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The recently-synthesized iridate β-Li2IrO3 has been proposed as a candidate to display novel
magnetic behavior stabilized by frustration effects from bond-dependent, anisotropic interactions
(Kitaev model) on a three-dimensional “hyperhoneycomb” lattice. Here we report a combined
study using neutron powder diffraction and magnetic resonant x-ray diffraction to solve the com-
plete magnetic structure. We find a complex, incommensurate magnetic order with non-coplanar
and counter-rotating Ir moments, which surprisingly shares many of its features with the related
structural polytype “stripyhoneycomb” γ-Li2IrO3, where dominant Kitaev interactions have been
invoked to explain the stability of the observed magnetic structure. The similarities of behavior
between those two structural polytypes, which have different global lattice topologies but the same
local connectivity, is strongly suggestive that the same magnetic interactions and the same underly-
ing mechanism governs the stability of the magnetic order in both materials, indicating that both β-
and γ-Li2IrO3 are strong candidates to realize dominant Kitaev interactions in a solid state material.

PACS numbers: 75.25.-j, 75.10.Jm

I. INTRODUCTION

Materials containing ions with a strong spin-orbit in-
teraction are attracting much attention as candidates to
display novel electronic states ranging from topological
insulators with protected gapless surface states to quan-
tum spin liquids with exotic excitations.1 Complex mag-
netic behavior can arise when the strong spin-orbit cou-
pling (as found for heavy transition metal 4d and 5d ions)
and crystal field effects stabilize spin-orbit entangled
magnetic moments, which may interact via anisotropic
exchange interactions where the anisotropy axis depends
on the bond orientation. On certain lattices these inter-
actions may be strongly frustrated, leading potentially
to novel forms of cooperative magnetic order and/or ex-
citations, not found for magnets of 3d ions (where the
spin-orbit coupling is much weaker and the orbital mo-
ment is in general quenched). The magnetic ground state
of Ir4+ ions in a cubic IrO6 octahedron is a doublet with
a mixed spin-orbital character,2 Jeff = 1/2, and for edge-
sharing IrO6 octahedra it was proposed3,4 that the lead-
ing super-exchange is a ferromagnetic Ising coupling be-
tween the Ir magnetic moment components perpendic-
ular to the Ir-O2-Ir plane. For three-fold coordinated,
edge-sharing octahedra this leads to orthogonal Ir-O2-Ir
planes for the three Ir-Ir bonds and correspondingly or-
thogonal x, y, z components coupled along the three Ir-Ir
bonds. For a honyecomb lattice this realizes the Kitaev
model,5 where the strong frustration effects stabilize an
(exactly solvable) quantum spin liquid state with novel
excitations (Majorana fermions and fluxes).6 In search
for realizations of such physics, α-Na2IrO3 [Refs. 7–11]
and α-Li2IrO3 [Refs. 12,13] have been actively explored

experimentally, however no clear evidence of novel Kitaev
phenomena has been observed.

Generalization of the Kitaev model to three-
dimensional (3D) lattices have also been shown to have
quantum spin liquid ground states.14–16 Furthermore,
non-trivial magnetic behavior has been predicted when
(finite) additional interactions suppress the spin liquid
and stabilize magnetic order.15,17 The recently synthe-
sized “hyperhoneycomb”18 β-Li2IrO3 [see Fig. 1] and
“stripyhoneycomb”19 γ-Li2IrO3, which have the local
connectivity of three-fold coordinated IrO6 octahedra
with near-orthogonal Ir-O2-Ir planes meeting at each Ir
site, are prime candidates to realize 3D Kitaev physics.
The availability of single crystal samples of both of those
two distinct structural polytypes offers unique oppor-
tunities to perform comparative studies between them
and gain insight into the underlying physics. In recent
experiments20 on the γ-polytype we have observed an un-
expectedly complex, yet highly-symmetric incommensu-
rate magnetic structure with non-coplanar and counter-
rotating moments, and theoretical calculations showed
that this structure could be stabilized by a spin Hamil-
tonian with dominant Kitaev couplings and some addi-
tional interactions. Here we extend our experimental
studies to the β-polytype, where we find some striking
similarities in the magnetic structure. This shows that
the key features of the magnetic order are robust, inde-
pendent of the changes in the global lattice topology be-
tween the two distinct structural polytypes that share the
same building blocks. This is strongly suggestive that the
same underlying magnetic interactions govern the stabil-
ity of the magnetic order in both structural polytypes,
which would be an important constraint on any theoreti-
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cal model of the cooperative magnetism in this family of
materials.

The structural polytype β-Li2IrO3 was discovered by
Takayama et. al.18 and the crystal structure is illustrated
in Fig. 1(left). It has an orthorhombic unit cell (space
group Fddd, for full structural details see Appendix A)
and the same mass density and same fundamental build-
ing blocks - edge-sharing LiO6 and IrO6 octahedra (the
latter shaded in red) as in the layered polytype α-Li2IrO3

(Ref. 12), where edge-sharing IrO6 octahedra form pla-
nar honeycomb layers separated by hexagonal Li layers.
In the β-structure [see Fig. 1] the Ir lattice is three-fold
coordinated as in a planar honeycomb, but now the links
of the lattice form a 3D network; this 3D lattice connec-
tivity has been named a “hyperhoneycomb”.18 It can be
thought of as being made of zig-zag chains [shaded cyan
and purple in Fig. 1(right)] stacked along c and alternat-
ing in direction between the two basal plane diagonals
a± b (the planar honeycomb structure is obtained when
the zig-zag iridium chains are not alternating in orienta-
tion, but are all running parallel to either the a + b, or
the a− b directions).

FIG. 1: (color online) Crystal structure of β-Li2IrO3. Two
unit cells are shown: (left) full structure with Li (white balls),
O (black) and Ir (red) located inside IrO6 octahedra (shaded
polyhedra), (right) Ir ions are arranged in a “hyperhoney-
comb” structure. Light (cyan) and dark (purple) colors indi-
cate zig-zag chains stacked along c and directed alternatingly
along a± b.

