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HIGHLIGHTS 

 
• A push-pull enzyme-substrate system is ultrasensitive under enzyme saturation. 

• Deterministic chemical rate equations are inadequate for small substrate populations. 

• We adopt a probabilistic approach, starting from master equation. 
• Fluctuations are estimated within the linear noise approximation. 

• Analytical results are supported by stochastic simulations. 

 
 

ABSTRACT Zero-order ultrasensitivity (ZOU) is a long known and interesting phenomenon in 

enzyme networks. Here, a substrate is reversibly modified by two antagonistic enzymes (a ‘push-

pull’ system) and the fraction in modified state undergoes a sharp switching from near-zero to 

near-unity at a critical value of the ratio of the enzyme concentrations, under saturation 

conditions. ZOU  and its extensions have been studied for several decades now, ever since the 

seminal paper of Goldbeter and Koshland (1981); however, a complete probabilistic treatment, 

important for the study of fluctuations in finite populations, is still lacking. In this paper, we 

study ZOU using a modular approach, akin to the total quasi-steady state approximation 

(tQSSA). This approach leads to a set of Fokker-Planck (drift-diffusion) equations for the 

probability distributions of the intermediate enzyme-bound complexes, as well as the 

modified/unmodified fractions of substrate molecules. We obtain explicit expressions for various 

average fractions and their fluctuations in the linear noise approximation (LNA). The emergence 

of a ‘critical point’ for the switching transition is rigorously established. New analytical results 

are derived for the average and variance of the fractional substrate concentration in various 

chemical states in the near-critical regime. For the total fraction in the modified state, the 

variance is shown to be a maximum near the critical point and decays algebraically away from it, 

similar to a second-order phase transition. The new analytical results are compared with existing 

ones as well as detailed numerical simulations using a Gillespie algorithm.  
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1. Introduction 

Goldbeter and Koshland (1981, hereafter referred to as GK) first showed that reversible covalent 

modification (e.g. phosphorylation or methylation) of a protein (substrate), catalyzed by two 

enzymes, contains within it a mechanism equivalent to a molecular switch. This switch-like 

behavior emerges in the limit where the substrate concentration far exceeds the enzyme 

concentrations as well as their individual Michaelis constants, as a consequence of which the 

enzymes work in the ‘zero-order’ regime. In this regime, the net modification and de-

modification rates, predicted by standard Michaelis-Menten kinetic equations, become 

effectively independent of concentration (hence called ‘zero-order’, as opposed to the first order 

regime, where the rates depend linearly on concentrations). The chemical equilibrium condition 

(which translates to a quadratic equation for the modified fraction when intermediates are 

neglected, and a cubic equation when they are not) predicts that the fraction of substrate in 

modified state is either none or all, in the limit of large substrate concentrations. Specifically, the 

solution of this equation displays the switch-like behavior described above as a function of the 

ratio 00 / BR br   , where 0R  and 0B  are the enzyme concentrations and r  and b  their 

conversion rates. The ‘critical point’ of this transition was shown to be at 1 , (hereafter 

referred to as the GK point) independent of the ratio of the Michaelis constants of the enzymes. 

(Note: Throughout this paper, we shall use the words critical point and criticality in connection 

with ZOU although, despite many similarities, it is not a thermodynamic phase transition in the 

strict sense). 

 

The GK switch was studied in more detail by some authors (e.g., Berg et al., 2000; Qian, 2003; 

Elf and Ehrenberg, 2003; Bluthgen et al., 2006; Ciliberto et al., 2007; Gomez-Uribe et al., 2007; 

Ge and Qian, 2008; Pederson and Bersani, 2010; Xu and Gunawardena, 2012) and also extended 

in scope by others (Ortega et al., 2002; Samoilev et al., 2005; van Albada and ten Wolde, 2007; 

Szomolay and Shahrezaei, 2012) in more recent times. Notably, Berg et al. (2000) and later, Elf 

and Ehrenberg (2003) studied the fluctuations in the ultrasensitive module within some 

approximations (see discussions later) while Qian (2003), and later Ge and Qian (2008), 

identified ZOU as a temporal cooperativity phenomenon, mathematically similar to the better 

known allosteric cooperativity. In connection with ZOU, Bluthgen et al. (2006), Ciliberto et al. 

(2007) and Pederson and Bersani (2010) showed that the total quasi-steady state approximation 

(tQSSA), introduced by Borghans et al. (1996) and studied further by Tzafriri and Edelman 

(2004) is superior to the Briggs-Haldane standard quasi-steady state approximation (sQSSA) 

when enzyme and substrate concentrations are comparable, or when the former actually exceeds 

the latter (whereas in sQSSA, the free substrate concentration is the slow variable, tQSSA 

replaces it with sum of the concentrations of the free substrate and the intermediate complex).  

 

ZOU has been shown to be relevant in a number of systems (LaPorte and Koshland, 1983; 

Meinke et al., 1986; Cimino and Hervagault, 1987; Casati et al., 1999; Melen et al., 2005; Kim 

and Ferrell, 2007). Theoretical studies of the ZOU have, by and large, followed a chemical rate 

equation based approach, which is of a purely “mean-field” nature, and most authors have 
ignored fluctuations altogether. However, given the similarity of ZOU to a thermodynamic phase 
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transition, it is natural to expect that biochemical fluctuations will be large near the transition 

point, an issue addressed in detail by Berg et al. (2000). In their model, a finite number N of 

substrate molecules were considered, out of which, say, n  are in modified state at any given 

point of time, the probability for which was denoted nP . The transition rates for the processes 

1 nn  were assumed to be of the standard Michaelis-Menten type (derived under the 

sQSSA), and this, in our opinion, is a weakness of the model. The analytical calculations were 

restricted to the extreme case of an infinitely large substrate concentration. More recently, Elf 

and Ehrenberg (2003) obtained estimates for fluctuations in ZOU under the LNA; however, 

similar to Berg et al.(2000), macroscopic rates derived under sQSSA were used in their 

calculations. We shall attempt to show, in this paper, how these limitations can be overcome by 

using a different approach with a more controlled limiting procedure. Wherever relevant, we will 

also provide comparisons of our results with the older ones. 

 

 The principal objective of this work is the construction of a fully stochastic formulation of a 

two-state covalent modification system showing ZOU, with a complete treatment of fluctuations. 

