL https:/doi.org/10.1109/JPROC.2021.3136715.

[15] J. A. Flegg and N. Nataraj. Mathematical modelling and avascular tumour growth. Res-
onance, 24(3):313–325, 2019. URL https://doi.org/10.1007/s12045-019-0782-8.

[16] D. Mathur, E. Barnett, H. I. Scher, and J. B Xavier. Optimizing the future: how math-
ematical models inform treatment schedules for cancer. Trends in Cancer, 8(6):506–516,
2022. URL https://doi.org/10.1016/j.trecan.2022.02.005.

[17] H. M. Byrne, T. Alarcon, M. R. Owen, S. D. Webb, and P. K. Maini. Modelling aspects of
cancer dynamics: A review. Philo. Trans. Roy. Soc. A, 364(1843):1563–1578, 2006. URL
10.1098/rsta.2006.1786.

[18] T. Roose, S. J. Chapman, and P. K. Maini. Mathematical models of avascular
tumour growth. SIAM Rev., 49:179–208, 2007. URL https://doi.org/10.1137/

S0036144504446291.

21



[19] J. A. Bull, F. Mech, T. Quaiser, S. L. Waters, and H. M. Byrne. Mathematical modelling
reveals cellular dynamics within tumour spheroids. PLoS Comput. Bio., 16(8), 2020. URL
https://doi.org/10.1371/journal.pcbi.1007961.

[20] D. Wallace and X. Guo. Properties of tumor spheroid growth exhibited by simple math-
ematical models. Front. Oncol., 3:51, 2013. URL 10.3389/fonc.2013.00051.

[21] R. A. Gatenby and E. T. Gawlinski. A reaction-diffusion model of cancer invasion. Can-
cer Research, 56(24):5745–5753, 1996. URL https://aacrjournals.org/cancerres/

article-pdf/56/24/5745/2462558/cr0560245745.pdf.

[22] H. P. Greenspan. Models for the growth of a solid tumor by diffusion. Stud. Appl. Math.,
51(4):317–340, 1972. URL https://doi.org/10.1002/sapm1972514317.

[23] X. Chen and A. Friedman. A free boundary problem for an elliptic-hyperbolic system: an
application to tumor growth. SIAM J. Math. Anal., 35(4):974–986, 2003. URL https:

//doi.org/10.1137/S0036141002418388.

[24] M. A. Fontelos and A. Friedman. Symmetry-breaking bifurcations of free boundary
problems in three dimensions. Asymptot. Anal., 35(3-4):187–206, 2003. URL http:

//www.jstor.org/stable/24902303.

[25] X. Chen, S. Cui, and A. Friedman. A hyperbolic free boundary problem modeling tumor
growth: Asymptotic behavior. Trans. Amer. Maths. Soc., 357(12):4771–4804, 2005. URL
https:doi.org/10.1090/S0002-9947-05-03784-0.

[26] D. Chen and A. Friedman. A two-phase free boundary problem with discontinuous velocity:
Application to tumor model. J. Math. Anal. Appl., 399(1):378–393, 2013. URL https:

//doi.org/10.1016/j.jmaa.2012.10.035.

[27] H. M. Byrne, J. R. King, D. L. S. McElwain, and L. Preziosi. A two-phase model of
solid tumour growth. Appl. Math. Lett., 16(4):567–573, 2003. URL https://doi.org/

10.1016/S0893-9659(03)00038-7.

[28] D. Ambrosi and F Mollica. The role of stress in the growth of a multicell spheroid. J.
Math. Biol., (48):477–499, 2004. URL https://doi.org/10.1007/s00285-003-0238-2.

[29] D. Ambrosi, S. Pezzuto, D. Riccobelli, T. Stylianopoulos, and P. Ciarletta. Solid tumors
are poroelastic solids with a chemo-mechanical feedback on growth. J. Elast., (129):
107–124, 2017. URL https://doi.org/10.1007/s10659-016-9619-9.

[30] C. Y. Chen, H. M. Byrne, and J. R. King. The influence of growth-induced stress from
the surrounding medium on the development of multicell spheroids. J. Math. Biol., 43(3):
191–220, 2001. URL https://doi.org/10.1007/s002850100091.

[31] T. Roose, P. A. Netti, L. L. Munn, Y. Boucher, and R. K. Jain. Solid stress generated by
spheroid growth estimated using a linear poroelasticity model. Microvascular Research,
66(3):204–212, 2003. URL https://doi.org/10.1016/S0026-2862(03)00057-8.

[32] H. Yan, D. Ramirez-Guerrero, J. Lowengrub, and .M Wu. Stress generation, relaxation
and size control in confined tumor growth. PLOS Comput. Bio., 17(12), 2021. URL
https://doi.org/10.1371/journal.pcbi.1009701.

22



[33] C. J. W. Breward, H. M. Byrne, and C. E. Lewis. The role of cell-cell interactions in a
two-phase model for avascular tumour growth. J. Math. Biol., 45(2):125–152, 2002. URL
https://doi.org/10.1007/s002850200149.

[34] G. Lemon, J. R. King, H. M. Byrne, O. E. Jensen, and K. M. Shakesheff. Mathematical
modelling of engineered tissue growth using a multiphase porous flow mixture theory. J.
Math. Bio., 52:571–594, 2006. URL https://doi.org/10.1007/s00285-005-0363-1.