Earlier studies18 have shown that β-Li2IrO3 is an in-
sulator. The temperature-dependence of the magnetic
susceptibility parameterized in terms of a Curie-Weiss
law gave an effective magnetic moment µeff = 1.61µB,
consistent with localized, Jeff = 1/2 moments at the

iridium sites. Both specific heat and susceptibility data
showed an anomaly near TN = 38 K attributed to the
onset of magnetic order. Here we confirm that the low-
temperature phase has magnetic long-range order and we
provide a full experimental magnetic structure solution.
Our results give uniquely detailed information about the
correlations that govern the cooperative magnetism and
the relevant magnetic interactions that stabilize them.
We first used neutron diffraction on a powder sample to
confirm the presence of magnetic order at low tempera-
tures and to obtain candidate magnetic propagation vec-
tors. We then performed magnetic resonant x-ray diffrac-
tion (MRXD) experiments on a 17µm diameter single
crystal at the L3 edge of iridium, where experiments on
other iridates2,8,21 have reported a strong enhancement
of the magnetic scattering cross-section. We exploit the
polarization dependence of the MRXD intensity (probed
via azimuth scans) to deduce that the magnetic struc-
ture has rotating magnetic moments and we determine
the plane of rotation and relative phases between all 16
iridium sites in the structural unit cell.
The paper is organized as follows: Sec. II presents the

neutron powder diffraction measurements and the anal-
ysis by which we obtain candidate magnetic propagation
vectors. Sec. III presents the single-crystal MRXD mea-
surements, which observe magnetic Bragg peaks with an
incommensurate propagation vector along the (100) di-
rection. The observed diffraction pattern is analyzed in
terms of magnetic basis vectors in Sec. IIIA and III B.
The azimuth dependence of the diffraction intensity is
used to determine the polarization of all magnetic basis
vectors in the ground state and the relative phase be-
tween them (in Sec. III C). Finally the absolute value of
the ordered magnetic moment is extracted from the neu-
tron powder data in Sec. IIID. The resulting magnetic
structure is presented in Sec. III E and similarities with
the magnetic structure in the γ-polytype are discussed in
Sec. IV. Finally, conclusions are summarized in Sec. V.
Further technical details of the analysis are presented in
the Appendices: (A) crystal structure refinement at low
temperature from single-crystal x-ray data, (B) decom-
position of the magnetic structure in terms of its Fourier
components, (C) derivation of the selection rules for mag-
netic scattering for the various basis vectors, (D) the az-
imuth dependence of the MRXD intensity enabling de-
termination of the relative phase between basis vectors,
and (E) an equivalence mapping between the magnetic
structures in the β- and γ-polytypes of Li2IrO3.

II. MAGNETIC NEUTRON POWDER

DIFFRACTION

Neutron powder diffraction measurements to obtain in-
formation about the magnetic propagation vector were
performed using the time-of-flight diffractometer WISH
at ISIS. 0.71g of powder β-Li2IrO3 (synthesized as de-
scribed in Appendix A) was placed in an aluminium can
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of annular geometry (to minimize the strong neutron ab-
sorption by the Ir nuclei) and was mounted on the cold
finger of a closed cycle refrigerator. Diffraction patterns
were collected at a selection of temperatures from base
(5.6 K) to paramagnetic (70 K), well above the magnetic
ordering transition TN = 38 K inferred from thermo-
dynamic measurements.18 The obtained neutron diffrac-
tion pattern did not allow for a full structural refine-
ment (most likely due to neutron absorption effects in the
presence of iridium). We therefore performed additional
x-ray measurements on a small single crystal piece ex-
tracted from the same powder batch to determine precise
internal atomic positions in the unit cell at a temperature
of 100 K, considered to be cold enough to be representa-
tive of the crystal structure in the low-temperature limit.
The x-ray diffraction was performed on a Mo-source Ox-
ford Diffraction Supernova x-ray diffractometer under a
N2 gas flow, which gave a temperature of 100 K at the
sample position. The data confirmed the expected space
group and full structural refinement (for details see Ap-
pendix A) gave atomic positions consistent with those
previously reported at room temperature.18

Fig. 2 shows the neutron powder diffraction pattern
in the lowest angle bank of detectors, which covers the
region of large d-spacings where magnetic diffraction is
expected. In the main panel the visible diffraction peaks
are of structural origin. β-Li2IrO3 peak positions are de-
noted by the upper row of vertical marks (below the data)
and the two large peaks in the data at d-spacing near
2 Å (labelled “Al”) are the lowest-order diffraction peaks
from the Al can and were fitted as such. The pattern also
showed two peaks labelled (*), originating from a small
impurity phase identified as pure Ir, and those regions in
the data were excluded from the analysis. We performed
the structural fit (using FullProf22) to the neutron data
(both paramagnetic and base temperature) with the in-
ternal atomic positions kept fixed, and only the lattice
parameters left free to vary. The structural fit was con-
sistent over all detector banks - corresponding to a range
of scattering angles and resolutions - and we were also
able to consistently fit the instrument parameters (which
provide the conversion from time-of-flight to d-spacing)
over all the detector banks tested. Fig. 2 illustrates the
very good agreement in describing the structural diffrac-
tion pattern.

A. Candidate magnetic propagation vectors

The inset in Fig. 2 highlights the region of large d-
spacing, where upon cooling below TN two new Bragg
peaks appear, attributed to the onset of magnetic order-
ing. The peak widths are comparable to those of struc-
tural Bragg peaks, implying long-range magnetic order.
With only two magnetic peaks the magnetic structure
cannot be solved uniquely, however the data provides
strong constraints on the magnetic propagation vector, q.
Typically q will lie on a point, line or plane of high sym-

FIG. 2: (color online) Neutron powder diffraction at base tem-
perature (5.6 K, red circles) and in the paramagnetic regime
(70 K, green circles) in the lowest-angle detector bank. Solid
black line shows the fit to the structural and magnetic con-
tributions as discussed in the text. Positions of structural β-
Li2IrO3 peaks, aluminium peaks and magnetic Bragg peaks
are marked below the pattern in the upper, middle and lower
rows, respectively and the blue line underneath represents
the difference between data and fit. Labels “Al” indicate alu-
minium peaks and (*) denote two peaks from an impurity
phase identified as pure Ir, removed from the fit. Inset: zoom
into the large d-spacing region showing two magnetic Bragg
peaks, labels indicate the magnetic peaks index (symmetri-
cally equivalent indexes are omitted).

metry in the Brillouin zone. Using the k-search tool in
FullProf22 we systematically searched all such positions
for the Fddd space group in order of decreasing symme-
try to find propagation vectors that could reproduce the
magnetic peak positions observed in the powder neutron
data. All commensurate orderings with wavevectors at
the Γ, Z, Y , T and L points (where the Miller-Love con-
vention for labelling high-symmetry Brillouin zone points
has been used23) were ruled out by this analysis. There-
fore we considered propagation vectors along lines of high
symmetry with general points denoted by Σ, ∆, Λ. Only
the first two were compatible with the neutron data and
the obtained solutions are listed in Table I, along with
possible solutions for other high symmetry directions.

TABLE I: Candidate magnetic propagation vectors along high
symmetry directions in the Brillouin zone compatible with the
magnetic neutron powder diffraction pattern. The ellipses
denotes the fact that multiple solutions exist for a general
propagation vector in the ab-plane.