For this purpose, we consider the system as consisting of two weakly connected modules, each 

populated by unmodified and modified substrate molecules respectively, in the spirit of tQSSA 

(Borghans et al., 1996). Discrete master equations are constructed to describe the dynamics in 

each, which are then converted to continuum Fokker-Planck equations by second-order 

truncation of the respective Kramers-Moyal expansions (Gardiner, 2004). A set of well-defined 

approximations, valid within the assumptions of tQSSA and the requirements of ZOU, then leads 

to an effective one-dimensional Fokker-Planck equation for the modified substrate fraction (the 

total population in the second module). Rigorous and elegant mathematical expressions for the 

averages and fluctuations in the steady state follow in a straightforward manner, which are 

shown to compare well with the results of detailed numerical simulations, done using a Gillespie 

algorithm (Gillespie, 1977) The present formalism can be potentially extended to more complex 

systems like a many-state reversible modification network (e.g., receptor methylation and 

demethylation in E.coli). 

 

2. Model and methods 

 

2.1. Fokker-Planck equations from the master equation 

 

We consider a cell of volume V , which contains Nsubstrate molecules A at total concentration 

0A  and two enzymes (which we shall call R and B) with total concentrations 0R  and 0B  

respectively. The enzyme R binds to A with association rate 

฀

k  and reversibly converts it to the 

intermediate state ˜ A ; the backward transition RAA ~
 occurs at rate 

฀

k , while ˜ A  is 

irreversibly converted to the product (modified form of A, which we denote A*) at rate r . 

Similarly, A* reversibly binds to B with rate 

฀

k   forming the second intermediate complex ˜ A *, 

which dissociates to A* and B at rate 

฀

k  . The complex ˜ A * is converted back to the original, non-
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modified form Aat a rate b . The reaction scheme is illustrated in Fig. 1. We further define the 

following dissociation constants for the enzyme-substrate binding:  kkKr /  ;   kkKb / . 

This is the original model studied by Goldbeter and Koshland (1981).  

 

In the limit where the rates 
r  and b  are small in comparison with the rates of enzyme binding 

and dissociation, the above system functions as a combination of two weakly coupled modules, 

the AA
~  system (Module 1) with )1(1  NM  substrate molecules and the   AA

~
 system 

(Module 2) with NM 2
 molecules, where   is the total fraction of substrate molecules in 

Module 2. In the limit where the turnover rates 
r  and b  are sufficiently small (see more 

discussions later in Sec. 3.4), the internal dynamics of these modules occur on a timescale much 

smaller than the one involving changes in   itself; hence we may assume the two modules to be 

always in their steady states for each  . This is the essence of the tQSSA. The regime of validity 

of this scheme for irreversible Michaelis-Menten kinetics is discussed by Borghans et al. (1996) 

and its extension to reversible Michaelis-Menten kinetics was carried out by Tsafriri and 

Edelman (2004).  

 

In module 1, the probabilility, PM1
(m1) , for m1 number of molecules to be in ˜ A  state, satisfies 

the master equation:  

  )()()()1()1()1()1(
),(

1111111

1

111

1 mPmmmPmmPm
t

tmP
MMM

M

 



 ,  (1) 

 

with  rates   and   defined as below: 

 

)()()( 1111 mRkmMm f 
    

;   kmm 11)(   ,                  (2) 

 

where VmRmR f /)( 101   is the concentration of free R. Let us now define the fraction

11 / Mmx  . For large enough 
1M , we may treat x  as a continuous variable, and define the 

continuous probability distribution )()( 1

1

1
mPx Mxx

   and rates )()( 1mx
x

  , where 

1

1

 Mx  is the ‘step size’ for x , which may be regarded as a small parameter. In this limit, the 

master equation may be converted to a continuum Fokker-Planck equation via the Kramers-

Moyal expansion, i.e., by expanding the quantities )( xx x  and )( x

x
x    in a Taylor series 

in x , up to terms that are )(
2

xO  . The resulting equation has the form of an equation of 

continuity (see Appendix A for details) 

 

xxxt J    ,          (3)  

 

where   

 

))(()( xxxxxx xDxvJ            (4a) 
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is the probability current density, with coefficients )(xvx  and )(xDx  given by 

 

)()( xx

xx xv      ;  xxx
x xD   

2
)(

2

  
        (4b) 

with 

),()1(1 xRkxM f

x      and   xkM
x

1 .          (5) 

 

In the above equation, xARxR f )1(),( 00   . In steady state, following (3), we require 

0xxJ . In addition, since  1,0x , we require that 0xJ  at the boundaries, i.e., 1,0x . 

These conditions are consistent only if we impose 0xJ  identically for all x . Using this 

condition in (4), we arrive at the following steady state solution for the probability distribution 

(Gardiner, 2004): 

 














 
x

x

x

x

x xd
xD

xv

xD

C
x

0
)(

)(
exp

)(
)(    ,                     (6) 

 

where C  is a normalization constant. It is convenient to evaluate this integral by the following 

method. We assume the existence of a number

฀

x , which satisfies the following conditions: 

 

0)( xvx , 0)(  xvx  .                     (7) 

 

where )()( xvxv xxx  . After expanding the numerator inside the integral in a Taylor series 

around xx   and keeping only the first two terms, it follows that the probability distribution 

)(xx  is approximated by a Gaussian: 

 









 2)(

)(2

)('
exp)()( xx

xD

xv
xx

x

x
xx  .   (8) 

 

so that 

฀

x  becomes the mean value of x and is given by (7), while its variance, following (8), is 

given by  

 

)(

)(
)( 22

xv

xD
xx

x

x
x 


    

(9) 

 

Note, from (4b), that while the `velocity’ 

฀

vx  is )( 0

1MO , the diffusion constant 

฀

Dx is 

฀

O(M1
1)  and 

hence small. Therefore, the fluctuation in (9) is 

฀

O(M1
1)  and vanishes as 

฀

M1. It follows that 

the further terms in the original Taylor expansion are even smaller and can be neglected in the 

limit of large 1M . This is the essence of the LNA. 
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The results (8) and (9) also appear as the leading terms for the corresponding quantities in the 

more systematic System Size Expansion, introduced by van Kampen (2008). In this formalism, 

x  is called a fixed point, and the second part of (7) expresses its stability. The comparisons 

between Kramers-Moyal (whose truncation at second order leads to the general nonlinear Fokker 

Planck equation) and System Size expansions have been the subject of much recent discussion in 

the literature, and it has been shown rigorously that the agreement between the two is limited to 

the lowest order of the expansion in both cases (Grima et al., 2011). An alternative approach is 

the Poisson representation method due to Gardiner (2004); see, e.g., (Thomas et al. 2010) for an 

application in enzyme networks.  