[35] J. S. Bergström. Mechanics of Solid Polymers. William Andrew, 2015. URL https:

//doi.org/10.1016/B978-0-323-31150-2.00005-4.

[36] O. H. Yeoh. Comprehensive polymer science and supplements. Pergamon, Amsterdam,
1989. URL https://doi.org/10.1016/B978-0-08-096701-1.00251-2.

[37] P. J. Flory. Principles of Polymer Chemistry. Baker lectures 1948. Cornell University
Press, 1953.

[38] W. Hong, X. Zhao, J. Zhou, and Z. Suo. A theory of coupled diffusion and large
deformation in polymeric gels. J. Mech. Phys. Solids, 56(5):1779–1793, 2008. URL
10.1016/j.jmps.2007.11.010.

[39] J. Ward and J. R. King. Mathematical modelling of avascular-tumour growth. IMA J.
Math. Appl. Med. Bio., 14:39–69, 04 1997. URL 10.1093/imammb14.1.39.

[40] H. M. Byrne and L. Preziosi. Modelling solid tumour growth using the theory of mixtures.
Math. Med. Bio., 20(4):341–366, 2003. URL 10.1093/imammb/20.4.341.

[41] C. J. W. Breward, H. M. Byrne, and C. E. Lewis. Modelling the interactions between tu-
mour cells and a blood vessel in a microenvironment within a vascular tumour. European J.
Appl. Math., 12(5):529–556, 2001. URL https://doi.org/10.1017/S095679250100448X.

[42] H. M. Byrne and M. R. Owen. A new interpretation of the keller-segel model based on
multiphase modelling. J. Math. Bio., 49(6):604–626, 2004. URL https://doi.org/10.

1007/s00285-004-0276-4.

[43] J. Yao, W. Liu, and Z. Chen. Numerical solution of a moving boundary problem of
one-dimensional flow in semi-infinite long porous media with threshold pressure gradient.
Math. Problems Engg., 2013. URL http://dx.doi.org/10.1155/2013/384246.
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A Long time behaviour if tumour length approaches do-

main boundary

The numerical results presented in the main text show that sustained tumour growth com-
presses the hydrogel. As the compressive stress that the hydrogel exerts on the tumour
increases, eventually the tumour’s growth rate tends to zero (i.e., the tumour cannot grow
indefinitely). We formalise this observation in Theorem A.1.

Theorem A.1. Let (α, uα, c, ℓ) be a solution of Equations (2.25) such that uα(t, ℓ(t)) ≥ 0 for
every t ≥ 0. Suppose that there are positive constants αℓ and αu such that 0 < αℓ ≤ α ≤ αu < 1.

If ϑ ≥ ν, then lim
ℓ(t)→1

dℓ

dt
= 0.

Proof. Multiply Equation (2.25b) by uα(t, x) and apply integration by parts to obtain

ˆ ℓ(t)

0

kα

1 − α
u2

αdx +

ˆ ℓ(t)

0

µα

(
∂uα

∂x

)2

dx =

ˆ ℓ(t)

0

H (α)
∂uα

∂x
dx + uα(t, ℓ(t))σH. (A.1)

Since uα(t, ℓ(t)) ≥ 0 and σH ≤ 0, it follows that uα(t, ℓ(t))σH ≤ 0. Then Equation (A.1)
supplies

ˆ ℓ(t)

0

µα

(
∂uα

∂x

)2

dx ≤

ˆ ℓ(t)

0

H (α)
∂uα

∂x
dx ≤

√
ℓ(t) sup

(0,ℓ(t))
|H (α)|



ˆ ℓ(t)

0

(
∂uα

∂x

)2

dx




1/2

(A.2)

where we have applied the Cauchy-Schwartz inequality. Since 0 < αℓ ≤ α ≤ αu < 1, Equa-
tion (A.2) yields

µαℓ



ˆ ℓ(t)

0

(
∂uα

∂x

)2

dx




1/2

≤
√

ℓ(t)
αu|αu − α∗|

|1 − αu|2
. (A.3)

Since the left-hand side of Equation (A.1) is non-negative, we obtain

uα(t, ℓ(t)) ≤
1

|σH|

ˆ ℓ(t)

0

H (α)
∂uα

∂x
dx.

Then, application of Cauchy-Schwartz inequality to
´ ℓ(t)

0
H (α)∂uα

∂x
dx, together with Equa-

tion (A.3), leads to

uα(t, ℓ(t)) ≤
ℓ(t)

µαℓ|σH
|ℓ(t)|

(
αu|αu − α∗|

|1 − αu|2

)2

.

From Equation (2.26h), we have that |σH| → ∞ as ℓ(t) → 1. Therefore, it follows that

lim
ℓ(t)→1

dℓ

dt
= lim

ℓ(t)→1
uα(t, ℓ(t)) = 0,

as required.
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Remark A.1. Theorem A.1 does not explicitly describe the time evolution of the tumour
length. Rather, it asserts that the cell velocity approaches zero as the tumour approaches the
domain boundary (i.e., as ℓ(t) → 1). Thus, the tumour length undergoes sigmoidal growth,
as in Figure 7(a), wherein ℓ(t) increases monotonically at early times and then plateaus at a
stationary value. This theoretical result is consistent with the experimental observations in [8].
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