Position qfit

Σ (0.57,0,0)

∆ (0,0.81,0)

J (0.27,0,1/2)

E (0,0.39,1/2)

M (0.43,0.53,0)
...
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III. MAGNETIC RESONANT X-RAY

DIFFRACTION

To determine which of the candidate magnetic prop-
agation wavevectors identified by the neutron data ac-
tually occurs, we have performed a magnetic resonant
x-ray diffraction experiment in reflection geometry at
the L3 edge of Ir using the I16 beamline at Diamond.
We used a single crystal of β-Li2IrO3 (characterized via
x-ray diffraction as described in Appendix A) with an
orthorhombic morphology with its maximum dimension
less than 17µm. The sample was placed on a Si (111) disk
with the reciprocal lattice vector (-6,5,7) being approxi-
mately surface normal and it was cooled using a closed-
cycle refrigerator with Be domes. The x-ray energy was
tuned to the L3 edge of Iridium (11.215 keV) and on
cooling below TN new Bragg peaks appeared at satellite
positions of reciprocal lattice points at (h, k, l)± q, with
h, k, l integers and an incommensurate ordering wavevec-
tor q=(0.57(1), 0, 0). Scans through such a peak are
shown in Fig. 3a-c). The scans emphasize the incom-
mensurate position along h and centering at integer k
and l values. In the language of Table I this is then a
propagation vector along the Σ line of symmetry, and
the magnitude found from the x-ray data is consistent
with the positions of peaks in the neutron data (first line
in Table I). Lorentzian squared fits to the peak shape
profiles (dashed lines in Figs. 3a-c),e) gave widths compa-
rable to those measured for the nearby structural Bragg
peak (-6,6,12), indicating that the magnetic order is long-
range in all three directions. To estimate a lower bound
on the correlation lengths we use the inverse of the peak
half-widths, which gives values in excess of 100, 200 and
300 Å along the a, b and c axes, respectively (more than
≈20 unit cells in each direction), and in reality the corre-
lation lengths will be much larger as the above estimate
did not include the peak broadening due to the finite
instrumental angular resolution.

Several independent tests can be performed to con-
firm the magnetic origin of the observed diffraction peaks.
Firstly, in Fig. 3(d) the integrated intensity of (-6,6,12)-
q as a function of temperature (filled circles) shows a
typical order-parameter behavior. A power-law fit (solid
line) gives an onset temperature of Tfit = 36.7 K, which
is very close to the transition temperature deduced from
specific heat measurements.18 We attribute the appar-
ent small offset of ∆T≃1.3 K to the fact that the sensor
where the temperature was measured in the x-ray exper-
iments was at the bottom of the sample support and the
actual sample temperature may have been higher by ∆T
due to local heating effects from the very intense syn-
chrotron beam, a common occurrence in resonant x-ray
experiments.

Further evidence of the magnetic origin of the incom-
mensurate diffraction peaks can be obtained via polar-
ization analysis of the scattered beam. For a scatter-
ing experiment with incident beam polarization ǫ̂ nor-
mal to the (k,k′) scattering plane (σ-polarized), mag-

FIG. 3: (color online) Magnetic Bragg peak at (-6,6,12)−q;
(a) Scan shows that the peak occurs at an incommensurate
position along h, and is well-centered at integer (b) k, and (c)
l. (d) Temperature-dependence of the integrated peak inten-
sity (solid line is a power-law fit).(e) Scans with a polarizer
in the scattered beam show that the peak is only present in
the rotated polarization channel (σ-π′) (light blue, filled) as
expected for magnetic scattering. (f) Intensity as a function
of the x-ray energy (filled points) shows that the signal is
resonant on the edge of the fluorescence signal onset (dashed
line), as expected for magnetic scattering.

netic scattering is expected to rotate the polarization by
90◦ compared to the incident beam direction (scatter-
ing in the σ-π′ channel, see diagram in Fig. 4a) (inset)),
whereas conventional (charge) scattering would leave the
polarization direction unchanged (scattering in the σ-σ′

channel).25 In the experiments polarization analysis was
achieved via the 3rd harmonic reflection from the (1,1,1)
planes of an Au crystal, the d-spacing of 0.785 Å being
ideally suited for polarization analysis at the L3 edge of Ir
(giving perfect filtering at 11.16 keV, see Ref. 24). Fig.
3(e) shows an h-scan across the incommensurate peak
performed with polarizer parallel (open symbols, σ-σ′)
and perpendicular (filled symbols, σ-π′) to the original
incident beam polarization. The signal appears only in
the rotated polarization channel, as expected for mag-
netic scattering. Note that the higher background in the
σ-σ′ channel is due to incoherent x-ray scattering, which
is largely filtered out by the polarization analysis in the
σ-π′ channel revealing a pure magnetic signal.
A third test is the dependence on the x-ray energy as

the magnetic scattering is only expected at resonance.
Indeed, the incommensurate peak intensity has a char-
acteristic resonant response as shown in Fig. 3(f) (filled
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blue symbols) with a maximum at the resonance energy
of 11.215 keV in agreement with previous resonant stud-
ies on other iridates,8,21 and coincides with the edge of
the fluorescence signal from the sample (black, dotted
line).

A. Magnetic Basis Vectors

The observation of incommensurate magnetic Bragg
peaks indicates a magnetic structure with rotating mo-
ments or a spin-density wave, both with a wavelength
that is incommensurate with the underlying crystal lat-
tice periodicity. In order to distinguish between those
two scenarios, and to determine fully the orientations of
the magnetic moments at all magnetic sites in the unit
cell, we consider below symmetry-allowed basis vectors
for magnetic structures compatible with the observed
propagation vector q. This provides a natural framework
to directly link diffraction data with a magnetic structure
model and allows one to develop a systematic strategy in
experiments to determine the magnetic structure com-
pletely.
The magnetic ions, Ir4+, occupy a single crystallo-

graphic site with ions at (1/8, 1/8, z) [z = 0.70845(7) ≃
5/8+1/12] and symmetry equivalent positions, giving
four Ir ions in the primitive unit cell (labelled 1-4 in Fig.
6 and with positions listed explicitly in Table IV in Ap-
pendix B). Taking into account that at each site the
magnetic moment could have components along the x, y
and z-axes (along the orthorhombic a, b, c-axes), gives a
12-component representation of the magnetic structure.
Its irreducible representations and associated magnetic
basis vectors (obtained using the BasIrreps tool, part of
the FullProf suite22) are listed in Table II.

TABLE II: Irreducible representations and basis vectors for a
magnetic structure with propagation vector q=(q, 0, 0).

Irreducible Basis Vectors

Representation

Γ1 Fx,Gy,Az

Γ2 Cx,Ay,Gz

Γ3 Gx,Fy,Cz

Γ4 Ax,Cy,Fz

The basis vectors contain symmetry-imposed relations
between the Fourier components of the magnetic struc-
ture between the four sites in the primitive cell. The
types of basis vectors that can occur are:

F =











1

1

δ

δ











,C =











1

1

−δ

−δ











,A =











1

−1

−δ

δ











,G =











1

−1

δ

−δ











,

(1)
where for each vector the four values are relative phase
factors between the Fourier components at the four sites.