 

The formalism for module 2 is done in the same way as for module 1. We first define 

฀

y  as the 

fraction of enzyme-bound proteins in module 2, the probability distribution of which can again 

be shown to be a Gaussian, as in (8), with the transformations yx vv   and yx DD  . Here, 

)( yvy and )( yDy are defined by relations analogous to (5), along with the substitutions 
yx

 

and yx   where 
1

2

 My , and the rates 
y

 and 
y

 are given by 

 

),()1(2 yBkyM f

y   
 
 , ykM

y

  2 .              (10) 

  

where yAByB f  00),(  . The rest of the calculations for module 2 are similar to those for 

module 1, with appropriate replacement of variables as discussed above.  

 

The complete, joint probability distribution for  , x  and 

฀

y together may be denoted by 

);,,( tyxN  . In the large N  limit, it is straightforward to see that this distribution satisfies the 

more general equation of continuity: 

 

yyxxNt JJJtyx   );,,(  ,   (11) 

 

with current densities )(    DvJ  for 

฀

 x,y,. Analogous to (5), in general, we have 

)()( 
   v  and ])[2/()( 2 

   D  with 
1 N . The forward and backward 

rates for x and 

฀

y are given by (5) and (10) respectively, while the corresponding quantities for 

฀

  

are given by 

 

฀


  N(1) r x()

  , 

฀


 Nby() .     (12) 

 

Starting from the (nonlinear) Fokker-Planck equation (11) for the variables ),,( yx , it is 

possible now to obtain hierarchical equations for the various moments and cross-correlation 

functions of these variables. However, our principal interest here is to derive explicit expressions 

for  the variance of  , for which it is convenient to use a simplified formalism using tQSSA 

under appropriate conditions.  
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Let us define   
1

0

1

0

);,,(),( tyxdydxtP N   as the probability distribution of  . Under the 

tQSSA, owing to the wide separation in time scales between the slow variable   and the fast 

variables (x, y)  (see discussions later in Sec 3.4), the function 

฀

N (,x,y;t)  may be expected to 

reduce to the product 

 

),(),(),();,,( tytxtPtyx yxN  
 
.            (13) 

 

In order to find the equation satisfied by ),( tP  , let us now integrate (11) over 

฀

x and 

฀

y  after 

substituting (13), which yields 

 

 JtPt
),(     where    )( PDPvJdxdyJ     .     (14) 

 

In the above, we also imposed the boundary conditions on xJ   and yJ   for fixed   (see 

discussion following (5)). Next, using (12), we find 

 

 
   )(v      and  

 


  
2

)(

2

D   ,     (15)  

where the effective forward and backward rates for   are given by 

 

    )()1(  
xN r  and )( 

yN b .          (16) 

     

(14) has the same form as (3), with (16) replacing the rates in (5), therefore the method of 

solution follows the same arguments, with 

฀

  replacing 

฀

x and 

฀

N  replacing 

฀

M1 everywhere. In 

particular, the average 

฀

 satisfies the equation 

฀

v   0, i.e.,  

 

฀

y ()(1)x ()  ,         (17) 

 

where br  / . Analogous to (7), (17) gives the van Kampen fixed point of the total substrate 

fraction  present in module 2. 

 

The variance in the total modified substrate fraction, following (9), is given by 

 

)(

)(
)( 22










v

D




 

        (18) 

 

in the LNA. It is obvious from (15) that )( 12  NO for large N . Note that, analogous to (7), 

we require that 0v  (i.e., the fixed point in (17) should be stable) in order for (18) to be valid.  

 

2.2. Stochastic numerical simulations 
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We verified all our mathematical results using Monte Carlo simulations of the system. A 

Gillespie algorithm was used to implement the reaction scheme in Fig. 1. To choose a set of 

specific numerical values for the various parameters for the simulations, we consider the 

methylation-demethylation of chemotaxis receptors in the bacterium Escherichia coli. This 

choice is by no means obvious or unique, and is primarily motivated by our future goals of 

extending the formalism in this study to understand the biochemical noise in signal transduction 

in E. coli. There is, indeed, a close connection between the two-state covalent modification 

system studied here, and the Barkai-Leibler (1995) model of adaptation in E. coli. The parameter 

values used in the simulations are summarized in Table 1.  

 

We emphasize that our principal results do not depend in any way on the specific parameter 

values used, except for the general requirements of validity of the tQSSA. The results of the 

simulations are discussed in the following sections, along with the corresponding mathematical 

results. 

 

3. Results 

 

3.1. Determination of 

฀

x  and 

฀

y  
 

Using (2) and (5) in (7), we see that the average 

฀

x  satisfies the following quadratic equation: 

 

  0)1()1( 0000

2  RARKxAx r       (19) 

 

with solution 

)1(2

)1(4)]1([)1(

0

00

2

0000








A

RAARKARK
x

rr

 

.   (20) 

The minus sign gives the physically relevant solution. The formalism can be extended in exactly 

the same manner to module 2 to give the following expression for )(y : 




0

00

2

0000

2

4][

A

RBABKABK
y

bb 
     (21) 

 (20) and (21), combined with (17) give a mathematical expression, in the form of a chemical 

balance equation to determine  . Here, the effective forward and backward rates are given by 

(16), which replace the standard Michaelis-Menten rates 

 

)1(

)1(
)(

0

0










AK

RN

r

rMM

    





0

0)(
AK

BN

b

bMM


 .     (22) 

 

derived under sQSSA (Briggs and Haldane, 1925). 

 

3.2. Ultrasensitivity and the critical point 
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We will now provide a rigorous proof that the GK point is a critical point for the ultrasensitive 

switching between 0  and 1 . We do so by showing first that under conditions of enzyme 

saturation, the mathematical equation describing the modified substrate fraction become 

quadratic, as opposed to the cubic equation derived by Goldbeter and Koshland (1981) under 

more general, non-saturating conditions (reproduced in Appendix B). This simplifies the analysis 

considerably. The reader is also referred to Xu and Gunawardena (2012) for a powerful 

geometric approach which directly works with the cubic equation. 

 

We start by conveniently expressing (19) and (20) in the following forms: 

 

)1,,(
2

1

)1(22

1
)( 


 



 r
r rf

r
x   ; ),,(

2

1

22

1
)( 




 b

b bf
b

y 



 

,       (23)  

 

where 00 / ARr  , 00 / ABb  , 

฀

 r  K r /A0 and 

฀

b  Kb /A0 are a set of dimensionless numbers 

which become vanishingly small as 0A , while the function

22 /)(/)(21),,( zyxzxyzyxf  . In the limit of large 0A , the variables x and y

become small, and it is therefore useful to carry out a binomial expansion of the square root in 

the above expression, which yields the limiting form zxyzyxf /)(1),,(  . It then follows 

that 

 

3)1(41
1

1
)(





















 rr Cr
x

 

  and   
34

1)(





 bb Cb
y 








 .      (24) 

 

where )(33
rrrC rrrr    and  )(33

bbbC bbbb   . Substitution of (24) (after 

neglecting the last terms in both, in the large 0A  limit) into (16) yields the following quadratic 

equation for  .  