δ = e−iq·(r3−r1) = e−iπq/2 is a displacement phase fac-
tor that takes into account the fact that sites 3 and 4
are displaced relative to sites 1 and 2 by a/4 in the di-
rection of the propagation vector q. In an F basis vec-
tor the Fourier components at the 4 sites are related by
Mq,1 = Mq,2 = δ−1Mq,3 = δ−1Mq,4, i.e. there are no
additional phase factors between the four sites apart from
the natural displacement phase factor, and in the limit
q → 0 (δ → 1) one recovers ferromagnetic order. For
the basis vectors C, A and G two out of the four sites
have a change in sign in addition to the normal displace-
ment phase factor, and in the limit q → 0 one finds an
antiferromagnetic alignment between the four sites. To
determine the full magnetic structure, we first identify
which basis vectors are present, determine their polar-
ization (i.e. along x, y or z) and then find the relative
phase between them, as follows.

B. Selection Rules for Magnetic Scattering

Each magnetic basis vector contains a strict, symmetry
imposed phase relation between moments on all Ir sites
in the primitive unit cell. As such, one can derive selec-
tion rules for non-zero magnetic diffraction intensity, i.e.,
each basis vector will only contribute to magnetic satel-
lite reflections of certain reciprocal lattice points and will
have zero structure factor for others. It follows that sim-
ply the presence or absence of magnetic Bragg peaks at
certain positions can already identify which basis vectors
are present.
Explicitly, the structure factor for a magnetic super-

lattice reflection at Q = (h, k, l)± q is

F(Q) = F((h, k, l)±q) = fF
∑

n

M±q,ne
iQ·rn , (2)

where the pre-factor fF = 1+eiπ(h+k)+eiπ(k+l)+eiπ(l+h)

is due to the F -centering of the orthorhombic structural
unit cell. The sum extends over all sites in the primitive
cell (n=1−4) and M±q,n are the Fourier components of
the magnetic moments at site n with position in the unit
cell rn. For an F -basis vector we obtain the structure
factor

F
F (Q) =



























16M±q,1 cos
πl
6 e

iξ± , h, k, l all even and

h+ k + l = 4p, p integer

16M±q,1 cos
πl
6 cos π(h+l−k)

4 eiχ± ,

h, k, l all odd

0, otherwise,
(3)

where ξ± = π(h+ k − 3l ± q)/4 and χ± = π(2h− 2l ±
q)/4 and to obtain a closed-form analytic expression we
used the “ideal” iridium position z=5/8+1/12. From (3)
we conclude that an F basis vector will contribute to
the intensity of ±q satellites of reciprocal lattice points
(h, k, l) with the selection rule h, k, l all odd, or all even
with h+ k+ l = 4p, p integer. This is the same selection
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rule as for structural Bragg scattering from the iridium
ion sublattice at the (h, k, l) position, as expected since in
the limit q → 0 the F -type magnetic basis vectors recover
ferromagnetic order, and this has the same selection rule
as structural scattering. Structure factor expressions for
the other basis vectors are given in Appendix C. The
resulting selection rule for A is same as for F , but with
no contribution from A for l = 6m, m integer. The
selection rule for C and G is h, k, l all odd, or all even
and h + k + l = 4p + 2, p integer with no contribution
from G if l = 6m, m integer.
The experimental geometry constrained the search

for magnetic satellite reflections to regions of reciprocal
space in the vicinity of the surface normal reflection, ≈(-
6,5,7). Using (3) and similar expressions for C,G and
A (see Appendix C) we ascertained 3 positions of in-
terest for identifying which basis vectors contribute to
the magnetic structure, namely (-6,6,12)±q (pure F ),
(-8,6,12)±q (pure C) and (-5,5,9)±q (mixed A and G)
and found magnetic peaks at all these positions. There-
fore we deduce that the structure contains F , C and one
(or both) of A and G. To determine the direction of
the magnetic moment components for each of those basis
vectors we make use of the polarization dependence of
the magnetic x-ray diffraction intensity, as follows.

C. Azimuth Scans to Determine the Moment’s

Direction and Relative Phases Between Basis

Vectors

In the dipolar approximation the magnetic x-ray
diffraction intensity at resonance is proportional to

L(θ)A
∣

∣

∣
(ǫ̂′ × ǫ̂) ·F(Q)

∣

∣

∣

2

,

where L(θ) is the Lorentz factor at the scattering angle
2θ, A is an absorption correction dependent upon the
experimental geometry, F(Q) is the magnetic structure

factor vector given in (2), and ǫ̂′ and ǫ̂ are unit vectors
along the polarization of the electric field component of
the scattered and incident x-ray beams, respectively.25

For a σ-polarized incident beam magnetic resonant scat-
tering occurs only in the σ-π′ channel [see diagram in
Fig. 4a) inset], meaning that the product of the electric
field polarization vectors is along the scattered beam di-
rection, i.e. ǫ̂′ × ǫ̂ = k̂′, so only the component of the
structure factor vector along the scattered beam direc-
tion, F‖ = F · k̂′, contributes to the magnetic intensity.
By keeping the instrument in the scattering condition
and rotating the sample around the scattering wavevec-
tor, Q = k′−k, the projection F‖ of the structure factor

vector onto the (fixed) direction k̂′ varies depending on
the azimuth angle Ψ, with maximum magnetic intensity
when the magnetic moments that give rise to the scat-
tering make the smallest angle with k̂′ and zero intensity
when they are perpendicular.

FIG. 4: (color online) Intensity as a function of azimuth
for three magnetic Bragg peaks a) Cy, b) Fz and c) Ax.
Top diagram illustrates the scattering geometry. Data points
(filled circles) are integrated peak intensities (in sample rock-
ing curve scans) corrected for absorption and Lorentz factor.
Thick (red) lines show fits that include all contributions to
the magnetic scattering intensity26 for the magnetic struc-
ture model Γ4 depicted in Fig. 6. Orange, green and blue
lines denote other models (Γ1,2,3, respectively), which can be
easily ruled out. The azimuth origin Ψ = 0 corresponds to
the case when the (010) axis is in the scattering plane making

the smallest angle with the incident beam direction k̂.

Azimuth scans to test the polarization dependence are
shown in Figs. 4a-c) where the data points are obtained
by integrating the magnetic peak intensity in sample
rocking curve scans for each value of the azimuth, Ψ.
As discussed earlier, the selection rules identify the sig-
nal in panel a) at (-8,6,12)+q to be of C-character and
the observed maximum intensity at Ψ = 0 uniquely iden-
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tifies the polarization to be along the y-axis (red thick
line) as at Ψ = 0 the y-axis is in the scattering plane and

makes the smallest angle with the k̂′ direction and makes
a larger angle with k̂′ when the azimuth is displaced away
from 0 in both directions; green and blue curves show
the expected intensity dependence for other polarizations
that can be clearly ruled out. Similarly, in panel b) the
peak at (-6,6,12)−q is identified as being of F character
and polarized along z (thick red line). Panel c) shows
data at (-5,5,9)−q, clearly of x-polarization (thick red
line). The structure factor is compatible with both an A
or G character and we will show later that only a pure
A character can describe this and other azimuth scans
quantitatively, so we identify this peak as coming from
an Ax basis vector.

FIG. 5: (color online) Intensity as a function of azimuth for
“mixed” magnetic Bragg peaks (black circles) corrected for
absorption and Lorentz factor, compared to calculations (red
thick line) for the magnetic structure model in Fig. 6, as well
as calculations for other possible models (a) (-6,6,8)+q is a
mixed F : A peak with contributions in the ratio 1 : 3, (b)
(-5,5,7)−q is a mixed F : C : A peak with contributions in
the ratio 3 : 3 : 1. Note that the data clearly distinguishes
between different relative phases of basis vectors (cyan and
purple).

The next step in solving the structure is to determine

the relative phase between the Ax, Cy and Fz basis vec-
tors. A phase of 0 or π between basis vectors with or-
thogonal components, say along Ax and Fz, means that
the moments vary sinusoidally along a direction in the xz
plane, whereas a phase offset of π/2 means that the mo-
ments rotate in the xz plane. The relative phase between
two basis vectors can be determined from an azimuth
scan at a magnetic Bragg peak position where both ba-
sis vectors contribute as the intensity is the sum of the
intensities due to the two separate basis vectors plus an
additional cross-term that is sensitive to the phase offset
(for more details see Appendix C).

Fig. 5(a) shows the azimuth scan at (-6,6,8)+q where
structure-factor calculations show that both F and A ba-
sis vectors contribute in the ratio 1:3. The intensity de-
pendence uniquely identifies it as originating from the
particular basis vector combination Fz + iAx, i.e. the
x components are π/2 out-of-phase with respect to the
z-components, meaning that the magnetic moments ro-
tate in the xz plane (in a particular sense on each site,
note that the opposite sense of rotations encoded in the
basis vector Fz − iAx is not consistent with the data -
cyan line). The data clearly rules out the case when the
moments are not rotating in the xz plane, but are vary-
ing sinusoidally along a line in the xz plane (Fz ± Ax,
purple line), a model with no Ax component is also ruled
out (not shown). This analysis shows that an Ax basis
vector must exist in the ground state and that it is π/2
out-of-phase with respect to Fz. Similarly, to determine
the phase offset between the Fz and Cy basis vectors we
measured the azimuth scan at the magnetic reflection (-
5,5,7)−q of mixed F , C and A contributions in the ratio
3:3:1, shown in Fig. 5(b), and only a model with the basis
vector contribution Fz + iCy (thick red line) matches the
data, with other combinations (blue and green curves)
clearly ruled out (note that those calculations also in-
clude the iAx contribution as already determined).

Having established all the basis vectors that are
present, their polarization, and their relative phases, the
relative magnitudes are obtained by quantitatively fitting
the azimuth intensity dependencies. Three free parame-
ters were fit; the relative ratios Mx/Mz and My/Mz, and
a single overall intensity scale factor for all the data. The
simultaneous fit of this magnetic structure model to the
data in Figs. 4a-c) and Fig. 5a-b) (shown by the thick red
solid lines) gave the moment amplitudes in the relative
ratio Mx : My : Mz = 0.45(1) : 0.65(1) : 1. Note that the
basis vector combination (iAx, iCy,Fz) with the above
moment amplitudes quantitatively explains the mixed
Fz,Ax peak in Fig. 5a), and the same magnitude Ax

basis vector also quantitatively accounts for the azimuth
dependence in Fig. 4c), further confirming the identifica-
tion of the signal in this magnetic Bragg peak as coming
from a pure Ax basis vector (if a Gx basis vector is also
present and contributing to the signal in Fig. 4c), its mag-
nitude is very small, below the accuracy of the present
experiments). Given this we conclude that the magnetic
structure is described by the basis vector combination
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(iAx, iCy,Fz), which corresponds to a single irreducible
representation, Γ4 in Table II.

D. Absolute Value of the Ordered Moment

The only remaining parameter still to be determined is
the absolute magnitude of the magnetic moments. This
is difficult to extract reliably from the magnetic resonant
x-ray diffraction data as it requires accurate determina-
tion of scale factors between the magnetic and structural
peaks (the latter being of order 105 − 106 more intense).
However, in neutron scattering experiments the magnetic
and structural peaks are of comparable magnitudes and
one can obtain a reliable determination of the relative
scale factor. To this aim we return to the powder neutron
data in Fig. 2 and simultaneously fit three contributions
to the data: structural peaks of the sample calculated
using the crystal structure with fixed internal parame-
ters (as deduced from single crystal x-ray diffraction),
aluminium structural peaks (from the sample can), and
magnetic peaks calculated using the full magnetic struc-
ture model deduced from the resonant x-ray experiments.
The fit is plotted as a solid black line in Fig. 2 and shows
excellent agreement with the data. The resulting mag-
netic moment is of magnitude 0.47(1)µB when aligned
along the c-axis, and slightly reduced by ∼20% when
in the ab plane. The propagation vector was also fitted
and we find q=(0.5768(3), 0, 0), consistent with the x-ray
measurements.

E. Magnetic Structure

The obtained magnetic structure projected onto the ac
plane is shown in Fig. 6a). The magnetic moments are
counter-rotating between all nearest-neighbor sites and
the plane of rotation alternates between the two sites of
every vertical (c-axis) bond as illustrated by the pattern
of light and dark shaded elliptical envelopes. The planes
of rotation are obtained from the ac plane by rotation

around the c-axis by an angle ±φ, with φ = tan−1 My

Mx

=

55(1)◦. Each zig-zag chain has the top and bottom sites
counter-rotating in one and the same plane, which then
alternates between consecutive zig-zag chains vertically-
linked along the c-axis. The zig-zag chains are directed
alternatingly along the a± b directions and are made up
of iridium sites of type (2,4) and (1,3), respectively, with
vertical (c-axis) bonds coupling sites of types 1-2 and 3-
4. The magnetic order pattern is such that for every
vertical bond the spin components along the y-axis are
ferromagnetically-aligned (see Fig. 7), in accordance with
the basis vector Cy, which has equal Fourier components
at sites 1-2 and 3-4, respectively [see eq. (1)].
We note that the magnetic moment rotation at each

site defines an elliptical envelope, distorted from circular
with the moment slightly smaller when in the ab plane

compared to when along the c-axis,
√

M2
x +M2

y /Mz =

0.80(1). This effect may be due to a larger g-factor along

the c-axis compared to the â cosφ ± b̂ sinφ directions
in the ab plane. We note that single-crystal suscepti-
bility data19 in the related polytype γ-Li2IrO3 do pro-
vide evidence for the presence of g-tensor anisotropy for
the iridium moments (in the high-temperature limit the
susceptibility, χ, is expected to be proportional to the
squared g-factor along the applied field direction, and
experiments observe χc larger than both χa and χb, im-
plying an anisotropic g-tensor). The very similar local en-
vironment around the iridium sites in β-Li2IrO3 suggests
that an anisotropic g-tensor is also likely here. Another
possibility is that zero-point quantum fluctuations may
prefer a non-fixed length ordered moment between sites,
with a larger ordered moment along the c-axis, which is
the only direction that is common to all planes of ro-
tation. Evidence for the presence of zero-point quan-
tum fluctuations in the ground state is provided by the
fact that the absolute magnitude of the ordered moment
(0.47(1) µB) is significantly reduced from what is be-
lieved to be the available full-moment value (estimated
at gµBJeff ≃ 1µB assuming g ≃ 2), so a structure with
small modulations on an already significantly reduced or-
dered moment could be compatible with the experimental
results.