 

  0)1()1()1( 2  bbr    where br /   ,     (25a) 

 

with solution 

 
)1(2

)1(41)()1(
2








 brbrb

nc

     

(25b) 

 

where the subscript is an abbreviation for ‘near-critical’. (25a) effectively replaces the cubic 
equation derived by Goldbeter and Koshland (1981) under the sQSSA, in the vicinity of the 

critical point, in the limit of large 0A .  

 

The solution in (25b) is discontinuous across the point 

฀

  1, which we shall call the critical 

point. In terms of the original variables, this is equivalent to cRBR  /00 , which is the same 

as the GK point (compare (25b) with (26b)). The limiting behavior of  in the limit of large 

฀

A0, 
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in the sub-critical (

฀

R0  Rc ) and super-critical (

฀

R0  Rc ) regimes, obtained from an analysis of 

(25b), are given below:  

 

00)( A

K

RR

R b

c

c
nc 
              00 , ARR c    (26a) 

00

0

)(
1

A

K

RR

R r

c

nc 
         00 , ARR c    (26b) 

 

It is obvious that (23-25) work best in the vicinity of the critical point. This is because the 

binomial approximation leading to (24) from (23) is valid when 

฀

  max( b, b )  and 

฀

1max(r,r) . Using the expressions (26) in the above conditions then leads to 

฀

R0Rc Rc
 as a self-consistency requirement for (26a) and (26b) to be valid.  

 

(26a) and (26b) clearly show that the conditions 0AKb   and 0AKr   are required for the 

transition to be sharp, for, in these limits, 0  and 1  respectively in the sub-critical and 

super-critical regime, respectively. At the critical point, putting 

฀

  1 in (25a), we find  

฀

(Rc)c 
Kb

Kr Kb   

,       (27) 

independent of 0A .  

 

3.3 Comparison with the results of sQSSA 

 

It is interesting that the conventional sQSSA (when the intermediates are neglected) also predicts 

a quadratic equation similar to (25a), which, in our notation, may be written as  

 

  0)1()1()1( 2  brb  ,   (sQSSA)     (28a) 

 

the solution of which is 

 

          

 
)1(2

)1(41)()1(
2








 bbrbr

GK .    (28b) 

 

Here, the subscript GK refers to Goldbeter and Koshland, who first derived (28a). The limiting 

behaviors of GK  in the limit of large 0A  are as follows:  

                   00

0

)( A

K

RR

R b

c

GK 


  

 00 , ARR c   (29a) 

 

                   00 )(
1

A

K

RR

R r

c

c
GK 


  

 00 , ARR c   (29b)  
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Note that (29) may also be directly obtained from (26) through the exchange R0«Rc  in the 

numerators.  Comparison of (26) and (29) shows that the results of sQSSA (with intermediates 

neglected) and tQSSA agree close to the critical point ( R0® Rc
), in the limit of large A0

. In the 

next section, we show that both these conditions are favorable for large separation of time scales 

of intra-modular and inter-modular dynamics, itself is a sufficient condition for validity of 

tQSSA.  

 

3.4 Effective Michaelis-Menten rates from a rational approximation 

 

We shall now discuss the connections between the effective modification/de-modification rates 

as emerging from the present approach and the conventional Michaelis-Menten rates derived 

under the sQSSA. The limiting behavior of x and y  for small and large 0R may be used to 

construct rational function approximations for them, which are easier to work with, compared to 

the exact quadratic forms in (19) and (20). We note that when )1(00  AKR r
, the square 

root in (19) may be expanded binomially, and keeping the first two terms in the expansion yields 

 

 
)1(0

0




AK

R
x

r

  when  )1(00  AKR r
       (30) 

 

In the opposite limit (i.e., )1(00  AKR r
), we note that 1x . The following rational 

function approximation captures these two asymptotic behaviors correctly: 

 

)1(
)(

00

0







AKR

R
x

r

e

        

(31a) 

 

Similarly, a corresponding approximation formula may be constructed for )(y , starting with 

(20), i.e.,  

 




00

0)(
AKB

B
y

b

e 


 

.        (31b) 

 

Rational approximations of the form in (30) (sometimes referred to as Padè approximants ) have 

been used in earlier papers (e.g., Borghans et al., 1996; Ciliberto et al., 2007; Gomez-Uribe et al., 

2007)We shall call them Effective Michaelis-Menten (EMM) rates in this paper, and denote the 

corresponding expressions with the symbol e  as subscript or superscript. These rates, when used 

in (22), result in the following effective forward and backward rates for the dynamics of 

฀

 : 

 

)1(

)1(
)(

00

0








AKR

RN

r

re

     



00

0)(
AKB

BN

b

be


  ,      (32) 
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which may be compared with (22). The expressions in (22) and (31) agree in the limits 

rKR 0
and 

bKB 0
. The expressions in (30), when used in (16), yield the following 

approximate quadratic equation for  (Gomez-Uribe et al., 2007): 

 

  0)(1)()1( 2  bbr bbr       (33a) 

 

the solution of which is given below: 

 

    
   

)1(2

))(1(41)(1)(
2








 bbrbr

e

bbrbr
 .    (33b) 

 

In the limit of large 

฀

A0, this expression takes the following limiting forms: 

 

)(

)(

00

00

RRA

KBR

c

b
e 


           when   

฀

R0  Rc  and      (34a) 

)(

)(
1

00

00

c

r
e

RRA

KRB







            when  

฀

R0  Rc  .     (34b) 

            

The critical point 

฀

Rc  has been defined in the last section. Note that while the solutions given in 

(33) are, in general, different from the near-critical expressions in (27), they become identical in 

the limits 

฀

R0 Kr, 

฀

B0 Kb and 

฀

R0 Rc. The last condition conforms to our expectation that 

(27) is valid close to the critical point, while (33) may be expected to work away from it. 

Numerical results, discussed below, confirm these expectations.  

 

A set of general conditions to be satisfied for the validity of tQSSA may now be derived by 

combining (16) with (31) and (34). From (16), the inter-modular transport of molecules is 

governed by the effective rates (per molecule) )(xvr
 and )(yvb , therefore the applicability of 

tQSSA requires that both these rates are small in comparison with the enzyme binding and 

dissociation rates within the modules. Therefore, in general, we require that 

),min(),max( 1

21
1  TTyvxv br  where T1

 and T2
 are the time scales of equilibration in modules 

1 and 2 respectively. For fixed vr
 and vb

, provided neither is too large in comparison with the 

(effective) forward and backward rates within the modules, this condition is satisfied if x, y <<1. 