IV. DISCUSSION

It is interesting to note that the obtained magnetic
structure has striking similarities with the magnetic
structure in the related polytype γ-Li2IrO3 [Ref. 20],
with which β-Li2IrO3 shares the same size orthorhom-
bic unit cell (a × b × c) and also many key structural
features. In both polytypes the iridium lattice is locally
three-fold coordinated and is made up of vertically-linked
zig-zag chains that alternate in orientation between the
a ± b direction. The only difference between them is
that in the hyperhoneycomb β-polytype this alternation
occurs between consecutive zig-zag chains, whereas in
the stripyhoneycomb γ-polytype the alternation occurs
between pairs of parallel zig-zag chains (which form a
honeycomb row). The magnetic structures in both poly-
types are incommensurate with the same propagation
vectors within experimental error, q=(0.57(1), 0, 0), the
moments are counter-rotating between the sites of every
nearest-neighbor bond, and the plane of rotation alter-
nates between two orientations tilted away (by an angle
φ) from the ac plane between consecutive zig-zag iridium
chains vertically-linked along the c-axis. The φ angle was
found to be somewhat smaller in γ-Li2IrO3, but apart
from this difference the magnetic structure in γ-Li2IrO3

can be regarded as “equivalent” to that in β-Li2IrO3 but
in a different lattice setting (for a formal mapping see Ap-
pendix E). Those similarities are strongly suggestive that
the defining features of the magnetic structure, namely
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FIG. 6: (color online) a) Projection of the magnetic struc-
ture on the ac plane showing the sites 1-4 of the primitive
cell. Left curly arrows indicate counter-rotation of moments
between consecutive sites along c. In unit cell 2 light and
dark shaded elliptical envelopes indicate an alternating tilt
of the plane of moments’ rotation away from the ac face. In
unit cell 3 the color of bonds shows the anisotropy axis of
the exchange in a Kitaev model15 (ferromagnetic Ising ex-
change for each bond, but with a different Ising axis x, y, z
for the blue/green/red bonds). Right-hand labels (b)-(e) in-
dicate where slices through the magnetic structure are taken
at different heights in the unit cell and projected onto the ab
plane to illustrate the direction of the zig-zag chains and the
alternating tilt of the plane of rotation away from the ac plane
by ±φ between adjacent zig-zag chains stacked along c.

FIG. 7: (Color online) Projection of the iridium lattice on the
ac plane showing the ordering of the magnetic moment com-
ponents along the b-axis only. These are shown rotated (for
ease of visualization) from the b to the a-axis and indicated
by horizontal red arrows (length of arrow indicates magni-
tude of My(r) at each site. Note the ferromagnetic alignment
between the two sites of each vertical (c-axis) bond.

non-coplanarity, the counter-rotation on every nearest-
neighbor bond, and the direction and even the magni-
tude of the incommensurate ordering wavevector, are de-
termined by the same type of short-range magnetic in-
teractions in both polytypes, and those features appear
to be robust against changes in the global lattice con-
nectivity (i.e. how zig-zag chains are vertically-linked in
a long-range pattern) which leave the local connectivity
of the zig-zag chains unchanged. In the γ-polytype it
was shown20 that the key features of the magnetic order
can be stabilized by a spin Hamiltonian with dominant
Kitaev couplings with some additional interactions; the
observation of similar magnetic structures in the β- and
γ-polytypes suggests the same underlying magnetic inter-
actions occur in both cases. The relevant parent Kitaev
model for the β-polytype has been considered in Refs.
15,16 and is illustrated in Fig. 6a) (unit cell 3) where the
color of the bonds indicates the anisotropy axis of the ex-
change, i.e. a ferromagnetic Ising coupling between the
components normal to the Ir-O2-Ir plane of each Ir-Ir
bond, those directions define the cubic axes x, y and z

related to the crystallographic axes by x̂ = (â + ĉ)/
√
2,

ŷ = (â − ĉ)/
√
2 and ẑ = b̂ (where we have assumed

the parent “idealized” lattice with cubic IrO6 octahedra
and a:b:c=1:

√
2:3). We note that the magnetic interac-

tions may also be very similar in magnitude between the
β and γ-polytypes, as both materials show very similar
values for the magnetic ordering temperature.
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V. CONCLUSIONS

We have reported a combined study using magnetic
neutron powder diffraction and single-crystal magnetic
resonant x-ray diffraction experiments at the L3 edge of
Ir to explore the magnetic structure of β-Li2IrO3, which
is a unique realization of a hyperhoneycomb iridium
lattice, a candidate to display 3D Kitaev physics of
strongly-frustrated, bond-anisotropic interactions. Using
the azimuth dependence of the magnetic Bragg peak
intensities combined with magnetic symmetry analysis
we have obtained a complete solution for the magnetic
structure for all 16 iridium sites in the structural
unit cell. We find an incommensurate, non-coplanar
magnetic structure with moments counter-rotating on

every nearest-neighbor bond. The magnetic structure
shows striking similarities to the magnetic structure of
the related structural polytype γ-Li2IrO3, suggesting
that the same underlying Hamiltonian (with dominant
Kitaev interactions) stabilizes the defining features of
the magnetic structure in both structural polytypes.
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Appendix A: Sample synthesis, characterization and

low-temperature structural refinement

The synthesis route to obtain the samples used in the
neutron and x-ray experiments was as follows. First,
a powder sample of the layered honeycomb phase α-
Li2IrO3 was prepared as described in Ref. 13. Then
repetitive annealing at 1100◦C transformed the sample
into hyperhoneycomb β-Li2IrO3, confirmed via powder
x-ray diffraction. Bulk magnetic susceptibility and heat
capacity measurements on the powder sample indicated
evidence for magnetic ordering at 38 K, in full agree-
ment with Ref. 18. The polycrystalline powder contained
small shiny crystallites. Several such crystallites were
extracted from the powder and their diffraction pattern
measured using a Mo source single-crystal SuperNova x-
ray diffractometer. Representative diffraction patterns
in the (hk0) and (h1l) planes obtained from the sam-
ple used in the magnetic resonant x-ray diffraction ex-
periments (diameter 17µm) are shown in Fig. 8. The
patterns observe sharp Bragg peaks, indicating a high-
quality single crystal, with selection rules consistent with
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the Fddd space group expected for β-Li2IrO3. The re-

FIG. 8: (color online) X-ray diffraction pattern at 300 K
in the (hk0) and (h1l) planes from the crystal used in the
resonant x-ray diffraction experiments.

sults of the full structural refinement of a complete x-
ray diffraction data set collected at 100 K from another
crystal of comparable dimensions from the same batch
are given in Table III where we have used the same con-
vention for the origin of the unit cell as in Ref. 18. In
the table A.D.P. stands for Atomic Displacement Param-
eters, which were assumed to be isotropic. The reliability
factors of the Rietveld refinement were R(F 2) = 4.50%,
wR(F 2) = 5.24%, R(F ) = 2.42% and χ2 = 0.318.

TABLE III: β-Li2IrO3 structural parameters at 100 K

Cell parameters

Space group: Fddd (#70, origin choice 2)

Z = 16

a, b, c (Å): 5.8903(2) 8.4261(3) 17.7924(7)

α,β, γ: 90◦ 90◦ 90◦

Volume (Å3): 883.08(6)

Atomic fractional coordinates and isotropic A.D.P.’s

Atom x y z Uiso(Å
2)

Ir 0.125 0.125 0.70845(7) 0.0025(3)

Li1 0.125 0.125 0.04167 0.00633

Li2 0.125 0.125 0.875 0.00633

O1 0.855(7) 0.125 0.125 0.002(5)

O2 0.621(8) 0.3669(19) 0.0384(7) 0.002(3)

Data collection

# measured reflections: 3770

Data reduction Rint: 6.99%

(Criterion for observed reflections: I > 2.0σ(I))

# observed independent reflections: 298

# fitted parameters: 9

Appendix B: Magnetic Structure and Fourier

Decomposition

This section lists the coordinates of the four iridium
ions in the primitive cell and also gives explicitly the
expressions for the magnetic moments at all sites in the
unit cell and their Fourier decomposition. The iridium
ions occupy a single crystallographic site with generating
position (1/8, 1/8, z) with z = 0.70445(7) and the four
sites per primitive cell (labelled 1-4 in Fig. 6a) (left panel)
have the coordinates listed in Table. IV.

TABLE IV: Fractional atomic coordinates of the iridium sites
in the primitive cell and corresponding magnetic basis vector
components in the determined magnetic structure.

Site Coordinates vx vy vz

1 (0.125, 0.125, z) + + +

2 (0.125, 0.625, 3/4− z) − + +

3 (0.375, 0.375, 1− z) − − +

4 (0.375, 0.875, 1/4 + z) + − +

The determined magnetic structure is described by the
basis vector combination (iAx, iCy,Fz) with magnitudes
Mx, My and Mz. The magnetic moment at position r

belonging to site index n = 1−4 is given by

Mn(r) = x̂Mxvx(n) sin q · r + ŷMyvy(n) sin q · r
+ ẑMzvz(n) cos q · r, (B1)

where x̂, ŷ, ẑ are unit vectors along the orthorhombic a,
b, c axes, respectively. The pre-factors vx,y,z are obtained
from the basis vectors along the corresponding axes, but
without the displacement phase factors e−iq·(rn−r1), i.e.
vx = [+−−+] (from Ax), vy = [++−−] (from Cy) and
vz = [++++] (from Fz). Eq. (B1) describes all iridium
sites, including those related by F -centering translations,
where r is the actual position of the ion and n is the site
index at the equivalent position (1−4) in the primitive
unit cell.

The magnetic moments are expressed in terms of their
Fourier components as Mn(r) =

∑

k=±q Mk,ne
−ik·r,

where

Mq,n =

{

i

[

x̂
Mx

2
vx(n) + ŷ

My

2
vy(n)

]

+ ẑ
Mz

2
vz(n)

}

e−iq·(rn−r1), (B2)

with M−q,n = M∗
q,n as the magnetic moment distribu-

tion is real.

Appendix C: Magnetic Structure Factors

This section gives the analytic expressions for the mag-
netic structure factors for all the magnetic basis vectors.
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Starting from the general expression in eq. (2) we obtain
the magnetic structure factors for the C, A, and G basis
vectors as follows

F
C(Q) =



























16M±q,1 cos
πl
6 e

iξ± , h, k, l all even and

h+ k + l = 4p+ 2, p integer

16M±q,1 cos
πl
6 sin π(h+l−k)

4 ei(χ±+π/2),

h, k, l all odd

0, otherwise
(C1)

F
A(Q) =



























16M±q,1 sin
πl
6 e

i(ξ±−π/2), h, k, l all even and

h+ k + l = 4p, p integer

16M±q,1 sin
πl
6 cos π(h+l−k)

4 ei(χ±−π/2),

h, k, l all odd

0, otherwise
(C2)

F
G(Q) =



























16M±q,1 sin
πl
6 e

i(ξ±+π/2), h, k, l all even and

h+ k + l = 4p+ 2, p integer

16M±q,1 sin
πl
6 sin π(h+l−k)

4 ei(χ±+π),

h, k, l all odd

0, otherwise,
(C3)

where to obtain an analytic closed-form we used the
“ideal” iridium positions z=5/8+1/12.

Appendix D: Azimuth Dependence of the Magnetic

Resonant X-ray Diffraction Intensity

Here we obtain the azimuth dependence of the mag-
netic x-ray diffraction intensity and show how it can
be used to determine the relative phase between mag-
netic basis vectors. As discussed in Sec. III C the mag-
netic diffraction intensity is proportional to |F‖|2, where
F‖ = F ·k̂′ is the projection of the structure factor vector
onto the scattered beam direction. To calculate this dot
product it is convenient to express both vectors in terms
of their components in the Laboratory reference frame25

illustrated in Fig. 9 and defined by the orthonormal set of
vectors Û2 = k̂× k̂′, Û3 = −Q̂ and Û1 = Û2 × Û3, i.e.
Û2 is normal to the scattering plane and Û1 is in the scat-
tering plane making an angle θ with both k and k′, where
2θ is the total scattering angle. The scattered beam di-
rection then can be written as k̂′ = (cos θ, 0,− sin θ)L,
where the L subscript indicates that the components are
with respect to the Laboratory basis of Û1,2,3 vectors, as
opposed to the Crystal basis, defined by the orthonormal
set of vectors x̂, ŷ, ẑ (along the orthorhombic axes a, b,
c).
The magnetic structure factor vector F defined in (2)

is most naturally expressed in terms of the Crystal basis
as (Fx,Fy,Fz)C . The components in the Laboratory ba-
sis (F1,F2,F3)L are obtained via a linear transformation

FIG. 9: Schematic diagram of the x-ray diffraction experi-
ment at zero azimuth (Ψ = 0). k and k′ are the incident
and scattered x-ray beam wavevectors, and Q = k′

−k is the
scattering wavevector. Main (bottom) panel shows the ori-

entation of the Laboratory frame unit vectors Û1,2,3 and the
orthorhombic crystal axes (a,b,c). Top left inset: view along
b showing the angle ζ subtended from the scattering plane by
the a vector. Right inset: view along Q. During an azimuth
scan the crystal axes are rotated around Q by an angle Ψ (in
the sense show in the figure), the reference position Ψ = 0 is
defined as the azimuth angle for which b lies in the scatter-
ing plane making the smallest angle with the incident beam
direction k̂.

encoded in a matrix T (Ψ) via







F1

F2

F3






= T (Ψ)







Fx

Fy

Fz






, (D1)

where we have explicitly introduced the dependence of
the transformation matrix on the azimuth angle Ψ, which
defines the rotation angle of the crystal axes around the
scattering wavevector Q. To find the transformation ma-
trix we first consider the reference position of zero az-
imuth, Ψ = 0, depicted in Fig. 9. In this case the orien-
tation of the crystal axes with respect to the Laboratory
axes is specified by two angles η and ζ. η is the angle be-
tween the b-axis and the scattering wavevector Q, given
by

η = cos−1 Q̂ · b̂

and ζ is the angle between the a-axis and the scattering
plane, given by

ζ = tan−1 Q · ĉ
Q · â .