(See, eg., Tsafriri and Edelman (2004) for a detailed discussion on the conditions for the 

magnitudes of vr
 and vb

in the context of a reversible Michaelis-Menten reaction) This implies 

that a sufficient condition for the validity of tQSSA is that the fraction of molecules in the 

enzyme-bound intermediate state is small, which would mean that sQSSA applies equally well.  

Using (26), (29) or (34) in (31) shows that the condition is uniformly satisfied whenever 

R0 / A0 <<1, B0 / A0 <<1 and R0® Rc
. Therefore, we conclude that tQSSA applies well under 

conditions of enzyme saturation (which is a necessary requirement for ZOU) and when the 

system is close to the critical point. Furthermore, under these same conditions, its results should 

match that of sQSSA (with intermediate complexes neglected). The last point was already noted 

in our discussions following (29) above.  
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Coming now to numerical simulations, Fig. 2 shows the averages x and y plotted as functions of 

0R . It is clearly seen that as the critical point is crossed, x shows a sudden rise from near-zero 

values to 1, while y drops from a large to small value. These observations lead us to interpret the 

ultrasensitive transition as a traffic jam: for small 0R , x  is small, i.e., only a small number of 

substrate proteins are present in the first excited state, which then proceed (slowly) to the 

modified state and consequently processed to the second excited state by B-enzymes. As 0R  

increases, a larger number of substrate molecules arrive in the modified state, but the B-enzymes 

(at fixed concentration) now do not have sufficient numbers to process them forward. As a result, 

there is a sharp drop in y  with increase in 0R .  Fig. 3b supports this conjecture, see the next 

paragraph. It is also interesting to note that both x  and y  are small near the critical point, in 

agreement with our earlier arguments.  Two analytical results are also shown for comparison, 

corresponding to the EMM approximation in tQSSA (31) and the sQSSA prediction obtained 

from the GK cubic equation (B.6).  

 

In Fig. 3a, we plot the average modified fraction as a function of 0R  for various concentrations 

0A . The plots clearly show the sharpening of the transition as 0A increases. A comparison of 

numerical data with the EMM solution (33b) is also shown in the inset of the figure. In Fig. 3b, 

the rates 
r  and b  were increased and reduced 10-fold, in comparison to their reference values 

in Fig. 3a. We observe that reduction of the rates has almost no discernible effect on the curve, 

but the transition is much weakened when the rates are increased. Intuitively, this is to be 

expected, as a high value of b  ensures that accumulation of substrate in module 2 is reduced for 

given 0A ; however, as the arriving numbers increase even further with increasing 0A , 

accumulation also increases. Therefore, the net effect of an increase in the final conversion rates 

is to reduce the sharpness of the transition for given 0A .  

 

Fig. 4a shows comparisons between the numerical data in Fig. 3b and theoretical expressions 

obtained by numerically solving  (a) the van Kampen fixed point equation (17) and the GK cubic 

equation (B.4) using the Mathematica 7.0 (Wolfram Research Inc, 2008) for two different sets of 

turnover rates with fixed ratio. When the turnover rates are large (main figure), the cubic 

equation, derived using sQSSA works well. This is to be expected, since the equilibration of the 

intermediate complexes with respect to the substrate, a requirement for sQSSA, is very fast when 

the turnover rate is large. The fixed point equation (17), being a function of the ratio of the 

turnover rates, is the same for the different curves in Fig. 3b and fails when the individual rates 

become too large. For smaller turnover rates (inset) the two theoretical curves are 

indistinguishable from each other and both agree splendidly with the simulation data.  

 

Fig. 4b shows a similar comparison, but with data at a higher substrate concentration compared 

to Fig. 4a and with the predictions of various quadratic approximations, i.e., the near-critical 

expression (25b) the GK quadratic approximation (28b) and the EMM result (33b). As expected, 

the near-critical expressions work well near the critical point, but fail away from it, where EMM 

approach appears to work well.  
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3.5 Fluctuations in 

฀

  and power-law divergence near the critical point 

 

We now focus on deriving expressions for the variance in 

฀

 . In terms of 

฀

x () and 

฀

y (), we 

have, for the variance, from (17), 

 

 










)()()1()()(

)()1()(

2

12




xxyy

xy

N
.    

(35) 

In the large 

฀

A0 limit, and in the vicinity of the critical point, we may approximate 

฀

x r/(1)  

and 

฀

y  b / from (24). After substitution of these expressions in (35), we find 

 












  22

2

)1(2

1




rb rb

rb

N
      (36) 

 

For 

฀

R0  Rc , 

฀

0 as 

฀

A0 , and the first term in the denominator dominates over the 

second, while for 

฀

R0  Rc , the second term dominates, since 

฀

  1 in this limit. In the next step, 

we substitute the near-critical expressions in (27) into (35), which leads to  

 

2

0

2

0

02

)(2

)(

RRVA

RKRR

c

cbc




       when 

฀

R0  Rc  ,   (37a) 

 

2

0

2

0

002

)(2

)(

c

rc

RRVA

RKRR




  when 

฀

R0  Rc    (37b) 

 

and finally, using (28) in (35), we find 

 

3

12

)( br

br

KK

KK
V


 

   when 

฀

R0  Rc   .            (37c) 

 

In the above equations, we have made the substitution

฀

N  A0V, where 

฀

V  is the cellular volume.  

In the special case KKK br  , we find 
12 )8(  KV at the critical point.   

 

Away from the critical point, it is more appropriate to use the rational expressions in (30) in (34), 

which gives 

 

               

































22

2

)1(

)(

)(

)(

1

)1(

2

1













r

r

b

b

rb r

rr

b

bb

r

r

b

b

N

            

(38) 

 

(38) needs to be combined with (25b), (28b) or (33b) to express the variance as a function of 0R . 
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Fig. 5 shows the variance in   plotted as a function of 0R  for different 0A , with comparison 

between simulations and the expression in (38). For best fit, we used   as measured in 

simulations (data in Fig. 3a) rather than the approximate analytical expressions. In general, we 

find good agreement between (38) and simulation data, except in the vicinity of the critical point 

and for small A0
.  The observed disagreement in the latter case likely indicates the inadequacy 

of LNA at small substrate concentrations (see also discussions in the next section). Fig. 6 shows 

the variance at the critical point itself, as a function of 0A , compared with the theoretical 

prediction in (37c).  