Using the diagram in Fig. 9 the transformation matrix is
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obtained as

T (0) =







− cos ζ cos η sin η − sin ζ cos η

sin ζ 0 − cos ζ

− cos ζ sin η − cos η − sin ζ sin η






. (D2)

When moving away from the reference position to a finite
azimuth angle Ψ the coordinates in the Laboratory frame
need to be multiplied by the rotation matrix

R(Ψ) =







cosΨ sinΨ 0

− sinΨ cosΨ 0

0 0 1






, (D3)

such that the resulting transformation matrix from the
Crystal to the Laboratory bases in (D1) becomes

T (Ψ) = R(Ψ) T (0). (D4)

Explicitly, substituting (D2) and (D3) into (D4) yields

T (Ψ) =







sinΨ sin ζ − cosΨ cos ζ cos η cosΨ sin η − cosΨ sin ζ cos η − sinΨ cos ζ

sinΨ cos ζ cos η + cosΨ sin ζ − sinΨ sin η sinΨ sin ζ cos η − cosΨ cos ζ

− cos ζ sin η − cos η − sin ζ sin η






. (D5)

Once the structure factor components are obtained in
the Laboratory basis, then the projection of the structure
factor vector along the scattered beam direction is readily
obtained as

F‖ = cos θ F1 − sin θ F3. (D6)

To illustrate the azimuth dependence of the magnetic
x-ray diffraction intensity we consider the magnetic peak
at (−6, 6, 8)+q in Fig. 5a). Here only the Ax and Fz basis
vectors contribute, therefore F = (Fx, 0,Fz)C where the
structure factor components Fx and Fz are of the type
FA and FF in (C2,3), respectively. Using (D6) combined
with (D1) and (D5) we obtain

F‖(Ψ) = gx(Ψ) Fx + gz(Ψ) Fz,

where the geometric factors are

gx(Ψ) = (sinΨ sin ζ − cosΨ cos ζ cos η) cos θ +

cos ζ sin η sin θ

gz(Ψ) = sin ζ sin η sin θ −
(cosΨ sin ζ cos η + sinΨ cos ζ) cos θ.

The magnetic scattering intensity is then proportional to

|F‖(Ψ)|2 = |gx(Ψ) Fx|2 + |gz(Ψ) Fz|2

+ 2Re(FzF∗
x) gx(Ψ)gz(Ψ),

where Re() means the real part. The first two terms give
the sum of the separate contributions from the two basis
vectors, whereas the last (cross-term) is sensitive to the
relative phases between the two basis vectors. Using eqs.
(3,C2) the cross-term is proportional to

FzF∗
x ∝

{

∓i sin πl
6 cos πl

6 , Fz ±Ax

± sin πl
6 cos πl

6 , Fz ± iAx.

The cross-term is therefore directly sensitive to the phase
difference between the two contributing basis vectors. If
Fz and Ax are in-phase or π out-of-phase (denoted as
Fz ± Ax) the product FzF∗

x is purely imaginary, so the
cross-term cancels and the intensity is given by the sum
of the contributions from the two basis vectors taken sep-
arately. This is clearly inconsistent with the data (purple
curve in Fig. 5a)). A phase difference of ±π/2 between
the two basis vectors (denoted as Fz ± iAx) gives a fi-
nite cross-term, which changes sign between those two
cases, and the data in Fig. 5a) identifies the basis vector
combination as Fz + iAx (red solid line).

TABLE V: Equivalence between the iridium sites in γ-Li2IrO3

(Cccm space group) with those in β-Li2IrO3 (Fddd space
group) (when both are projected onto the ac plane). Last
column shows additional translations to be applied to primi-
tive lattice sites in the Fddd structure (column 2) in addition
to a common translation by (-1/8,0,1/8) to get the positions
in the Cccm structure (column 1). For each structure the
“ideal” iridium positions have been used.

Site Site Translation

Cccm Fddd

1 4 -(0,0,1)

2 3 (0,0,0)

3 3 (0,1/2,1/2)

4 4 -(0,1/2,1/2)

1′ 2 (1/2,1/2,0)

2′ 1 (1/2,0,-1/2)

3′ 1 (1/2,1/2,0)

4′ 2 (1/2,1,1/2)
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Appendix E: Mapping of magnetic basis vectors

between β- and γ-Li2IrO3

In this section we describe a formal mapping of the
magnetic basis vectors between the notation used for the
β- (space group Fddd) and γ-polytypes of Li2IrO3 (space
group Cccm). The iridium lattice arrangement in both
crystal structures is made up of zig-zag chains vertically-
linked along the c-axis, with the only difference being
that in the β-polytype successive chains along c alter-
nate in orientation between the a±b directions, whereas
in the γ-polytype a pair of successive chains are paral-
lel and this direction then alternates for the next pair of
parallel chains and so on, between the a ± b directions.
When both structures are viewed in projection onto the
ac plane [as shown in Fig. 6a) and Fig. 4 of Ref. 20]
the two iridium lattice arrangements then look identical.
This suggests that a formal mapping can be constructed
between the notations used to describe the sites of the
primitive cells of the two materials, and also between the
magnetic basis vectors, such that one can then describe a
magnetic structure equivalently in the notation of one or
the other space group (of course the magnetic structures

would only be “equivalent” up to the projection of the
sites onto the b-axis). Table V lists the equivalence be-
tween the sites in the primitive cell of the two structures
(up to the y-coordinate of sites), where for the γ-polytype
we follow the notation in Ref. 20 (two iridium sublattices
with sites 1-4 and 1′-4′). Using this site equivalence one
can construct a mapping of the magnetic basis vectors as
listed in Table VI. The magnetic structure described by

TABLE VI: Mapping of magnetic basis vectors between the
Fddd and Cccm notations.

Basis vector Basis vector

Fddd (4-site [1-4]) Cccm (8-site,[1-4,1′-4′])

A [+−−+] (A,−A) [+−−+−++−]

C [+ +−−] (−F ,F ) [−−−−++++]

F [+ + ++] (F ,F ) [+ + ++++++]

the basis vector combination (iAx, iCy,Fz) in the Fddd
setting then corresponds, in the notation of the Cccm set-
ting, to i(A,−A)x, i(−1)m(F ,−F )y, (F ,F )z with m = 1.