 

Fig. 7 shows the variance, at various concentrations 0A , plotted as a function of )( 00 RRA c   for 

cRR 0  (Fig. 7a) and as a function of 000 /)( RRRA c   for cRR 0  (Fig. 7b). The different forms 

of the scaling variables on the x-axis were suggested by the expressions (37a) and (37b) 

respectively. In general, we observe an algebraic relation between the variance and the 

appropriate scaling variable with a power -2. This behavior is reminiscent of the divergence of 

magnetic susceptibility  (proportional to fluctuations in magnetization) near the critical point in 

a paramagnet-ferromagnet phase transition, i.e., 
  cTT~  with   being a critical 

exponent. More discussions on the analogy between ZOU and the liquid-gas phase transition in 

classical fluids may be found in Berg et al. (2000).  

 

Finally, Fig. 8 shows that, away from criticality, the fluctuations decay proportional to 
2

0


A  at 

fixed R0
 in both sub-critical and super-critical regimes, in agreement with (37a) and (37b).  

 

4. Discussion and Conclusions  

 

The Goldbeter-Koshland (GK) switch mechanism in reversible covalent modification continues 

to generate a great deal of interest among biologists, as its only requirement is the presence of an 

excess of substrate molecules over the modifying enzymes. Interestingly, mathematical 

calculations show that the sharpness of the response is determined only by this imbalance in 

substrate-enzyme concentrations, and, in principle, could be increased without limit. In effect, 

this means that, under appropriate conditions, such systems could achieve a level of sensitivity 

equivalent to allosteric enzymes with extremely high Hill coefficients. Goldbeter and Koshland 

(1981) named this amplification zero-order ultrasensitivity (ZOU), since its realization requires 

that the enzymes work in the `zero-order’ regime, where they are saturated with respect to the 
substrate. 

 

The work by Berg et al. (2000) discussed for the first time the intrinsic fluctuations in the GK 

ultrasensitive switch. These authors pointed out the similarities between ultrasensitivity and a 

thermodynamic phase transition (e.g. liquid-gas) and showed that the sensitivity of response, and 

hence fluctuations are maximized at the switching point. However, the analytical results were 

restricted to the limit K / A0®0, where K  represent the Michaelis constants. We show in 

Appendix C that this is a serious limitation of their model, as the leading terms in the expressions 

for the average as well as fluctuations of the modified substrate fraction are )/( 0AKO . We have 

also been able to reproduce the analytical results in Berg et al. (2000) under the same 
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assumptions, but believe that our main results derived using the system size expansion technique 

are superior for the above reason.  

 

We have not discussed the dynamics of the model in this paper, because we feel that this subject 

requires a careful and detailed treatment on its own (see also discussions in Berg et al. (2000) 

and Gomez-Uribe et al. (2003)). In particular, it is interesting to observe from (16) and (24) that, 

close to the critical point, the rates 
  and 

  become independent of   in the large 0A  limit, 

and therefore, (14) that describes its dynamics reduces to a conventional diffusion equation with 

constant drift and diffusion terms. It would be interesting to develop a description of the 

dynamics of ZOU, with the random walk-like dynamics near the critical point as a starting point.  

 

It is pertinent to make a few comments here about the limitations of our study. The tQSSA on 

which we based our calculations is useful in deriving explicit expressions for the fluctuations in 

the total substrate concentration in the modified state. We also identified the parameter regimes 

where tQSSA and the conventional sQSSA match in their results, and interestingly, these 

required conditions are found to favor ZOU. Although the present procedure was found to be 

sufficient to obtain reliable estimates of fluctuations, at least in the parameter regimes studied 

here, it may be worthwhile to carry out a multivariate systematic system size expansion in x, y

and  , which would yield more general results for the mean and variance for each of these 

variables, as well as their cross-correlation coefficients. In the leading order, the averages of x, y

and    under this formalism coincide with the van Kampen fixed point in the  yx  space 

(e.g., (7) and (17)), and therefore match with tQSSA, but higher order corrections are likely to be 

different because of the appearance of cross-correlation coefficients. For the irreversible 

Michaelis-Menten scheme, for example, a similar analysis was carried out by Grima (2009). The 

present results should emerge as appropriate limiting cases from this more systematic procedure, 

which would also help us in establishing the precise regimes of their validity (e.g., the conditions 

on the turnover rates).  

 

In summary, in this paper, we have analyzed ZOU mathematically under the tQSSA in the linear 

noise regime and derived explicit mathematical expressions for the averages and fluctuations. 

We showed rigorously that the critical point for the transition is unaffected by the inclusion of 

intermediate complexes (see also Xu and Gunawardena (2012)) and is robust against 

fluctuations. The variance of the modified substrate fraction shows a power-law divergence in 

the vicinity of the critical point, similar to the divergence of magnetic susceptibility near the 

second order paramagnet-ferromagnet phase transition. Beyond this similarity, however, the 

relation between ZOU and a phase transition remains obscure because (a) there is no direct 

interaction between substrate molecules, and therefore no diverging correlation length close to 

criticality (b) the transition from one phase to another is switch-like rather than continuous.   

 

In recent times, there has been a renewed interest in various aspects of Michaelis-Menten 

kinetics, especially considering the widespread use of these rates in modern systems biology. 

ZOU occupies a special place among the various phenomena associated with enzyme-controlled 

post-translational modification of proteins, and has been the subject of a fair number of papers 

following the theoretical study of Goldbeter and Koshland (1981). However, as far as 

mathematical and computational studies are concerned, few papers venture beyond the standard 
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mean-field framework, characterized by chemical rate equations. It is, nevertheless, a fact that 

protein copy numbers in biological cells are small on the scale of the Avogadro number, the 

magnitude of which provides the justification for neglect of fluctuations in most of standard 

thermodynamics. The LNA used here, under the simplifying conditions of tQSSA, was found to 

be successful in reproducing the fluctuations observed in simulations at high enough substrate 

concentrations, but significant differences were observed at lower values (corresponding to 

~10,000 substrate proteins or less). Corrections to LNA are therefore, likely to be important in 

biological situations, and should be explored within the broader framework of multivariate 

system size expansion (van Kampen, 2008). We hope that our study will stimulate further work 

in this direction.  

 

Acknowledgements 

 

This work was supported financially through a Fast-track project SR/FTP/PS-18/2010 funded by 

the Science and Engineering Research Council (SERC) of the Ministry of Science and 

Technology, Government of India. We also thank the P.G. Senapathy Centre for Computing 

Resources at IIT Madras for computing time in the Virgo cluster. 

 

References 

 

Barkai, N., Leibler, S., 1997. Robustness in simple biochemical networks. Nature 387 (6636), 

913-917. 

 

Berg, O.G., Paulsson, J., Ehrenberg, M., 2000. Fluctuations and quality of control in biological 

cells: Zero-order ultrasensitivity reinvestigated. Biophys. J. 79, 1228-1236. 

 

Blüthgen, N., Bruggeman, F.J., Legewie, S., Herzel, H., Westerhoff, H.V., Kholodenko, B.N., 

2006. Effects of sequestration on signal transduction cascades. FEBS J. 273, 895–906. 

 

Borghans, J.A.M., De Boer, R.J., Segel, L.A., 1996. Extending the quasi-steady state 

approximation by changing variables. Bull.Math. Biol. 58, 43–63. 

 

Casati, G., Aon, M.A., Iglesias, A.A., 1999. Ultrasensitive glycogen synthesis in Cyanobacteria. 

FEBS Lett. 446 (1), 117-121. 

 

Ciliberto A, Capuani F, Tyson J.J., 2007. Modeling networks of coupled enzymatic reactions 

using the total quasi-steady state approximation. PLoS Comp Biol 3:e45 

 

Cimino, A., Hervagault, J.F., 1987. Experimental evidence for zero-order ultrasensitivity in a 

simple substrate cycle. Biochem. Biophys. Res. Commun. 149 (2), 615-620. 

 

Elf, J., Ehrenberg, M., 2003. Fast evaluation of fluctuations in biochemical networks with the 

linear noise approximation. Genome Res. 13, 2475-2484. 

 

Emonet, T., Cluzel, P., 2008. Relationship between cellular response and behavioural variability 

in bacterial chemotaxis. Proc. Natl. Acad. Sci. 105, 3304-3309. 



 18 

 

Gardiner, C.W., 2004. Handbook of Stochastic Methods. Springer. 

 

Ge, H., Qian, M., 2008. Sensitivity amplification in the phosphorylation-dephosphorylation 

cycle: Nonequilibrium steady states, chemical master equation, and temporal cooperativity. J. 

Chem. Phys.  129, 015104. 

 

Gillespie, D. T., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 

81(25), 2340-2351. 

 

Goldbeter, A., Koshland Jr., D.E., 1981. An amplified sensitivity arising from covalent 

modification in biological systems. Proc. Natl. Acad. Sci.  73 (11), 6840-6844. 

 

Gomez-Uribe, C., Verghese, G. C., Mirny, L. A., 2007. Operating regimes of signaling cycles: 

Statics, dynamics and noise filtering. PLoS Comp Biol 3 (12), 2487. 

 

Grima, R., 2009. Noise-induced breakdown of Michaelis-Menten Equation in steady state 

conditions. Phys. Rev. Lett. 102, 218103. 

 

Grima R., Thomas P, Straube, A. V., 2011. How accurate are the nonlinear chemical Fokker-

Planck and chemical Langevin equations? J. Chem. Phys. 135, 084103. 

 

Kim, S.Y., Ferrell Jr., J.E., 2007. Substrate competition as source of ultrasensitivity in the 

inactivation of Wee1. Cell 128 (6), 1133-1145. 

 

LaPorte, D.C., Koshland Jr., D.E., 1983. Phosphorylation of isocitrate dehydrogenase as a 

demonstration of enhanced sensitivity in covalent regulation. Nature 305 (5932), 286-290. 

 

Meinke, M.H., Bishop, J.S., Edstrom, R.D., 1986. Zero-order ultrasensitivity in the regulation of 

glycogen phosphorylase. Proc. Natl. Acad. Sci. 83 (9), 2865-2868. 

 

Melen, G.J., Levy, S., Barkai, N., Shilo, B.Z., 2005. Threshold responses to morphogen gradients 

by zero-order ultrasensitivity. Mol. Syst. Biol. 1, 02-08. 

 

Ortega, F., Acerenza, L., Westerhoff, H.V., Mas, F., Cascante, M., 2002. Product dependence 

and bifunctionality compromise the ultrasensitivity of signal transduction cascades. Proc. Natl. 

Acad. Sci.  99 (3), 1170–1175. 

 

Pedersen, M.G., Bersani, A.M., 2010. Introducing total substrates simplifies theoretical analysis 

at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order 

ultrasensitivity. J. Math. Biol. 60, 267–283. 

 

Qian, H., 2003. Thermodynamic and kinetic analysis of sensitivity amplification in biological 

signal transduction. Biophys. Chem. 105, 585–593. 

 



 19 

Reneaux, M., Gopalakrishnan, M., 2010. Theoretical results for chemotactic response and drift 

of E. coli in a weak attractant gradient. J. Theor. Biol. 266, 99-106. 

 

Samoilov, M., Plyasunov, S., Arkin, A.P., 2005. Stochastic amplification and signaling in 

enzymatic futile cycles through noise-induced bistability with oscillations. Proc. Natl. Acad. Sci. 

102 (7), 2310–2315. 

 

Szomolay, B., Shahrezaei, V., 2012. Bell-shaped and ultrasensitive dose-response in 

phosphorylation-dephosphorylation cycles: the role of kinase-phosphatase complex formation. 

BMC  Syst. Biol. 6, 26 

 

Thomas, P., Straube, A.V., Grima, R., 2010. Stochastic theory of large-scale enzyme-reaction 

networks: Finite copy number corrections to rate equation models. J. Chem. Phys. 133, 195101-

12. 

 

Tzafriri, A. R., Edelman, E. R., 2004. The total quasi-steady-state approximation is valid for 

reversible enzyme kinetics. J. Theor. Biol. 226, 303-313. 

 

Tzafriri, A.R., Edelman, E.R., 2007. Quasi-steady-state kinetics at enzyme and substrate 

concentrations in excess of the Michaelis–Menten constant. J. Theor. Biol. 245, 737–748.  

 

van Albada, S.B., ten Wolde, P.R., 2007. Enzyme localization can drastically affect signal 

amplification in signal transduction pathways. PLoS Comput. Biol. 3 (10), 1925-1934. 

 

van Kampen, N.G., 2007. Stochastic Processes in Physics and Chemistry. Elsevier. 

 

Wolfram Research, Inc. 2008. Mathematica, Version 7.0, Champaign, IL. 

 

Xu, Y., Gunawardena, J., 2012. Realistic enzymology for post-translational modification: Zero-

order ultrasensitivity revisited. J. Theor. Biol. 311, 139-152. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

 

 

Appendix A 

 

Expansion of the Master Equation in inverse powers of the number of molecules 

 

Defining 
11 /Mmx ,

1

1

 Mx  and 

฀

x (x)  x
1

Px (m1) , the master equation (1) becomes 
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where, f
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1)( . Now we expand the probability 

distribution function and the rates in a power series in x , i.e., 
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The superscript x on the rates is omitted for clarity in (A.2). Substitution of (A.2) into (A.1) 

yields, up to terms that are O(dx
2), the following partial differential equation: 
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(A.3) has the same form as the equation of continuity (3) expressing the conservation of 

probability, with the probability current density given by (4a). Note that (A.3) is a Smoluchowski 

(Fokker-Planck) equation for   with drift and diffusion coefficients given by (4b). 

 

Appendix B 

 

Derivation of the GK cubic equation 

 

In the sQSSA scheme, the concentration of the intermediates, denoted by Aand A*
respectively 

are first expressed in terms of the concentrations of the unmodified ( A ) and modified substrate (
*

A ) as follows 
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Next, using the steady state condition *~~
AvAv br  obeyed by the complete two state system, we 

obtain a relation between A and 
*

A : 
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Finally, by incorporating (B.1), (B.2) and (B.3) in the conservation relation 0

** ~~
AAAAA   

, we arrive at the following cubic equation in A: 
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After obtaining the solution to (B.4) by numerical means, and using (B.2) and (B.3), the average 

modified fraction is given by 
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as a function of 0R . We may also obtain the expressions for fractions of unmodified  ( x ) and 

modified ( y ) intermediate complexes, as functions of 0R
 :
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Appendix C 

 

Relation to the analytical results in Berg et al. (2000) 

 

It is, naturally, interesting to explore the connections between our results and the analytical 

results in Berg et al. (2000), where explicit results for the probability distribution of the modified 

fraction, as well as the first and second moments were computed.  Following our arguments in 

the section `Models and Methods’, we find that the steady state distribution )(P  (see (6)) is 

given by  
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where the coefficients v and D  , in the rational approximation, are given by (16) and (30). In 

the limit where A0 is large, , leading to  
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Therefore, from (41), 
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Note that the corresponding expression in Berg et al. (2000), in our notation, is P(n)µ (R0 / Rc )n  

with Nn  , which is similar to (B.3) after exponentiation; the apparent difference may be 

attributed to the discrete treatment in Berg et al. (2000), compared to the continuum approach 

followed in the present paper. It can be shown rigorously that the expressions become identical 

as R0® Rc
. 

 

The mean and variance of  , in the present approximation, are easily computed from (C.3), and 

the results are 
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Similarly, the variance is given by  
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Not surprisingly, the expressions in (C.4c) and (C.5b) match with the corresponding results in 

Berg et al. (2000). However, both disagree with (27) and (37c) respectively, which points to the 

inherent weakness of this approach. See also simulation data in Fig. 6 
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Parameter Numerical value 

0A  5.3-54.4 M  

0B  2.28 M  

k  25.64 
11 

sM  

k  110 
s  

k  18.51 
11 

sM  

k  110 
s  

r  0.75 1
s  

b  0.6  1
s  

V  31810 m
  

 

Table 1.  A list of the values of parameters used in numerical simulations. For specificity and in 

accordance with our goals for the future, we have generally chosen values relevant to the 

chemotaxis network of E. coli (see Emonet and Cluzel (2008), and references therein). The off-

rates k  and k  have been arbitrarily assigned a value of 110 
s  (much larger than 

r  and b ); 

rKkk /   and bKkk /   are then fixed using the experimentally measured dissociation 

constants MK r 54.0 and MK b 39.0 . The lowest value of 0A  is closer to [CheA] found 

in E. coli, and higher values were simulated to see the emergence of ultrasensitivity. The value of 

0B  is higher than what was used in Emonet and Cluzel (2008), see Reneaux and Gopalakrishnan 

(2010) for a brief discussion of this point. The GK point for these parameters is MRc 824.1 . 
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Fig. 1. A schematic diagram depicting the various dynamical processes, as well as the modules 

in our system. The expressions on the left and right sides denote the fractional concentrations of 

the corresponding species. 

 

 

 

  
 

 

Fig. 2. A comparison between the numerical results for )(x  and )(y , the corresponding 

EMM expressions from (31a) and (31b) and the GK results (B.6) for MA 2.270   
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Fig. 3a. The figure shows   as a function of 0R  at fixed 0B  for various 0A . Inset: The effective 

critical point  



0

000 /)( RdRAR c   is plotted against 
1

0


A , showing convergence to the GK 

point as 01

0 
A . 

 

 
 

 

Fig 3b. The figure shows the simulation results ( MA 2.270  ) for the ZOU transition for 

different values of the final turnover rates, keeping, however, the same ratio between them. ZOU 

is weakened when the rates 
r  and b  are increased. Inset: Reduction in fluctuations also 

confirms this effect 
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Fig. 4a  Comparison of  theoretical curves predicted by (a) the van Kampen fixed point equation 

(17), denoted tQSSA and (b) the Goldbeter-Koshland cubic equation, denoted sQSSA ((B.4) and 

(B.5)), for two different regimes of transition rates. As expected, at high 
r and b values, the 

latter gives a better estimate, while for lower values (inset), both of them agree perfectly with 

simulation. 

 

 

 

 

Fig. 4b. The mean total substrate fraction   as a function of 0R  at MA 4.540  as obtained 

from (a) numerical simulations, (b) near-critical approximation under tQSSA (25b) (b) the 

Goldbeter-Koshland curve under sQSSA with intermediates neglected (28b) and  (c) the EMM 

approximation (33b). 
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Fig. 5. The figure clearly shows that the variance in   is maximized at the critical point. Inset: 

Selected data is shown on a logarithmic scale, along with a fitting curve derived under the EMM 

approximation (38), combined with  as measured in simulations (data shown in Fig. 3a). Note 

that the data for the smallest substrate concentration deviates significantly from the theoretical 

prediction, underscoring the limitations of LNA. 

 

 

 

 
 

 

Fig. 6. The critical variance obtained from simulations is plotted against 0A , along with a 

comparison with the analytical expression obtained by substituting (26a) and (26b) in (36). The 

asymptotic value predicted by (37c) is also indicated in the figur 
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Fig. 7a. The simulation results for variance at different 0A values show good data collapse with a 

clear evidence for the scaling behavior of the variance in the sub-critical regime, as predicted by 

(37a), with the scaling function displaying an algebraic decay with exponent -2.  

 

 

 

 
 

Fig. 7b. The scaling behavior of the variance, in the super-critical regime. The scaling factor in 

the x-axis is suggested by (37b), where we have approximated cc RRR 20   in the 

numerator. Admittedly, the scaling collapse here is not as good as what is found in the sub-

critical regime (Fig. 7a). 
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Fig. 8. The figure shows that, away from the critical point, the fluctuations in   reduce with 

increase in 0A , unlike its behavior at the critical point itself. The sub-critical and super-critical 

points falling on top of each other is accidental. 

 


